Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C
In this work, we present a comprehensive theoretical and experimental study of quantum confinement in layered platinum diselenide (PtSe 2 ) films as a function of film thickness. Our electrical measurements, in combination with density functional theory calculations, show distinct layer-dependent se...
Saved in:
Published in | NPJ 2D materials and applications Vol. 3; no. 1 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.09.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, we present a comprehensive theoretical and experimental study of quantum confinement in layered platinum diselenide (PtSe
2
) films as a function of film thickness. Our electrical measurements, in combination with density functional theory calculations, show distinct layer-dependent semimetal-to-semiconductor evolution in PtSe
2
films, and highlight the importance of including van der Waals interactions, Green’s function calibration, and screened Coulomb interactions in the determination of the thickness-dependent PtSe
2
energy gap. Large-area PtSe
2
films of varying thickness (2.5–6.5 nm) were formed at 400 °C by thermally assisted conversion of ultra-thin platinum films on Si/SiO
2
substrates. The PtSe
2
films exhibit
p
-type semiconducting behavior with hole mobility values up to 13 cm
2
/V·s. Metal-oxide-semiconductor field-effect transistors have been fabricated using the grown PtSe
2
films and a gate field-controlled switching performance with an
I
ON
/
I
OFF
ratio of >230 has been measured at room temperature for a 2.5–3 nm PtSe
2
film, while the ratio drops to <2 for 5–6.5 nm-thick PtSe
2
films, consistent with a semiconducting-to-semimetallic transition with increasing PtSe
2
film thickness. These experimental observations indicate that the low-temperature growth of semimetallic or semiconducting PtSe
2
could be integrated into the back-end-of-line of a silicon complementary metal-oxide-semiconductor process. |
---|---|
AbstractList | In this work, we present a comprehensive theoretical and experimental study of quantum confinement in layered platinum diselenide (PtSe
2
) films as a function of film thickness. Our electrical measurements, in combination with density functional theory calculations, show distinct layer-dependent semimetal-to-semiconductor evolution in PtSe
2
films, and highlight the importance of including van der Waals interactions, Green’s function calibration, and screened Coulomb interactions in the determination of the thickness-dependent PtSe
2
energy gap. Large-area PtSe
2
films of varying thickness (2.5–6.5 nm) were formed at 400 °C by thermally assisted conversion of ultra-thin platinum films on Si/SiO
2
substrates. The PtSe
2
films exhibit
p
-type semiconducting behavior with hole mobility values up to 13 cm
2
/V·s. Metal-oxide-semiconductor field-effect transistors have been fabricated using the grown PtSe
2
films and a gate field-controlled switching performance with an
I
ON
/
I
OFF
ratio of >230 has been measured at room temperature for a 2.5–3 nm PtSe
2
film, while the ratio drops to <2 for 5–6.5 nm-thick PtSe
2
films, consistent with a semiconducting-to-semimetallic transition with increasing PtSe
2
film thickness. These experimental observations indicate that the low-temperature growth of semimetallic or semiconducting PtSe
2
could be integrated into the back-end-of-line of a silicon complementary metal-oxide-semiconductor process. In this work, we present a comprehensive theoretical and experimental study of quantum confinement in layered platinum diselenide (PtSe2) films as a function of film thickness. Our electrical measurements, in combination with density functional theory calculations, show distinct layer-dependent semimetal-to-semiconductor evolution in PtSe2 films, and highlight the importance of including van der Waals interactions, Green’s function calibration, and screened Coulomb interactions in the determination of the thickness-dependent PtSe2 energy gap. Large-area PtSe2 films of varying thickness (2.5–6.5 nm) were formed at 400 °C by thermally assisted conversion of ultra-thin platinum films on Si/SiO2 substrates. The PtSe2 films exhibit p-type semiconducting behavior with hole mobility values up to 13 cm2/V·s. Metal-oxide-semiconductor field-effect transistors have been fabricated using the grown PtSe2 films and a gate field-controlled switching performance with an ION/IOFF ratio of >230 has been measured at room temperature for a 2.5–3 nm PtSe2 film, while the ratio drops to <2 for 5–6.5 nm-thick PtSe2 films, consistent with a semiconducting-to-semimetallic transition with increasing PtSe2 film thickness. These experimental observations indicate that the low-temperature growth of semimetallic or semiconducting PtSe2 could be integrated into the back-end-of-line of a silicon complementary metal-oxide-semiconductor process. |
ArticleNumber | 33 |
Author | Caruso, Enrico Lin, Jun Burke, Kevin F. Gity, Farzan Coileáin, Cormac Ó Duesberg, Georg S. Stimpel-Lindner, Tanja Mirabelli, Gioele Monaghan, Scott Cullen, Conor P. Siris, Rita Ansari, Lida Duffy, Ray Nagle, Roger E. Hurley, Paul K. McEvoy, Niall |
Author_xml | – sequence: 1 givenname: Lida orcidid: 0000-0002-9284-2832 surname: Ansari fullname: Ansari, Lida organization: Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork – sequence: 2 givenname: Scott orcidid: 0000-0002-9006-9890 surname: Monaghan fullname: Monaghan, Scott organization: Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork – sequence: 3 givenname: Niall surname: McEvoy fullname: McEvoy, Niall organization: Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin – sequence: 4 givenname: Cormac Ó surname: Coileáin fullname: Coileáin, Cormac Ó organization: Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin – sequence: 5 givenname: Conor P. surname: Cullen fullname: Cullen, Conor P. organization: Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin – sequence: 6 givenname: Jun surname: Lin fullname: Lin, Jun organization: Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork – sequence: 7 givenname: Rita surname: Siris fullname: Siris, Rita organization: Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München – sequence: 8 givenname: Tanja surname: Stimpel-Lindner fullname: Stimpel-Lindner, Tanja organization: Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München – sequence: 9 givenname: Kevin F. surname: Burke fullname: Burke, Kevin F. organization: Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork – sequence: 10 givenname: Gioele orcidid: 0000-0001-7060-4836 surname: Mirabelli fullname: Mirabelli, Gioele organization: Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork – sequence: 11 givenname: Ray surname: Duffy fullname: Duffy, Ray organization: Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork – sequence: 12 givenname: Enrico orcidid: 0000-0002-6031-2976 surname: Caruso fullname: Caruso, Enrico organization: Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork – sequence: 13 givenname: Roger E. surname: Nagle fullname: Nagle, Roger E. organization: Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork – sequence: 14 givenname: Georg S. surname: Duesberg fullname: Duesberg, Georg S. organization: Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials and Bioengineering Research (AMBER), School of Chemistry, Trinity College Dublin, Institute of Physics, EIT 2, Faculty of Electrical Engineering and Information Technology, Universität der Bundeswehr München – sequence: 15 givenname: Paul K. surname: Hurley fullname: Hurley, Paul K. organization: Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork, School of Chemistry, University College Cork – sequence: 16 givenname: Farzan orcidid: 0000-0003-3128-1426 surname: Gity fullname: Gity, Farzan email: Farzan.Gity@Tyndall.ie organization: Nanoelectronic Materials and Devices, Tyndall National Institute, University College Cork |
BookMark | eNp9kMtKxDAUhoMoeJsHcBdwHU2atmmXMngDQUVdh0x6OmZoE01SLzu3vo3P4KP4JKaMoAi6CCc5-b-c8G2iVessILTD6B6jvNoPOSvrmlA2LlaSfAVtZLwWRDCerf7Yr6NJCAtKU5KVecE20NPloGwceqydbY2FHmwkxjaDhgYH6E0PUXUkOjIeUijdROcxPLhuiMZZbCzulJ8DUR4UHrroFYm3qXsRryDDren6gOfePVqsIs4p_Xh5fX-bbqO1VnUBJl91C90cHV5PT8jZ-fHp9OCMaF7UkTQFpaIBYFq0motsJnhVCZVTXZeqqHJewEzXlRBFwzIOvIFZqYRiCgraliD4Ftpdvnvn3f0AIcqFG7xNI2XGq7qsKCvylGLLlPYuBA-tvPOmV_5ZMipHx3LpWCZzcnQsR0b8YrSJanSSFJjuXzJbkiFNsXPw33_6G_oE6CKVBA |
CitedBy_id | crossref_primary_10_1002_adfm_202110428 crossref_primary_10_1007_s12274_022_4110_3 crossref_primary_10_1088_2632_959X_ab7055 crossref_primary_10_1002_adfm_202103936 crossref_primary_10_1063_5_0151592 crossref_primary_10_1109_TED_2020_2966434 crossref_primary_10_1021_acsphotonics_1c01517 crossref_primary_10_1007_s12274_024_6949_y crossref_primary_10_1021_acs_inorgchem_0c00522 crossref_primary_10_1088_1361_648X_ad8697 crossref_primary_10_1016_j_physb_2023_415138 crossref_primary_10_1002_adfm_202102929 crossref_primary_10_1088_2053_1583_aba9a0 crossref_primary_10_1063_5_0021009 crossref_primary_10_1021_acs_nanolett_3c03666 crossref_primary_10_1088_1742_6596_1492_1_012022 crossref_primary_10_1016_j_mseb_2023_116728 crossref_primary_10_1002_sstr_202300222 crossref_primary_10_1016_j_mssp_2023_107814 crossref_primary_10_1088_1361_6528_ad2572 crossref_primary_10_1021_acs_chemmater_4c00753 crossref_primary_10_1038_s42254_020_00259_1 crossref_primary_10_1088_2515_7639_abd4f2 crossref_primary_10_1016_j_apsusc_2023_158103 crossref_primary_10_1002_advs_202201272 crossref_primary_10_1039_D0RA07405E crossref_primary_10_3390_ma14123283 crossref_primary_10_1002_adfm_202105722 crossref_primary_10_1016_j_apsusc_2023_158061 crossref_primary_10_1109_TED_2020_3018095 crossref_primary_10_1007_s12274_021_3979_6 crossref_primary_10_1039_D4NR03203A crossref_primary_10_1002_adfm_202205709 crossref_primary_10_1021_acsaelm_0c00638 crossref_primary_10_1002_inf2_12468 crossref_primary_10_1021_acsnano_4c11627 crossref_primary_10_1007_s40843_024_3031_0 crossref_primary_10_1088_2053_1583_ac37aa crossref_primary_10_1038_s41928_021_00670_1 crossref_primary_10_1016_j_jpcs_2024_112004 crossref_primary_10_1038_s41699_022_00311_x crossref_primary_10_1063_5_0010034 crossref_primary_10_1021_acsomega_3c09958 crossref_primary_10_1088_2053_1583_ab9f91 crossref_primary_10_1007_s12274_024_6941_6 crossref_primary_10_1016_j_surfrep_2021_100523 crossref_primary_10_1021_acsnano_1c02971 crossref_primary_10_1088_2053_1583_ac606f crossref_primary_10_1002_lpor_202100594 crossref_primary_10_1016_j_susc_2022_122181 crossref_primary_10_1021_acs_nanolett_4c03983 crossref_primary_10_1016_j_apsusc_2020_147936 crossref_primary_10_1088_2053_1583_abc460 crossref_primary_10_1039_D0CP04021E crossref_primary_10_1021_acsami_2c14065 crossref_primary_10_1021_acsami_4c06540 crossref_primary_10_1007_s12598_021_01877_z crossref_primary_10_1038_s41699_020_00196_8 crossref_primary_10_1021_acsomega_1c04768 crossref_primary_10_1088_1742_6596_1866_1_012001 crossref_primary_10_1007_s12274_022_4232_7 crossref_primary_10_1002_aelm_202100559 crossref_primary_10_1021_acsami_0c00116 crossref_primary_10_1002_adfm_202000435 crossref_primary_10_1002_adma_202201916 crossref_primary_10_1021_acsnano_4c08160 crossref_primary_10_1002_aelm_202400392 crossref_primary_10_3390_nano13222930 crossref_primary_10_1021_acsami_0c17810 crossref_primary_10_1016_j_apmt_2023_101926 crossref_primary_10_1002_adfm_202408982 crossref_primary_10_1038_s41598_021_98080_y crossref_primary_10_1063_5_0053309 crossref_primary_10_1021_acsnano_4c18077 crossref_primary_10_1007_s40820_020_00515_0 crossref_primary_10_1088_2515_7647_ab7557 crossref_primary_10_1039_D1RA04507E crossref_primary_10_1002_adom_202302140 crossref_primary_10_1021_acs_nanolett_2c00874 crossref_primary_10_1088_1361_6463_ab985d crossref_primary_10_1002_adma_202004070 |
Cites_doi | 10.1109/TED.2018.2856305 10.1038/s41699-018-0051-9 10.1038/nphys2942 10.1021/acs.jpcc.6b06999 10.1002/jcc.20495 10.1021/acs.nanolett.8b00928 10.1103/PhysRevB.73.205119 10.1103/PhysRevB.99.045438 10.1021/acs.nanolett.5b00964 10.1088/2053-1583/aa8919 10.1088/2053-1583/3/2/021004 10.1016/j.cpc.2009.02.003 10.1103/PhysRevLett.96.226402 10.1088/0953-8984/25/34/345501 10.1038/nchem.1589 10.1002/anie.201309280 10.1021/acs.nanolett.5b00160 10.1038/nnano.2012.193 10.1103/PhysRevLett.104.216401 10.1016/j.mee.2018.03.022 10.1021/acs.nanolett.7b05000 10.1103/PhysRevB.67.155108 10.1002/adfm.201805614 10.1021/nl2040817 10.1063/1.1723695 10.1126/science.aac9439 10.1103/PhysRevB.94.104426 10.1002/adma.201602889 10.1021/jp405808a 10.1002/adfm.201800657 10.1088/0953-8984/21/39/395502 10.1021/acsnano.6b04898 10.3390/ma9090716 10.1007/s10853-017-1572-x 10.1103/PhysRevB.85.085126 10.1038/nnano.2013.277 10.1016/j.sse.2016.07.021 10.1088/0022-3719/19/7/011 10.1038/s41467-018-03436-0 10.1088/1361-6641/aacba2 10.1016/j.apsusc.2014.01.103 10.1002/adma.201604230 10.1103/PhysRevLett.77.3865 10.1002/adfm.201902483 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.1038/s41699-019-0116-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Collection (ProQuest) Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2397-7132 |
ExternalDocumentID | 10_1038_s41699_019_0116_4 |
GrantInformation_xml | – fundername: Science Foundation Ireland (SFI) grantid: 15/SIRG/3329 funderid: https://doi.org/10.13039/501100001602 – fundername: Irish Research Council (An Chomhairle um Thaighde in Éirinn) grantid: GOIPD/2016/643; GOIPD/2018/653 funderid: https://doi.org/10.13039/501100002081 |
GroupedDBID | 0R~ AAFWJ AAJSJ AAKAB ABJCF ACGFS ACSMW ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ C6C CCPQU EBLON EBS EJD GROUPED_DOAJ HCIFZ KB. M7S M~E NAO NO~ OK1 PDBOC PIMPY PTHSS RNT SNYQT AASML AAYXX AFPKN CITATION PHGZM PHGZT 8FE 8FG AARCD ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c359t-d5007dee1c7fc372b73887a40c96a58435ebc98775d123e3deb6a7a1ae50f6e73 |
IEDL.DBID | BENPR |
ISSN | 2397-7132 |
IngestDate | Wed Aug 13 08:04:45 EDT 2025 Tue Jul 01 02:21:16 EDT 2025 Thu Apr 24 23:09:40 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-d5007dee1c7fc372b73887a40c96a58435ebc98775d123e3deb6a7a1ae50f6e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9284-2832 0000-0002-6031-2976 0000-0002-9006-9890 0000-0001-7060-4836 0000-0003-3128-1426 |
OpenAccessLink | https://www.proquest.com/docview/2389680154?pq-origsite=%requestingapplication% |
PQID | 2389680154 |
PQPubID | 4669722 |
ParticipantIDs | proquest_journals_2389680154 crossref_primary_10_1038_s41699_019_0116_4 crossref_citationtrail_10_1038_s41699_019_0116_4 springer_journals_10_1038_s41699_019_0116_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-03 |
PublicationDateYYYYMMDD | 2019-09-03 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | NPJ 2D materials and applications |
PublicationTitleAbbrev | npj 2D Mater Appl |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Zulfiqar, Zhao, Li, Nazir, Ni (CR23) 2016; 120 Grimme (CR30) 2006; 27 Wang, Li, Besenbacher, Dong (CR15) 2016; 28 Gatensby, Hallam, Lee, McEvoy, Duesberg (CR48) 2016; 125 Ansari, Fagas, Colinge, Greer (CR37) 2012; 12 Gatensby (CR47) 2014; 297 Guo, Liang (CR6) 1986; 19 CR35 Giannozzi (CR43) 2009; 21 Wang, Kalantar-Zadeh, Kis, Coleman, Strano (CR1) 2012; 7 Ciarrocchi, Avsar, Ovchinnikov, Kis (CR13) 2018; 9 Li (CR36) 2018; 65 Zhuang, Henning (CR7) 2013; 117 Wagner (CR10) 2018; 18 Manchanda, Enders, Sellmyer, Skomski (CR31) 2016; 94 Zhang (CR34) 2014; 9 Xu, Yao, Xiao, Heinz (CR3) 2014; 10 Zhao (CR14) 2017; 29 Bartolomeo (CR39) 2018; 28 CR5 Lee, Yamada-Takamura, Ozaki (CR33) 2013; 25 CR42 Rozzi, Varsano, Marini, Gross, Rubio (CR46) 2006; 73 Van der Pauw (CR49) 1958; 13 Chhowalla (CR2) 2013; 5 Yan (CR18) 2017; 4 Yim (CR9) 2016; 10 Wang (CR8) 2015; 15 Xu (CR17) 2019; 29 Huang, Zhang, Zhang (CR22) 2016; 9 Podzorov, Gershenson, Kloc, Zeis, Bucher (CR41) 2004; 84 Kandemir (CR21) 2018; 33 Gity (CR38) 2018; 195 Di Bartolomeo, Pelella, Liu, Miao, Passacantando, Giubileo, Grillo, Iemmo, Urban, Liang (CR40) 2019; 29 CR50 Clark (CR24) 2019; 99 Miro, Ghorbani-Asl, Heine (CR20) 2014; 53 Ku, Berlijn, Lee (CR32) 2010; 104 Perdew, Burke, Ernzerhof (CR44) 1996; 77 Yim (CR11) 2018; 2 Yim (CR12) 2018; 18 CR29 Liu (CR16) 2018; 53 O’Brien (CR19) 2016; 3 Schilfgaarde, Kotani, Faleev (CR25) 2006; 96 Novoselov, Mishchenko, Carvalho, Castro Neto (CR4) 2016; 353 Marini, Hogan, Grüning, Varsano (CR45) 2009; 180 Berger, Reining, Sottile (CR26) 2012; 85 Ozaki (CR28) 2003; 67 Bradley (CR27) 2015; 15 P Manchanda (116_CR31) 2016; 94 Antonio Di Bartolomeo (116_CR40) 2019; 29 AJ Bradley (116_CR27) 2015; 15 QH Wang (116_CR1) 2012; 7 KS Novoselov (116_CR4) 2016; 353 W Ku (116_CR32) 2010; 104 CA Rozzi (116_CR46) 2006; 73 Z Huang (116_CR22) 2016; 9 JP Perdew (116_CR44) 1996; 77 Z Wang (116_CR15) 2016; 28 Y Wang (116_CR8) 2015; 15 116_CR42 P Miro (116_CR20) 2014; 53 GY Guo (116_CR6) 1986; 19 116_CR5 M Zulfiqar (116_CR23) 2016; 120 116_CR35 K Liu (116_CR16) 2018; 53 V Podzorov (116_CR41) 2004; 84 T Ozaki (116_CR28) 2003; 67 L Ansari (116_CR37) 2012; 12 Y Zhao (116_CR14) 2017; 29 S Grimme (116_CR30) 2006; 27 A Ciarrocchi (116_CR13) 2018; 9 AD Bartolomeo (116_CR39) 2018; 28 M Yan (116_CR18) 2017; 4 F Gity (116_CR38) 2018; 195 R Gatensby (116_CR47) 2014; 297 C Yim (116_CR12) 2018; 18 116_CR29 HL Zhuang (116_CR7) 2013; 117 C Yim (116_CR9) 2016; 10 P Giannozzi (116_CR43) 2009; 21 LJ Van der Pauw (116_CR49) 1958; 13 A Marini (116_CR45) 2009; 180 H Xu (116_CR17) 2019; 29 Y Zhang (116_CR34) 2014; 9 A Kandemir (116_CR21) 2018; 33 L Li (116_CR36) 2018; 65 A Berger (116_CR26) 2012; 85 X Xu (116_CR3) 2014; 10 S Wagner (116_CR10) 2018; 18 OJ Clark (116_CR24) 2019; 99 CC Lee (116_CR33) 2013; 25 R Gatensby (116_CR48) 2016; 125 116_CR50 M Chhowalla (116_CR2) 2013; 5 C Yim (116_CR11) 2018; 2 M O’Brien (116_CR19) 2016; 3 M Schilfgaarde (116_CR25) 2006; 96 |
References_xml | – volume: 65 start-page: 4102 year: 2018 end-page: 4108 ident: CR36 article-title: Wafer-scale fabrication of recessed-channel PtS 2 MOSFETs with low contact resistance and improved gate control publication-title: IEEE Trans. Electron Dev. doi: 10.1109/TED.2018.2856305 – volume: 2 year: 2018 ident: CR11 article-title: Electrical devices from top-down structured platinum diselenide films publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-018-0051-9 – volume: 10 start-page: 343 year: 2014 end-page: 350 ident: CR3 article-title: Spin and pseudospins in layered transition metal dichalcogenides publication-title: Nat. Phys. doi: 10.1038/nphys2942 – ident: CR35 – ident: CR29 – volume: 120 start-page: 25030 year: 2016 end-page: 25036 ident: CR23 article-title: Tunable conductivity and half metallic ferromagnetism in monolayer platinum diselenide: a first-principles study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b06999 – ident: CR42 – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: CR30 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 18 start-page: 3738 year: 2018 end-page: 3745 ident: CR10 article-title: Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe films publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00928 – volume: 73 start-page: 205119 year: 2006 ident: CR46 article-title: Exact Coulomb cutoff technique for supercell calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.205119 – ident: CR50 – volume: 99 start-page: 045438 year: 2019 ident: CR24 article-title: Dual quantum confinement and anisotropic spin splitting in the multivalley semimetal PtSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045438 – volume: 15 start-page: 4013 year: 2015 end-page: 4018 ident: CR8 article-title: Monolayer PtSe , a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00964 – volume: 4 start-page: 045015 year: 2017 ident: CR18 article-title: High quality atomically thin PtSe films grown by molecular beam epitaxy publication-title: 2D Mater. doi: 10.1088/2053-1583/aa8919 – volume: 3 start-page: 021004 year: 2016 ident: CR19 article-title: Raman characterization of platinum diselenide thin films publication-title: 2D Mater. doi: 10.1088/2053-1583/3/2/021004 – volume: 180 start-page: 1392 year: 2009 end-page: 1403 ident: CR45 article-title: Yambo: an ab initio tool for excited state calculations publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.02.003 – volume: 96 start-page: 226402 year: 2006 ident: CR25 article-title: Quasiparticle self-consistent theory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.226402 – volume: 25 start-page: 345501 year: 2013 ident: CR33 article-title: Unfolding method for first-principles LCAO electronic structure calculations publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/25/34/345501 – volume: 5 start-page: 263 year: 2013 end-page: 275 ident: CR2 article-title: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – ident: CR5 – volume: 53 start-page: 3015 year: 2014 end-page: 3018 ident: CR20 article-title: Two dimensional materials beyond MoS : noble-transition-metal dichalcogenides publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201309280 – volume: 15 start-page: 2594 year: 2015 end-page: 2599 ident: CR27 article-title: Probing the role of interlayer coupling and coulomb interactions on electronic structure in few-layer MoSe nanostructures publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00160 – volume: 13 start-page: 1 year: 1958 ident: CR49 article-title: A method of measureing specific resistivity and Hall effect of discs of arbitrary shape publication-title: Philips Res. Rep. – volume: 7 start-page: 699 year: 2012 end-page: 712 ident: CR1 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 104 start-page: 216401 year: 2010 ident: CR32 article-title: Unfolding first-principles band structures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.216401 – volume: 195 start-page: 21 year: 2018 end-page: 25 ident: CR38 article-title: Metal-semimetal Schottky diode relying on quantum confinement publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2018.03.022 – volume: 18 start-page: 1794 year: 2018 end-page: 1800 ident: CR12 article-title: Wide spectral photoresponse of layered platinum diselenide-based photodiodes publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05000 – volume: 67 start-page: 155108 year: 2003 ident: CR28 article-title: Variationally optimized atomic orbitals for large-scale electronic structures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.155108 – volume: 29 start-page: 1805614 year: 2019 ident: CR17 article-title: Controlled doping of wafer-scale PtSe films for device application publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805614 – volume: 12 start-page: 2222 year: 2012 end-page: 2227 ident: CR37 article-title: A proposed confinement modulated gap nanowire transistor based on a metal (tin) publication-title: Nano Lett. doi: 10.1021/nl2040817 – volume: 84 start-page: 3301 year: 2004 ident: CR41 article-title: High-mobility field-effect transistors based on transition metal dichalcogenides publication-title: Appl. Phys. Lett. doi: 10.1063/1.1723695 – volume: 353 start-page: aac9439 year: 2016 ident: CR4 article-title: 2D materials and van der Waals heterostructures publication-title: Science doi: 10.1126/science.aac9439 – volume: 94 start-page: 104426 year: 2016 ident: CR31 article-title: Hydrogen-induced ferromagnetism in two-dimensional Pt dichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.104426 – volume: 28 start-page: 10224 year: 2016 end-page: 10229 ident: CR15 article-title: Facile synthesis of single crystal PtSe nanosheets for nanoscale electronics publication-title: Adv. Mater. doi: 10.1002/adma.201602889 – volume: 117 start-page: 20440 year: 2013 end-page: 20445 ident: CR7 article-title: Computational search for single-layer transition-metal dichalcogenide photocatalysts publication-title: J. Phys. Chem. C doi: 10.1021/jp405808a – volume: 28 start-page: 1800657 year: 2018 ident: CR39 article-title: Asymmetric Schottky contacts in bilayer MoS field effect transistors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800657 – volume: 21 start-page: 395502 year: 2009 ident: CR43 article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 10 start-page: 9550 year: 2016 end-page: 9558 ident: CR9 article-title: High-performance hybrid electronic devices from layered PtSe films grown at low temperature publication-title: ACS Nano doi: 10.1021/acsnano.6b04898 – volume: 9 start-page: 716 year: 2016 ident: CR22 article-title: Computational search for two-dimensional MX semiconductors with possible high electron mobility at room temperature publication-title: Materials doi: 10.3390/ma9090716 – volume: 53 start-page: 1256 year: 2018 end-page: 1263 ident: CR16 article-title: Synthesis of two-dimensional semiconductor single-crystal PtSe under high pressure publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1572-x – volume: 85 start-page: 085126 year: 2012 ident: CR26 article-title: Efficient calculations for SnO , ZnO, and rubrene: he effective-energy technique publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.085126 – volume: 9 start-page: 111 year: 2014 end-page: 115 ident: CR34 article-title: Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe publication-title: Nat. Nanotechol. doi: 10.1038/nnano.2013.277 – volume: 125 start-page: 39 year: 2016 end-page: 51 ident: CR48 article-title: Investigations of vapour-phase deposited transition metal dichalcogenide films for future electronic applications publication-title: Solid-State Electron. doi: 10.1016/j.sse.2016.07.021 – volume: 19 start-page: 995 year: 1986 end-page: 1008 ident: CR6 article-title: The electronic structures of platinum dichalcogenides: PtS , PtSe and PtTe publication-title: J. Phys. C doi: 10.1088/0022-3719/19/7/011 – volume: 9 year: 2018 ident: CR13 article-title: Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide publication-title: Nat. Commun. doi: 10.1038/s41467-018-03436-0 – volume: 33 start-page: 085002 year: 2018 ident: CR21 article-title: Structural, electronic and phononic properties of PtSe : from monolayer to bulk publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aacba2 – volume: 297 start-page: 139 year: 2014 end-page: 146 ident: CR47 article-title: Controlled synthesis of transition metal dichalcogenide thin films for electronic applications publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.01.103 – volume: 29 start-page: 1604230 year: 2017 ident: CR14 article-title: High‐electron‐mobility and air‐stable 2D layered PtSe FETs publication-title: Adv. Mater. doi: 10.1002/adma.201604230 – volume: 77 start-page: 3865 year: 1996 ident: CR44 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 29 start-page: 1902483 issue: 29 year: 2019 ident: CR40 article-title: Pressure‐Tunable Ambipolar Conduction and Hysteresis in Thin Palladium Diselenide Field Effect Transistors publication-title: Advanced Functional Materials doi: 10.1002/adfm.201902483 – volume: 21 start-page: 395502 year: 2009 ident: 116_CR43 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 99 start-page: 045438 year: 2019 ident: 116_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045438 – volume: 19 start-page: 995 year: 1986 ident: 116_CR6 publication-title: J. Phys. C doi: 10.1088/0022-3719/19/7/011 – volume: 96 start-page: 226402 year: 2006 ident: 116_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.226402 – volume: 25 start-page: 345501 year: 2013 ident: 116_CR33 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/25/34/345501 – volume: 195 start-page: 21 year: 2018 ident: 116_CR38 publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2018.03.022 – volume: 9 start-page: 716 year: 2016 ident: 116_CR22 publication-title: Materials doi: 10.3390/ma9090716 – volume: 77 start-page: 3865 year: 1996 ident: 116_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 2 year: 2018 ident: 116_CR11 publication-title: npj 2D Mater. Appl. doi: 10.1038/s41699-018-0051-9 – volume: 9 year: 2018 ident: 116_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03436-0 – volume: 10 start-page: 9550 year: 2016 ident: 116_CR9 publication-title: ACS Nano doi: 10.1021/acsnano.6b04898 – volume: 28 start-page: 10224 year: 2016 ident: 116_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201602889 – volume: 9 start-page: 111 year: 2014 ident: 116_CR34 publication-title: Nat. Nanotechol. doi: 10.1038/nnano.2013.277 – volume: 85 start-page: 085126 year: 2012 ident: 116_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.085126 – volume: 73 start-page: 205119 year: 2006 ident: 116_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.73.205119 – volume: 5 start-page: 263 year: 2013 ident: 116_CR2 publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 15 start-page: 4013 year: 2015 ident: 116_CR8 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00964 – volume: 94 start-page: 104426 year: 2016 ident: 116_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.104426 – volume: 18 start-page: 3738 year: 2018 ident: 116_CR10 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b00928 – volume: 3 start-page: 021004 year: 2016 ident: 116_CR19 publication-title: 2D Mater. doi: 10.1088/2053-1583/3/2/021004 – volume: 13 start-page: 1 year: 1958 ident: 116_CR49 publication-title: Philips Res. Rep. – ident: 116_CR50 – ident: 116_CR5 – volume: 7 start-page: 699 year: 2012 ident: 116_CR1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 65 start-page: 4102 year: 2018 ident: 116_CR36 publication-title: IEEE Trans. Electron Dev. doi: 10.1109/TED.2018.2856305 – volume: 4 start-page: 045015 year: 2017 ident: 116_CR18 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa8919 – volume: 84 start-page: 3301 year: 2004 ident: 116_CR41 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1723695 – volume: 53 start-page: 1256 year: 2018 ident: 116_CR16 publication-title: J. Mater. Sci. doi: 10.1007/s10853-017-1572-x – volume: 15 start-page: 2594 year: 2015 ident: 116_CR27 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00160 – volume: 67 start-page: 155108 year: 2003 ident: 116_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.67.155108 – volume: 125 start-page: 39 year: 2016 ident: 116_CR48 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2016.07.021 – volume: 297 start-page: 139 year: 2014 ident: 116_CR47 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.01.103 – volume: 27 start-page: 1787 year: 2006 ident: 116_CR30 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 120 start-page: 25030 year: 2016 ident: 116_CR23 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b06999 – volume: 180 start-page: 1392 year: 2009 ident: 116_CR45 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.02.003 – volume: 28 start-page: 1800657 year: 2018 ident: 116_CR39 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800657 – volume: 53 start-page: 3015 year: 2014 ident: 116_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201309280 – volume: 10 start-page: 343 year: 2014 ident: 116_CR3 publication-title: Nat. Phys. doi: 10.1038/nphys2942 – ident: 116_CR29 – ident: 116_CR35 – volume: 29 start-page: 1604230 year: 2017 ident: 116_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201604230 – volume: 104 start-page: 216401 year: 2010 ident: 116_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.216401 – volume: 18 start-page: 1794 year: 2018 ident: 116_CR12 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05000 – volume: 29 start-page: 1805614 year: 2019 ident: 116_CR17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805614 – ident: 116_CR42 – volume: 353 start-page: aac9439 year: 2016 ident: 116_CR4 publication-title: Science doi: 10.1126/science.aac9439 – volume: 33 start-page: 085002 year: 2018 ident: 116_CR21 publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aacba2 – volume: 29 start-page: 1902483 issue: 29 year: 2019 ident: 116_CR40 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201902483 – volume: 117 start-page: 20440 year: 2013 ident: 116_CR7 publication-title: J. Phys. Chem. C doi: 10.1021/jp405808a – volume: 12 start-page: 2222 year: 2012 ident: 116_CR37 publication-title: Nano Lett. doi: 10.1021/nl2040817 |
SSID | ssj0001916451 |
Score | 2.4318733 |
Snippet | In this work, we present a comprehensive theoretical and experimental study of quantum confinement in layered platinum diselenide (PtSe
2
) films as a function... In this work, we present a comprehensive theoretical and experimental study of quantum confinement in layered platinum diselenide (PtSe2) films as a function... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | 639/301/1005/1007 639/301/357/1018 639/925/357/1018 639/925/927/1007 Chemistry and Materials Science Density functional theory Electrical measurement Energy gap Evolution Field effect transistors Film thickness Hole mobility Low temperature Materials Science MOSFETs Nanotechnology P-type semiconductors Platinum Quantum confinement Room temperature Semiconductor devices Silicon dioxide Silicon substrates Surfaces and Interfaces Thick films Thickness measurement Thin Films |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSsMwFA5z3uiF-IvTKbnwSgkuTZO0l1IcQ1AUHeyupO2pDrZOtk689Na38Rl8FJ_Ek651_qAg9KZpUkK-k5wvP-cLIQfIILgE2WJpqlvMTXTCPE86VrZScvRXThTZ2OHzC9Xpumc92asRXsXCFIf2C0nLYpiuTocdT5A42Hh5G3LDuWLuAlm0yu3WqAMVzJdVkO64klf7l8L7WfKrB5rTym87oYWDaa-SlZIZ0pNZXdZIDbJ1svxJL3CDPF5NsSGmQ4qT2BST7coew0k1wpPQCQz7Q0AuzfIRsy-YyYq5jsYUHkoDo_2MDuzZb2aQLNLpIB8blt9h6mV-DQ5N-4PhhN7aqTk1OcWe9_b0_PoSbJJu-_Qm6LDy6gQWC-nnLJHo-xMAHus0FtjiWuBoYtxW7CuDnENIiGLf01om6LpAJBApow03CFuqQIstUs9GGWwTqiyJAZEaLpSrwPdSzWOOwwAIABM5DdKqmjOMS11xe73FICz2t4UXzhAIEYHQIhC6DXL4UeR-JqrxV-ZmhVFY9q9JiETDV57lfw1yVOE2__zrz3b-lXuXLDmF3eAjmqSej6ewhxwkj_YLq3sHVePXTw priority: 102 providerName: Springer Nature |
Title | Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C |
URI | https://link.springer.com/article/10.1038/s41699-019-0116-4 https://www.proquest.com/docview/2389680154 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB613QscEBQQS8vKB05FVtdx_JMTWlZdqpWoWkql3iInmcBK-1M22YojV96GZ-BR-iQdZx2WIrVSLnEcH_yNZ76ZsccAb4lBCIWqz8vS9HlcmIJbqyJftlIJsldRlvmzw59O9PFFPL5UlyHgVoVtla1ObBR1sch9jPyQTEuirbf476--c39rlM-uhis0tqFDKtiS89X5cHRy-nkTZSH2EyvRpjOlPayIgfiD9_7sjhCax3cN0oZl_pcYbezN6Ck8CUSRDdbIPoMtnO_C43_KBz6HH2crmpfVjJFPW1KzD_Rx8rEJrYJVOJvMkKg1rxfcv1AnX9t1sWR4HeSNTeZs6reCc0fcka2m9dLx-hu1ntbnGLFyMp1V7Kv31JmrGS3Em5-__vwevoCL0dGX4TEPNynwXKqk5oUiKlAgityUuSQAjCTl4uJ-nmhHFEQqzPLEGqMKsmQoC8y0M044QrHUaORL2Jkv5vgKmPacBmXphNSxxsSWRuSCtAJKRJdFXei305nmocy4v-1imjbpbmnTNQIpIZB6BNK4Cwd_f7la19h4qPN-i1EalluVboSjC-9a3Daf7x3s9cOD7cGjqBEUeuQ-7NTLFb4hDlJnPdi2o4896AwG4_NxL4gdtQ71sNf49be6Zd-Z |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOCAqIhQI-wAVkdR3HTnJAqCpst_QhEK3Um3GSCay0j7LJ8rj12j9T8Rv4KfwSZrJJF5DaW6Vc4jhW4vlm5hs_xgBPiUEog6YriyLqyjCPchnHJuC0lUaRvwrSlPcO7-7Z_kH49tAcLsFpuxeGl1W2NrE21Pkk4zHyNXItiY3Z4786-iL51CieXW2P0JjDYht_fKOQrXy59Zrk-ywIem_2N_qyOVVAZtoklcwNucUcUWVRkWn6mEiTovmwmyXWkzvWBtOMIvHI5GTVUeeYWh955emPCouRpnavwNVQ64Q1Ku5tLsZ0iGuFRrWTpzpeK4nv8DZ_3imklJXhv-5vwWn_m4atvVvvFtxsaKlYn-PoNizheAVu_JWs8A58fz8jKcxGgiLogop5WFFSRE_YyEWJo8EIicjLaiL5hipxJtnJVODXBt1iMBZDXnguPTFVMRtWUy-rz1T6rvqAgSgGw1EpPvG4gPCVILX_fXzy6-fGXTi4lB6-B8vjyRjvg7DMoFAXXmkbWkziIlKZIhuEGtGnQQe6bXe6rElqzmdrDF09ua5jN5eAIwk4loALO_D87JWjeUaPiyqvtjJyjXKXbgHFDrxo5bZ4fG5jDy5u7Alc6-_v7ridrb3th3A9qEFDl16F5Wo6w0fEfqr0cQ05AR8vG-N_APvKFyo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB5RKiE4VKUUsQWKDz21Mo3j2E6OaOmK_iGqgsTNcpJxu9L-oN1sxbFX3oZn4FF4EsbZpEupWqlSLnHsyPJnz3zj8YwBXhGDEApVxL03EU9KU_I0VXFIW6kE6as4z0Ps8OdjfXSWfDhX50ug2liY-tB-ndKyFtPt6bC3UyIOIV4-hNwIoXmyf1H6R_CY6HYUbK6u7i62VojyJEq0PkyZ_tn6dy20oJYPvKG1kuk9hScNO2QH8_6swxKOnsHavZyBG3D5ZUaDMRsyMmQ9FYfdPU6GNUFUsikO-0MkPs2rMQ8vVCkkdB1PGP5oJhnrj9ggnP_mjggjmw2qiePVdyo9qb5izHx_MJyyb8E8Z65itPpuf17dXHefw1nv3Wn3iDfXJ_BCqqzipSL9XyKKwvhC0qgbSRLFJVGRaUe8QyrMiyw1RpWkvlCWmGtnnHAEnddo5CYsj8Yj3AKmA5FB6Z2QOtGYpd6IQpAoQIno8rgDUTuctmhyi4crLga29nHL1M4RsISADQjYpAOvfzW5mCfW-FflnRYj26yxqSWykek0cMAOvGlxW3z-689e_FftPVg5OezZT--PP27DalxPIXrkDixXkxnuEiWp8pf1BLwDwSzbRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+confinement-induced+semimetal-to-semiconductor+evolution+in+large-area+ultra-thin+PtSe2+films+grown+at+400%E2%80%89%C2%B0C&rft.jtitle=NPJ+2D+materials+and+applications&rft.au=Ansari+Lida&rft.au=Monaghan%2C+Scott&rft.au=McEvoy%2C+Niall&rft.au=Coile%C3%A1in%2C+Cormac+%C3%93&rft.date=2019-09-03&rft.pub=Nature+Publishing+Group&rft.eissn=2397-7132&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1038%2Fs41699-019-0116-4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-7132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-7132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-7132&client=summon |