A Deep Graph Convolution Network-Based Abnormity Detection Model for Largescale Behavioral Data
It remains important to make abnormity detection from largescale behavioral data of Internet. Existing related approaches mostly failed to employ high-dimensional characteristics of Internet data, which limits the detection effect. To deal with this issue, we introduce graph convolution network (GCN...
Saved in:
Published in | IEEE access Vol. 12; pp. 94380 - 94392 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It remains important to make abnormity detection from largescale behavioral data of Internet. Existing related approaches mostly failed to employ high-dimensional characteristics of Internet data, which limits the detection effect. To deal with this issue, we introduce graph convolution network (GCN) to generate fine-grained feature representation towards largescale behavioral data. And a deep GCN-based abnormity detection model for largescale behavioral data is proposed in this paper. Firstly, GCN is used to extract global co-occurrence information from largescale behavior data. Then, global embedding is applied to the encoder to obtain local features, which are fused into advanced features to better capture the relationships among nodes in social network. Finally, based on the idea of support vector domain description, a new objective function is optimized to determine whether abnormal behavior occurs in behavior data. Empirically, we have also carried out some experiments to make performance evaluation. The research results indicate that the proposal has higher Precision and robustness compared to traditional methods. |
---|---|
AbstractList | It remains important to make abnormity detection from largescale behavioral data of Internet. Existing related approaches mostly failed to employ high-dimensional characteristics of Internet data, which limits the detection effect. To deal with this issue, we introduce graph convolution network (GCN) to generate fine-grained feature representation towards largescale behavioral data. And a deep GCN-based abnormity detection model for largescale behavioral data is proposed in this paper. Firstly, GCN is used to extract global co-occurrence information from largescale behavior data. Then, global embedding is applied to the encoder to obtain local features, which are fused into advanced features to better capture the relationships among nodes in social network. Finally, based on the idea of support vector domain description, a new objective function is optimized to determine whether abnormal behavior occurs in behavior data. Empirically, we have also carried out some experiments to make performance evaluation. The research results indicate that the proposal has higher Precision and robustness compared to traditional methods. |
Author | Shao, Kangjie Liang, Shaolin |
Author_xml | – sequence: 1 givenname: Shaolin orcidid: 0009-0002-0153-4955 surname: Liang fullname: Liang, Shaolin email: liangshaolin@sasu.edu.cn organization: Sichuan University of Arts and Science, Dazhou, China – sequence: 2 givenname: Kangjie surname: Shao fullname: Shao, Kangjie organization: Sichuan University of Arts and Science, Dazhou, China |
BookMark | eNpNUclOwzAQtRBIrF8AB0ucUxwvWY4lFKhU4ACcrYk9KSkhLk5a1L_HbSrEXGY0eu_N8k7JYetaJOQyZqM4ZvnNuCgmr68jzrgcCcllluYH5ITHSR4JJZLDf_Uxuei6BQuRhZZKT4ge0zvEJX3wsPyghWvXrln1tWvpM_Y_zn9Gt9ChpeOydf6r7jcB3qPZIZ6cxYZWztMZ-Dl2Bhqkt_gB69p5aOgd9HBOjipoOrzY5zPyfj95Kx6j2cvDtBjPIiNU3kdW5Ki4NRmzBnJlTcXLSnJMoAIAnhqGiIlRNrMyQVspzEumwJQ2EKyR4oxMB13rYKGXvv4Cv9EOar1rOD_X4PvaNKhVlss0LSXjZSljI7I05llVhl9KblCJoHU9aC29-15h1-uFW_k2rK9FeFyWqDhNAkoMKONd13ms_qbGTG-N0YMxemuM3hsTWFcDqw4H_WNsl2Kp-AVIV4x- |
CODEN | IAECCG |
Cites_doi | 10.1016/j.knosys.2022.109456 10.1109/JBHI.2021.3122463 10.7717/peerj.8693 10.1109/TGRS.2024.3376425 10.1007/s12652-021-03323-5 10.1016/j.jpdc.2020.03.004 10.1109/JIOT.2020.3003802 10.1049/ipr2.12239 10.1016/j.ins.2022.11.151 10.1109/TIFS.2022.3228493 10.3390/jimaging9060110 10.1145/3594315.3594354 10.1016/j.apenergy.2021.117509 10.1109/COMITCon.2019.8862186 10.1007/978-3-031-31860-3_57 10.1007/s10723-020-09506-2 10.1109/DSInS54396.2021.9670589 10.1109/tfuzz.2021.3052109 10.1016/j.bbe.2021.06.006 10.1016/j.autcon.2023.104741 10.1038/s41598-021-89626-1 10.1145/3442381.3449922 10.1177/0954406220915210 10.1109/TITS.2022.3185013 10.1016/j.inffus.2022.10.008 10.1109/jiot.2024.3388043 10.1109/JIOT.2022.3181737 10.3390/s21041492 10.3389/fnhum.2022.875201 10.1609/aaai.v33i01.3301890 10.1145/3451471.3451509 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3424879 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Acceso a contenido Full Text - Doaj |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 94392 |
ExternalDocumentID | oai_doaj_org_article_589477b402bb41c387128fb11042ce53 10_1109_ACCESS_2024_3424879 10589407 |
Genre | orig-research |
GrantInformation_xml | – fundername: Multidimensional Data Perception and Intelligent Information Processing Dazhou Key Laboratory 2023 Open Fund Project grantid: DWSJ2304 funderid: 10.13039/100007836 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-d39e52dc80dca95dcf2bf42e6afaaa27c0eee6c5d8d46edf5e9b05acbd0dcdc43 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:25:28 EDT 2025 Mon Jun 30 17:54:53 EDT 2025 Tue Jul 01 03:02:39 EDT 2025 Wed Aug 27 02:03:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-d39e52dc80dca95dcf2bf42e6afaaa27c0eee6c5d8d46edf5e9b05acbd0dcdc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-0153-4955 |
OpenAccessLink | https://doaj.org/article/589477b402bb41c387128fb11042ce53 |
PQID | 3081865176 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_589477b402bb41c387128fb11042ce53 ieee_primary_10589407 crossref_primary_10_1109_ACCESS_2024_3424879 proquest_journals_3081865176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref32 ref1 ref17 ref16 ref19 ref18 Huang (ref2); 35 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref28 doi: 10.1016/j.knosys.2022.109456 – ident: ref10 doi: 10.1109/JBHI.2021.3122463 – ident: ref16 doi: 10.7717/peerj.8693 – ident: ref23 doi: 10.1109/TGRS.2024.3376425 – ident: ref3 doi: 10.1007/s12652-021-03323-5 – volume: 35 start-page: 22765 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref2 article-title: Dgraph: A large-scale financial dataset for graph anomaly detection – ident: ref5 doi: 10.1016/j.jpdc.2020.03.004 – ident: ref9 doi: 10.1109/JIOT.2020.3003802 – ident: ref30 doi: 10.1049/ipr2.12239 – ident: ref6 doi: 10.1016/j.ins.2022.11.151 – ident: ref11 doi: 10.1109/TIFS.2022.3228493 – ident: ref31 doi: 10.3390/jimaging9060110 – ident: ref19 doi: 10.1145/3594315.3594354 – ident: ref18 doi: 10.1016/j.apenergy.2021.117509 – ident: ref15 doi: 10.1109/COMITCon.2019.8862186 – ident: ref27 doi: 10.1007/978-3-031-31860-3_57 – ident: ref17 doi: 10.1007/s10723-020-09506-2 – ident: ref1 doi: 10.1109/DSInS54396.2021.9670589 – ident: ref29 doi: 10.1109/tfuzz.2021.3052109 – ident: ref22 doi: 10.1016/j.bbe.2021.06.006 – ident: ref7 doi: 10.1016/j.autcon.2023.104741 – ident: ref13 doi: 10.1038/s41598-021-89626-1 – ident: ref24 doi: 10.1145/3442381.3449922 – ident: ref25 doi: 10.1177/0954406220915210 – ident: ref4 doi: 10.1109/TITS.2022.3185013 – ident: ref21 doi: 10.1016/j.inffus.2022.10.008 – ident: ref26 doi: 10.1109/jiot.2024.3388043 – ident: ref32 doi: 10.1109/JIOT.2022.3181737 – ident: ref14 doi: 10.3390/s21041492 – ident: ref20 doi: 10.3389/fnhum.2022.875201 – ident: ref12 doi: 10.1609/aaai.v33i01.3301890 – ident: ref8 doi: 10.1145/3451471.3451509 |
SSID | ssj0000816957 |
Score | 2.2998729 |
Snippet | It remains important to make abnormity detection from largescale behavioral data of Internet. Existing related approaches mostly failed to employ... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 94380 |
SubjectTerms | Accuracy Anomaly detection Behavior behavioral modeling Behavioral sciences Complex networks Convolution Convolutional neural networks Data models Deep learning Feature extraction Graph convolution network Graph convolutional networks Graphical representations high-dimensional data Internet Performance evaluation Social networks |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgJzgAhSIWSuUDR7IktieJj7tb2qqCPVGpN8ufF1C2arNI8OuZcbyrAkLiFlm2Y_vZGc9k5g1j76CxHQSwlUheVqrFJ-cbVYGT0gtPQpbskJ_X7cWVuryG6xKsnmNhYozZ-SzO6TH_yw8bvyVTGZ5w6LWi2PGHqLlNwVp7gwplkNDQFWahptYfFqsVTgJ1QKHmUgm8muvfpE8m6S9ZVf76FGf5cvaUrXcjm9xKvs63o5v7n3-QNv730J-xJ-WmyRfT1jhkD-LwnD2-xz_4gpkFP43xhp8TazVfbYbvZSPy9eQdXi1RyAW-cMOGAv9_YPUx-24NnJKofeN45eWfyJn8DrGOfLkP-uendrRH7Ors45fVRVUyLlRegh6rIHUEEXxfB281BJ-ES0rE1iZrreh8jRNrPYQ-qDaGBFG7Gqx3ARsEr-RLdjBshviK8RT6qCPRHAaLOmSNHUNKgEWgAig7Y-93SJibiVjDZIWk1mYCzhBwpgA3Y0tCa1-VWLFzAa6yKYfM0BJ3nUOV2DnVeInKoOiTwz6V8BHkjB0RMvfeN4EyY8c78E05wndGZrI_aLr29T-avWGPaIiTQeaYHYy32_gWryijO8lb8xctXOR_ priority: 102 providerName: IEEE |
Title | A Deep Graph Convolution Network-Based Abnormity Detection Model for Largescale Behavioral Data |
URI | https://ieeexplore.ieee.org/document/10589407 https://www.proquest.com/docview/3081865176 https://doaj.org/article/589477b402bb41c387128fb11042ce53 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxGFgjwwEkhsXxKPbaEgBJ1AYrP8nFCKICDx7zk7oSpiYGGLLDvOfef47qzzd4ScQqErcKAzFizPRIlPxhYiA8O5ZTYa2XgOeT8vbx7F7RM8rZT6ijlhHT1wB9wF1FJUlcEwxxhRWI4OPquDQaslmPWQeD7R5q0EU2kProtSQtXTDBW5vBhPpygRBoRMnHPB0E-XP0xRYuzvS6z82peTsZltk63eS6Tj7ut2yJpvdsnmCnfgHlFjeun9C72OjNN0umg--kVE511mdzZBA-Xo2DSLeGn_E7u3Ke-qobEA2jNFd5XexUTwN9STp5PlhX16qVs9II-zq4fpTdZXS8gsB9lmjksPzNk6d1ZLcDYwEwTzpQ5aa1bZHCUrLbjaidK7AF6aHLQ1Dgc4K_g-WW8WjT8gNLjaSx8pCp3G-C_HF0MIgE0gHAg9JGffwKmXjhRDpWAil6rDWUWcVY_zkEwiuMuukdE6NaCeVa9n9Zeeh2QQVbMyXxyRV0My-taV6n-_N8UTUR8UVXn4H3MfkY0oT3fyMiLr7eu7P0ZfpDUnadmdpGuDX7Wh2e4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcigcCoWiLhTqA0eyJLYniY-7W8oC2z21Um-WPy-gbNVmK7W_nrHjXRUQErfIsh3bz854JjNvCPkAlW7AgS5YsLwQNT4ZW4kCDOeW2Shkox3yfFnPL8W3K7jKweopFsZ7n5zP_Dg-pn_5bmXX0VSGJxxaKWLs-BMU_FAN4Vpbk0rMISGhydxCVSk_TWYznAZqgUyMuWB4OZe_yZ9E05_zqvz1MU4S5uw5WW7GNjiW_BivezO2D3_QNv734F-Q_XzXpJNhcxyQHd-9JM8eMRC-ImpCT72_pl8ibzWdrbq7vBXpcvAPL6Yo5hydmG4VQ__vsXqfvLc6GtOo_aR46aWL6E5-i2h7Ot2G_dNT3etDcnn2-WI2L3LOhcJykH3huPTAnG1LZ7UEZwMzQTBf66C1Zo0tcWK1Bdc6UXsXwEtTgrbGYQNnBX9NdrtV548IDa710keiQ6dRiyyxYwgBsAiEA6FH5OMGCXU9UGuopJKUUg3AqQicysCNyDSita0aebFTAa6yysdMxSVuGoNKsTGishzVQdYGg30KZj3wETmMyDx63wDKiBxvwFf5EN8qnuj-oGrqN_9odkL25hfnC7X4uvz-ljyNwx3MM8dkt79Z-3d4YenN-7RNfwE87efI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Graph+Convolution+Network-Based+Abnormity+Detection+Model+for+Largescale+Behavioral+Data&rft.jtitle=IEEE+access&rft.au=Liang%2C+Shaolin&rft.au=Shao%2C+Kangjie&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=94380&rft.epage=94392&rft_id=info:doi/10.1109%2FACCESS.2024.3424879&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3424879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |