Protocol to use protein language models predicting and following experimental validation of function-enhancing variants of thymine-N-glycosylase

Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using...

Full description

Saved in:
Bibliographic Details
Published inSTAR protocols Vol. 5; no. 3; p. 103188
Main Authors He, Yan, Zhou, Xibin, Yuan, Fajie, Chang, Xing
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 12.07.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for “zero-shot” enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload. For complete details on the use and execution of this protocol, please refer to He et al.1 [Display omitted] •Optimizing thymine-N-glycosylase using protein language models (PLMs)•Use of PLMs to optimize enzymes without extensive task-specific training data•Protocol for “zero-shot” enzyme optimization Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for “zero-shot” enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload.
AbstractList Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for "zero-shot" enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload. For complete details on the use and execution of this protocol, please refer to He et al.1.Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for "zero-shot" enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload. For complete details on the use and execution of this protocol, please refer to He et al.1.
Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for “zero-shot” enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload.For complete details on the use and execution of this protocol, please refer to He et al.1 : Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for "zero-shot" enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload. For complete details on the use and execution of this protocol, please refer to He et al. .
Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for “zero-shot” enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload. For complete details on the use and execution of this protocol, please refer to He et al.1 [Display omitted] •Optimizing thymine-N-glycosylase using protein language models (PLMs)•Use of PLMs to optimize enzymes without extensive task-specific training data•Protocol for “zero-shot” enzyme optimization Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for “zero-shot” enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload.
Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for “zero-shot” enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload. For complete details on the use and execution of this protocol, please refer to He et al. 1 • Optimizing thymine-N-glycosylase using protein language models (PLMs) • Use of PLMs to optimize enzymes without extensive task-specific training data • Protocol for “zero-shot” enzyme optimization Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics. Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance protein function without prior knowledge of their specific roles. Here, we present a protocol for optimizing thymine-DNA-glycosylase (TDG) using PLMs. We describe steps for “zero-shot” enzyme optimization, construction of plasmids, double plasmid transfection, and high-throughput sequencing and data analysis. This protocol holds promise for streamlining the engineering of gene editing tools, delivering improved activity while minimizing the experimental workload.
ArticleNumber 103188
Author Chang, Xing
Yuan, Fajie
He, Yan
Zhou, Xibin
Author_xml – sequence: 1
  givenname: Yan
  surname: He
  fullname: He, Yan
  organization: School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China
– sequence: 2
  givenname: Xibin
  surname: Zhou
  fullname: Zhou, Xibin
  organization: School of Engineering, Westlake University, Hangzhou, Zhejiang 310014, China
– sequence: 3
  givenname: Fajie
  surname: Yuan
  fullname: Yuan, Fajie
  email: yuanfajie@westlake.edu.cn
  organization: School of Engineering, Westlake University, Hangzhou, Zhejiang 310014, China
– sequence: 4
  givenname: Xing
  orcidid: 0000-0002-5072-9225
  surname: Chang
  fullname: Chang, Xing
  email: changxing@westlake.edu.cn
  organization: School of Medicine, Westlake University, Hangzhou, Zhejiang 310014, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39002134$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAcuSSxV_J2hISQhUflSrgAGdr4kxSr7z2YjtL91_wk3HYUrUXTrbH7zxjz7zPqxMfPFbVS0pWlNDuzWZ1u4thxQgTJcCplE-qM9Z1XUO7bn3yYH9aXaS0IYSwljJB5bPqlKtyolycVb-_xZCDCa7OoZ4T1gWa0fragZ9mmLDehgFdKnEcrMnWTzX4oR6Dc-HXcsLbHUa7RZ_B1XtwdoBsg6_DWI-zN8u-QX8D3izqPUQLPqflOt8cttZj86WZ3MGEdHCQ8EX1dASX8OJuPa9-fPzw_fJzc_3109Xl--vG8FblZhAAKLg0A4DklJtBcUYNmoGBaMnQAlP9uu1aBLKWnDDeq7Zfr4WUsgPS8vPq6sgdAmz0rvwA4kEHsPpvIMRJQ8zWONSI2JNWgUJlRKkmhRz7saM9KuwEN4X17sjazf0WB1N6EcE9gj6-8fZGT2GvKWVKKsEL4fUdIYafM6astzYZdGUKGOakOVkr1XZSsCJlR6mJIaWI430dSvRiDb3RizX0Yg19tEZJevXwhfcp_4xQBG-PgjJr3FuMOhmL3pShRzS5NMX-j_8Hl7_RVg
Cites_doi 10.1016/j.molcel.2024.01.021
10.1007/s11427-018-9402-9
10.1038/s41587-019-0032-3
ContentType Journal Article
Copyright 2024 The Authors
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.xpro.2024.103188
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2666-1667
ExternalDocumentID oai_doaj_org_article_eeeb059a9e9c4a83848fbf61be9e643c
10_1016_j_xpro_2024_103188
39002134
S2666166724003538
Genre Journal Article
GroupedDBID 0R~
0SF
53G
6I.
AAEDW
AAFTH
AALRI
AAMRU
AAXUO
ADVLN
AEXQZ
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
RPM
M41
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c359t-d4aae438cdaa8313cd9321cecd2a450d5a29b7565ea0783023b95b7748886a053
IEDL.DBID RPM
ISSN 2666-1667
IngestDate Tue Oct 22 14:59:31 EDT 2024
Tue Sep 17 21:28:43 EDT 2024
Sat Oct 26 04:31:41 EDT 2024
Wed Oct 09 16:37:31 EDT 2024
Sat Nov 02 12:10:40 EDT 2024
Sat Sep 21 15:58:46 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Biotechnology and bioengineering
CRISPR
Computer sciences
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-d4aae438cdaa8313cd9321cecd2a450d5a29b7565ea0783023b95b7748886a053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Technical contact
These authors contributed equally
Lead contact
ORCID 0000-0002-5072-9225
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11298943/
PMID 39002134
PQID 3079956842
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_eeeb059a9e9c4a83848fbf61be9e643c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11298943
proquest_miscellaneous_3079956842
crossref_primary_10_1016_j_xpro_2024_103188
pubmed_primary_39002134
elsevier_sciencedirect_doi_10_1016_j_xpro_2024_103188
PublicationCentury 2000
PublicationDate 20240712
PublicationDateYYYYMMDD 2024-07-12
PublicationDate_xml – month: 7
  year: 2024
  text: 20240712
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle STAR protocols
PublicationTitleAlternate STAR Protoc
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Liu, Wang, Jiao, Zhang, Song, Li, Gao, Wang (bib6) 2019; 62
He, Zhou, Chang, Chen, Liu, Li, Fan, Sun, Miao, Huang (bib1) 2024; 84
Clement, Rees, Canver, Gehrke, Farouni, Hsu, Cole, Liu, Joung, Bauer, Pinello (bib7) 2019; 37
Devlin, Chang, Lee, Toutanova (bib3) 2019; 1
Roshan, Jason, Robert, Joshua, John, Pieter, Tom, Alexander (bib4) 2021
Alayrac (bib5) 2022
Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Amodei (bib2) 2020; 33
Roshan (10.1016/j.xpro.2024.103188_bib4) 2021
Liu (10.1016/j.xpro.2024.103188_bib6) 2019; 62
Devlin (10.1016/j.xpro.2024.103188_bib3) 2019; 1
Brown (10.1016/j.xpro.2024.103188_bib2) 2020; 33
He (10.1016/j.xpro.2024.103188_bib1) 2024; 84
Alayrac (10.1016/j.xpro.2024.103188_bib5) 2022
Clement (10.1016/j.xpro.2024.103188_bib7) 2019; 37
References_xml – volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  ident: bib2
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Amodei
– volume: 62
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib6
  article-title: Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems
  publication-title: Life Sci.
  contributor:
    fullname: Wang
– year: 2021
  ident: bib4
  article-title: MSA Transformer
  publication-title: bioRxiv
  contributor:
    fullname: Alexander
– year: 2022
  ident: bib5
  article-title: Flamingo: a Visual Language Model for Few-Shot Learning
  publication-title: arXiv
  contributor:
    fullname: Alayrac
– volume: 1
  start-page: 4171
  year: 2019
  end-page: 4186
  ident: bib3
  article-title: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  publication-title: 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Naacl Hlt 2019)
  contributor:
    fullname: Toutanova
– volume: 84
  start-page: 1257
  year: 2024
  end-page: 1270.e6
  ident: bib1
  article-title: Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing
  publication-title: Mol. Cell
  contributor:
    fullname: Huang
– volume: 37
  start-page: 224
  year: 2019
  end-page: 226
  ident: bib7
  article-title: CRISPResso2 provides accurate andrapid genome editing sequence analysis
  publication-title: Nat. Biotechnol.
  contributor:
    fullname: Pinello
– volume: 84
  start-page: 1257
  year: 2024
  ident: 10.1016/j.xpro.2024.103188_bib1
  article-title: Protein language models-assisted optimization of a uracil-N-glycosylase variant enables programmable T-to-G and T-to-C base editing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2024.01.021
  contributor:
    fullname: He
– volume: 1
  start-page: 4171
  year: 2019
  ident: 10.1016/j.xpro.2024.103188_bib3
  article-title: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
  publication-title: 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Naacl Hlt 2019)
  contributor:
    fullname: Devlin
– volume: 62
  start-page: 1
  year: 2019
  ident: 10.1016/j.xpro.2024.103188_bib6
  article-title: Hi-TOM: a platform for high-throughput tracking of mutations induced by CRISPR/Cas systems
  publication-title: Life Sci.
  doi: 10.1007/s11427-018-9402-9
  contributor:
    fullname: Liu
– year: 2022
  ident: 10.1016/j.xpro.2024.103188_bib5
  article-title: Flamingo: a Visual Language Model for Few-Shot Learning
  publication-title: arXiv
  contributor:
    fullname: Alayrac
– volume: 37
  start-page: 224
  year: 2019
  ident: 10.1016/j.xpro.2024.103188_bib7
  article-title: CRISPResso2 provides accurate andrapid genome editing sequence analysis
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0032-3
  contributor:
    fullname: Clement
– volume: 33
  start-page: 1877
  year: 2020
  ident: 10.1016/j.xpro.2024.103188_bib2
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Brown
– year: 2021
  ident: 10.1016/j.xpro.2024.103188_bib4
  article-title: MSA Transformer
  publication-title: bioRxiv
  contributor:
    fullname: Roshan
SSID ssj0002512418
Score 2.3103948
Snippet Protein language models (PLMs) are machine learning tools trained to predict masked amino acids within protein sequences, offering opportunities to enhance...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103188
SubjectTerms Biotechnology and bioengineering
Computer sciences
CRISPR
Protocol
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQJy6IqkDT0spI3JAFTpxsfCyoCCGBOIDEzbKdcVnUJhWbhfIX_eTO2AnstlK59LabRLux39jzxh6_YWzP6iCDLECQEItQ0klhqyBFoDUGmFTOx0Ni5xfV6bU6uylvFkp9UU5YkgdOHXcAAA4pgNWgvbJ1Uas6uFBJBxrQm_o4-x7qhWCK5mDy2krWwymZlND1E6ckDAhzRQfNZSy18uKJomD_kkP6m3D-mTe54IhONtj6wCD55_Tmb9gKtG_Zr8v7ru8QVN53fD4DHvUXpi0f1yN5LHkzw-u0M0O5zty2DQ9oBt0jfVuU-udoftNUbIl3gZPvo88C2luS58CnHzDEpgwauo1Qf0euKi7E129Pvps9ISGHTXZ98uXq-FQMxRaEL0rdi0ZZC6qofWOxl2XhG2R20oNvcqvKw6a0uXYTpH9gaecPXb3TpUPyiCF0ZXEob7HVtmvhHeM-IDDO503jES0_0XVV6QLjQErBQYqQsf2x482PpKlhxmSzO0MwGYLJJJgydkTYPD9JetjxAlqJGazEvGYlGStHZM1ALRJlwJ-a_vPPd0czMDjuaDPFttDNZwbnRjoUjG3K2HYyi-dXLDRRp0JlrF4ymKU2LN9pp7dR25voL0niv_8frf7A1qgttBQt8x222t_P4SNyqN59isPlN3eWICQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Protocol to use protein language models predicting and following experimental validation of function-enhancing variants of thymine-N-glycosylase
URI https://dx.doi.org/10.1016/j.xpro.2024.103188
https://www.ncbi.nlm.nih.gov/pubmed/39002134
https://www.proquest.com/docview/3079956842
https://pubmed.ncbi.nlm.nih.gov/PMC11298943
https://doaj.org/article/eeeb059a9e9c4a83848fbf61be9e643c
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbanrggEK9QqIzEDbmLEycbH6GiqpBa9UCl3izbGbdB3bjazQL9F_xkZpyk7ILEgVvetjNjzzf2N2PG3lodZJAFCErEIpR0UtgqSBFojgHmlfMpSOz0rDq5UJ8vy8sdVk2xMIm071172N0sDrv2OnErbxd-NvHEZuenR4QRKG_4bJftooZu-Og0_pLFVrIeI2QGMtcPHI7QGcwVBZnLtM3KbyuUkvVvGaO_weafnMkNI3T8iD0c0SP_MNTyMduB7gn7eb6MfUSB8j7y9Qp4yr3Qdnyai-Rpu5sVXqdVGeI5c9s1PKAKxO90tpnmn6PqtcNGSzwGTnaPjgV015SaA5_-hu41sWfoNop5gThVnImrmzsfV3cIxuEpuzj-9OXoRIwbLQhflLoXjbIWVFH7xtq6kIVvENVJD77JrSrfN6XNtZsj9ANLq35o5p0uHQJHdJ8ri934GdvrYgcvGPcBIY7zedP4WtV-ruuq0gX6gES_QXiQsXfTjze3Qz4NMxHNvhoSkyExmUFMGftIsrl_knJhpwtxeWVGjTAA4BAkWg3aK6w_lhtcqKQDDVgZn7FykqwZYcUAF_BT7T8LfzOpgcE-RwsptoO4XhkcFykgGNuUseeDWtxXsdAEmwqVsXpLYbbasH0H1Tzl9Z7U-uX_v7rPHlALaPJZ5q_YXr9cw2tETb07SLMNB6mr_AI0Vh7g
link.rule.ids 230,315,730,783,787,867,888,2109,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a4wFeuIhbuBqJN-R2Tpw0foSJqcBa7WETe7Nsx9kCazK1KTB-BT-Zc5xmtENCgrc0ThMf-bPPd-xzAXhlVClKkXhOiVi4FFZwk5WCl7TH4EeZdSFIbDLNxkfyw3F6vAVZHwsTnPadrQb12WxQV6fBt_J85oa9n9jwYLJLHIHyhg-vwXWcsDtyzUqnFZh0thT5Kkamc-f6jgsSmoOxpDBzEQqt_NZDIV3_hjr6k25e9ZpcU0N7t-FTL0DnffJlsGztwP24ktvx3yW8A7dWzJS96drvwpav78HPg3nTNggW1jZsufAs5HWoatbvc7JQSmeB9-nEh3yomakLViK8mm_0a72EAENYV10RJ9aUjHQqXXNfn1LaD3z6K5ru5JlDzQihGXJgPuUnZxeuWVwg0ff34Wjv3eHumK-KOHCXpKrlhTTGyyR3hTF5IhJXIGMUzrsiNjLdKVITKztCWukNnSgihbAqtUhK0TTPDC4RD2C7bmr_CJgrkT5ZFxeFy2XuRirPMpWgfUmuPUg9InjdD6k-73J16N6J7bMmAGgCgO4AEMFbGvXLJynPdrjRzE_0aiy0994iATXKKyex__jd0paZsF557IyLIO0xo1eUpaMi-Krqrx9_2QNM43ymQxpT-2a50LjmUrAxyhTBww5wl11MFFGyREaQb0BxQ4bNFgRYyBneA-rx___1BdwYH0729f776ccncJOkoU1uET-F7Xa-9M-QnbX2eZiKvwBOw0AX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSIgXLuIWrkbiDbmdEyeNH2FQjcuqPjBpEg-W7dhbYHWqJgXGr-Anc04uox0SD3tLEzex5c8-37E_n0PISy099zxxDAOxMMENZzrznHlcY3CTzNj2kNjBLNs_FB-O0qNeVVn3sspgTTkKp4tRKE9abeVyYceDTmw8P9hDjoBxw8fLwo-vkmswaHezDU8dZ2G024Ln_TmZTtL1EyYlcAljgUfNeZts5a8takP2b5mkfynnReXkhima3iJfhkZ0CpRvo3VjRvbXhfiOl2vlbXKzZ6j0dVfmDrniwl3ye76qmgpAQ5uKrmtH2_gOZaDDeidtU-rUcB93flBLTXUoqAeYVT_w12YqAQrwLrtkTrTyFG0rXjMXTjD8B5T-Di48KnTwMUBpAVyYzdjx6Zmt6jMg_O4eOZy--7y3z_pkDswmqWxYIbR2IsltoXWe8MQWwBy5dbaItUh3i1TH0kyAXjqNO4tAJYxMDZBTcNEzDVPFfbITquAeEmo90Chj46KwucjtROZZJhPwM1HiAxQkIq-GblXLLmaHGsRsXxWCQCEIVAeCiLzBnj8vifG22xvV6lj1_aGccwaIqJZOWgH1h-964zNunHRQGRuRdMCN6qlLR0ngVeV_P_5iAJmCcY2bNTq4al0rmHvx0DG0KSIPOtCdVzGRSM0SEZF8C45bbdh-AiBrY4cPoHp0-b8-J9fnb6fq0_vZx8fkBjYG17p5_ITsNKu1ewokrTHP2tH4BxHNQpc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protocol+to+use+protein+language+models+predicting+and+following+experimental+validation+of+function-enhancing+variants+of+thymine-N-glycosylase&rft.jtitle=STAR+protocols&rft.au=He%2C+Yan&rft.au=Zhou%2C+Xibin&rft.au=Yuan%2C+Fajie&rft.au=Chang%2C+Xing&rft.date=2024-07-12&rft.eissn=2666-1667&rft.volume=5&rft.issue=3&rft.spage=103188&rft_id=info:doi/10.1016%2Fj.xpro.2024.103188&rft_id=info%3Apmid%2F39002134&rft.externalDocID=39002134
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1667&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1667&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1667&client=summon