A Deep Graph Convolution Network-Based Abnormity Detection Model for Largescale Behavioral Data

It remains important to make abnormity detection from largescale behavioral data of Internet. Existing related approaches mostly failed to employ high-dimensional characteristics of Internet data, which limits the detection effect. To deal with this issue, we introduce graph convolution network (GCN...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 94380 - 94392
Main Authors Liang, Shaolin, Shao, Kangjie
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It remains important to make abnormity detection from largescale behavioral data of Internet. Existing related approaches mostly failed to employ high-dimensional characteristics of Internet data, which limits the detection effect. To deal with this issue, we introduce graph convolution network (GCN) to generate fine-grained feature representation towards largescale behavioral data. And a deep GCN-based abnormity detection model for largescale behavioral data is proposed in this paper. Firstly, GCN is used to extract global co-occurrence information from largescale behavior data. Then, global embedding is applied to the encoder to obtain local features, which are fused into advanced features to better capture the relationships among nodes in social network. Finally, based on the idea of support vector domain description, a new objective function is optimized to determine whether abnormal behavior occurs in behavior data. Empirically, we have also carried out some experiments to make performance evaluation. The research results indicate that the proposal has higher Precision and robustness compared to traditional methods.
AbstractList It remains important to make abnormity detection from largescale behavioral data of Internet. Existing related approaches mostly failed to employ high-dimensional characteristics of Internet data, which limits the detection effect. To deal with this issue, we introduce graph convolution network (GCN) to generate fine-grained feature representation towards largescale behavioral data. And a deep GCN-based abnormity detection model for largescale behavioral data is proposed in this paper. Firstly, GCN is used to extract global co-occurrence information from largescale behavior data. Then, global embedding is applied to the encoder to obtain local features, which are fused into advanced features to better capture the relationships among nodes in social network. Finally, based on the idea of support vector domain description, a new objective function is optimized to determine whether abnormal behavior occurs in behavior data. Empirically, we have also carried out some experiments to make performance evaluation. The research results indicate that the proposal has higher Precision and robustness compared to traditional methods.
Author Shao, Kangjie
Liang, Shaolin
Author_xml – sequence: 1
  givenname: Shaolin
  orcidid: 0009-0002-0153-4955
  surname: Liang
  fullname: Liang, Shaolin
  email: liangshaolin@sasu.edu.cn
  organization: Sichuan University of Arts and Science, Dazhou, China
– sequence: 2
  givenname: Kangjie
  surname: Shao
  fullname: Shao, Kangjie
  organization: Sichuan University of Arts and Science, Dazhou, China
BookMark eNpNUclOwzAQtRBIrF8AB0ucUxwvWY4lFKhU4ACcrYk9KSkhLk5a1L_HbSrEXGY0eu_N8k7JYetaJOQyZqM4ZvnNuCgmr68jzrgcCcllluYH5ITHSR4JJZLDf_Uxuei6BQuRhZZKT4ge0zvEJX3wsPyghWvXrln1tWvpM_Y_zn9Gt9ChpeOydf6r7jcB3qPZIZ6cxYZWztMZ-Dl2Bhqkt_gB69p5aOgd9HBOjipoOrzY5zPyfj95Kx6j2cvDtBjPIiNU3kdW5Ki4NRmzBnJlTcXLSnJMoAIAnhqGiIlRNrMyQVspzEumwJQ2EKyR4oxMB13rYKGXvv4Cv9EOar1rOD_X4PvaNKhVlss0LSXjZSljI7I05llVhl9KblCJoHU9aC29-15h1-uFW_k2rK9FeFyWqDhNAkoMKONd13ms_qbGTG-N0YMxemuM3hsTWFcDqw4H_WNsl2Kp-AVIV4x-
CODEN IAECCG
Cites_doi 10.1016/j.knosys.2022.109456
10.1109/JBHI.2021.3122463
10.7717/peerj.8693
10.1109/TGRS.2024.3376425
10.1007/s12652-021-03323-5
10.1016/j.jpdc.2020.03.004
10.1109/JIOT.2020.3003802
10.1049/ipr2.12239
10.1016/j.ins.2022.11.151
10.1109/TIFS.2022.3228493
10.3390/jimaging9060110
10.1145/3594315.3594354
10.1016/j.apenergy.2021.117509
10.1109/COMITCon.2019.8862186
10.1007/978-3-031-31860-3_57
10.1007/s10723-020-09506-2
10.1109/DSInS54396.2021.9670589
10.1109/tfuzz.2021.3052109
10.1016/j.bbe.2021.06.006
10.1016/j.autcon.2023.104741
10.1038/s41598-021-89626-1
10.1145/3442381.3449922
10.1177/0954406220915210
10.1109/TITS.2022.3185013
10.1016/j.inffus.2022.10.008
10.1109/jiot.2024.3388043
10.1109/JIOT.2022.3181737
10.3390/s21041492
10.3389/fnhum.2022.875201
10.1609/aaai.v33i01.3301890
10.1145/3451471.3451509
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3424879
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Acceso a contenido Full Text - Doaj
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 94392
ExternalDocumentID oai_doaj_org_article_589477b402bb41c387128fb11042ce53
10_1109_ACCESS_2024_3424879
10589407
Genre orig-research
GrantInformation_xml – fundername: Multidimensional Data Perception and Intelligent Information Processing Dazhou Key Laboratory 2023 Open Fund Project
  grantid: DWSJ2304
  funderid: 10.13039/100007836
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-d39e52dc80dca95dcf2bf42e6afaaa27c0eee6c5d8d46edf5e9b05acbd0dcdc43
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:25:28 EDT 2025
Mon Jun 30 17:54:53 EDT 2025
Tue Jul 01 03:02:39 EDT 2025
Wed Aug 27 02:03:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-d39e52dc80dca95dcf2bf42e6afaaa27c0eee6c5d8d46edf5e9b05acbd0dcdc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0002-0153-4955
OpenAccessLink https://doaj.org/article/589477b402bb41c387128fb11042ce53
PQID 3081865176
PQPubID 4845423
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_589477b402bb41c387128fb11042ce53
ieee_primary_10589407
crossref_primary_10_1109_ACCESS_2024_3424879
proquest_journals_3081865176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref32
ref1
ref17
ref16
ref19
ref18
Huang (ref2); 35
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref28
  doi: 10.1016/j.knosys.2022.109456
– ident: ref10
  doi: 10.1109/JBHI.2021.3122463
– ident: ref16
  doi: 10.7717/peerj.8693
– ident: ref23
  doi: 10.1109/TGRS.2024.3376425
– ident: ref3
  doi: 10.1007/s12652-021-03323-5
– volume: 35
  start-page: 22765
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref2
  article-title: Dgraph: A large-scale financial dataset for graph anomaly detection
– ident: ref5
  doi: 10.1016/j.jpdc.2020.03.004
– ident: ref9
  doi: 10.1109/JIOT.2020.3003802
– ident: ref30
  doi: 10.1049/ipr2.12239
– ident: ref6
  doi: 10.1016/j.ins.2022.11.151
– ident: ref11
  doi: 10.1109/TIFS.2022.3228493
– ident: ref31
  doi: 10.3390/jimaging9060110
– ident: ref19
  doi: 10.1145/3594315.3594354
– ident: ref18
  doi: 10.1016/j.apenergy.2021.117509
– ident: ref15
  doi: 10.1109/COMITCon.2019.8862186
– ident: ref27
  doi: 10.1007/978-3-031-31860-3_57
– ident: ref17
  doi: 10.1007/s10723-020-09506-2
– ident: ref1
  doi: 10.1109/DSInS54396.2021.9670589
– ident: ref29
  doi: 10.1109/tfuzz.2021.3052109
– ident: ref22
  doi: 10.1016/j.bbe.2021.06.006
– ident: ref7
  doi: 10.1016/j.autcon.2023.104741
– ident: ref13
  doi: 10.1038/s41598-021-89626-1
– ident: ref24
  doi: 10.1145/3442381.3449922
– ident: ref25
  doi: 10.1177/0954406220915210
– ident: ref4
  doi: 10.1109/TITS.2022.3185013
– ident: ref21
  doi: 10.1016/j.inffus.2022.10.008
– ident: ref26
  doi: 10.1109/jiot.2024.3388043
– ident: ref32
  doi: 10.1109/JIOT.2022.3181737
– ident: ref14
  doi: 10.3390/s21041492
– ident: ref20
  doi: 10.3389/fnhum.2022.875201
– ident: ref12
  doi: 10.1609/aaai.v33i01.3301890
– ident: ref8
  doi: 10.1145/3451471.3451509
SSID ssj0000816957
Score 2.2998729
Snippet It remains important to make abnormity detection from largescale behavioral data of Internet. Existing related approaches mostly failed to employ...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 94380
SubjectTerms Accuracy
Anomaly detection
Behavior
behavioral modeling
Behavioral sciences
Complex networks
Convolution
Convolutional neural networks
Data models
Deep learning
Feature extraction
Graph convolution network
Graph convolutional networks
Graphical representations
high-dimensional data
Internet
Performance evaluation
Social networks
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWgJzgAhSIWSuUDR7IktieJj7tb2qqCPVGpN8ufF1C2arNI8OuZcbyrAkLiFlm2Y_vZGc9k5g1j76CxHQSwlUheVqrFJ-cbVYGT0gtPQpbskJ_X7cWVuryG6xKsnmNhYozZ-SzO6TH_yw8bvyVTGZ5w6LWi2PGHqLlNwVp7gwplkNDQFWahptYfFqsVTgJ1QKHmUgm8muvfpE8m6S9ZVf76FGf5cvaUrXcjm9xKvs63o5v7n3-QNv730J-xJ-WmyRfT1jhkD-LwnD2-xz_4gpkFP43xhp8TazVfbYbvZSPy9eQdXi1RyAW-cMOGAv9_YPUx-24NnJKofeN45eWfyJn8DrGOfLkP-uendrRH7Ors45fVRVUyLlRegh6rIHUEEXxfB281BJ-ES0rE1iZrreh8jRNrPYQ-qDaGBFG7Gqx3ARsEr-RLdjBshviK8RT6qCPRHAaLOmSNHUNKgEWgAig7Y-93SJibiVjDZIWk1mYCzhBwpgA3Y0tCa1-VWLFzAa6yKYfM0BJ3nUOV2DnVeInKoOiTwz6V8BHkjB0RMvfeN4EyY8c78E05wndGZrI_aLr29T-avWGPaIiTQeaYHYy32_gWryijO8lb8xctXOR_
  priority: 102
  providerName: IEEE
Title A Deep Graph Convolution Network-Based Abnormity Detection Model for Largescale Behavioral Data
URI https://ieeexplore.ieee.org/document/10589407
https://www.proquest.com/docview/3081865176
https://doaj.org/article/589477b402bb41c387128fb11042ce53
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxGFgjwwEkhsXxKPbaEgBJ1AYrP8nFCKICDx7zk7oSpiYGGLLDvOfef47qzzd4ScQqErcKAzFizPRIlPxhYiA8O5ZTYa2XgOeT8vbx7F7RM8rZT6ijlhHT1wB9wF1FJUlcEwxxhRWI4OPquDQaslmPWQeD7R5q0EU2kProtSQtXTDBW5vBhPpygRBoRMnHPB0E-XP0xRYuzvS6z82peTsZltk63eS6Tj7ut2yJpvdsnmCnfgHlFjeun9C72OjNN0umg--kVE511mdzZBA-Xo2DSLeGn_E7u3Ke-qobEA2jNFd5XexUTwN9STp5PlhX16qVs9II-zq4fpTdZXS8gsB9lmjksPzNk6d1ZLcDYwEwTzpQ5aa1bZHCUrLbjaidK7AF6aHLQ1Dgc4K_g-WW8WjT8gNLjaSx8pCp3G-C_HF0MIgE0gHAg9JGffwKmXjhRDpWAil6rDWUWcVY_zkEwiuMuukdE6NaCeVa9n9Zeeh2QQVbMyXxyRV0My-taV6n-_N8UTUR8UVXn4H3MfkY0oT3fyMiLr7eu7P0ZfpDUnadmdpGuDX7Wh2e4
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELWqcigcCoWiLhTqA0eyJLYniY-7W8oC2z21Um-WPy-gbNVmK7W_nrHjXRUQErfIsh3bz854JjNvCPkAlW7AgS5YsLwQNT4ZW4kCDOeW2Shkox3yfFnPL8W3K7jKweopFsZ7n5zP_Dg-pn_5bmXX0VSGJxxaKWLs-BMU_FAN4Vpbk0rMISGhydxCVSk_TWYznAZqgUyMuWB4OZe_yZ9E05_zqvz1MU4S5uw5WW7GNjiW_BivezO2D3_QNv734F-Q_XzXpJNhcxyQHd-9JM8eMRC-ImpCT72_pl8ibzWdrbq7vBXpcvAPL6Yo5hydmG4VQ__vsXqfvLc6GtOo_aR46aWL6E5-i2h7Ot2G_dNT3etDcnn2-WI2L3LOhcJykH3huPTAnG1LZ7UEZwMzQTBf66C1Zo0tcWK1Bdc6UXsXwEtTgrbGYQNnBX9NdrtV548IDa710keiQ6dRiyyxYwgBsAiEA6FH5OMGCXU9UGuopJKUUg3AqQicysCNyDSita0aebFTAa6yysdMxSVuGoNKsTGishzVQdYGg30KZj3wETmMyDx63wDKiBxvwFf5EN8qnuj-oGrqN_9odkL25hfnC7X4uvz-ljyNwx3MM8dkt79Z-3d4YenN-7RNfwE87efI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Graph+Convolution+Network-Based+Abnormity+Detection+Model+for+Largescale+Behavioral+Data&rft.jtitle=IEEE+access&rft.au=Liang%2C+Shaolin&rft.au=Shao%2C+Kangjie&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=94380&rft.epage=94392&rft_id=info:doi/10.1109%2FACCESS.2024.3424879&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3424879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon