Short-Term Estimation and Prediction of Pedestrian Density in Urban Hot Spots Based on Mobile Phone Data
Short-term estimation and prediction of pedestrian density in urban hot spots (e.g., railway station, shopping mall, etc.) is an important topic for traffic management and control in densely populated areas. In this paper, we propose a short-term pedestrian density estimation and prediction method b...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 8; pp. 10827 - 10838 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Short-term estimation and prediction of pedestrian density in urban hot spots (e.g., railway station, shopping mall, etc.) is an important topic for traffic management and control in densely populated areas. In this paper, we propose a short-term pedestrian density estimation and prediction method based on mobile phone data. Firstly, pedestrian density in hot spots is estimated using mobile phone data. To decrease the positioning errors of mobile phone data, a modified particle filter method, which considers the movements of pedestrians, is applied for pre-processing the data. An efficient spatial access method (i.e., Hilbert R-tree) is adopted to construct pedestrians' position indexes for realizing the short-term estimation. Secondly, based on the estimation results, the spatiotemporal extended Kalman filter (SEKF) is proposed for the short-term prediction of pedestrian density. A massive mobile phone dataset collected in Nanjing, China is used in the case study. The estimated pedestrian density from Monday to Thursday is used for pedestrian density prediction on Friday. The results show that the proposed method can estimate and predict pedestrian density in hot spots, especially in small-scale sites of hot spots efficiently in a short time. Comparing with classical prediction methods, the proposed SEKF method predicts short-term pedestrian density in urban hot spots more accurately. |
---|---|
AbstractList | Short-term estimation and prediction of pedestrian density in urban hot spots (e.g., railway station, shopping mall, etc.) is an important topic for traffic management and control in densely populated areas. In this paper, we propose a short-term pedestrian density estimation and prediction method based on mobile phone data. Firstly, pedestrian density in hot spots is estimated using mobile phone data. To decrease the positioning errors of mobile phone data, a modified particle filter method, which considers the movements of pedestrians, is applied for pre-processing the data. An efficient spatial access method (i.e., Hilbert R-tree) is adopted to construct pedestrians’ position indexes for realizing the short-term estimation. Secondly, based on the estimation results, the spatiotemporal extended Kalman filter (SEKF) is proposed for the short-term prediction of pedestrian density. A massive mobile phone dataset collected in Nanjing, China is used in the case study. The estimated pedestrian density from Monday to Thursday is used for pedestrian density prediction on Friday. The results show that the proposed method can estimate and predict pedestrian density in hot spots, especially in small-scale sites of hot spots efficiently in a short time. Comparing with classical prediction methods, the proposed SEKF method predicts short-term pedestrian density in urban hot spots more accurately. |
Author | Zhang, Qi Liu, Zhiyuan Huo, Jinbiao Fu, Xiao |
Author_xml | – sequence: 1 givenname: Jinbiao orcidid: 0000-0003-0022-420X surname: Huo fullname: Huo, Jinbiao organization: Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing, China – sequence: 2 givenname: Xiao orcidid: 0000-0003-0446-0971 surname: Fu fullname: Fu, Xiao email: fuxiao@seu.edu.cn organization: Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing, China – sequence: 3 givenname: Zhiyuan orcidid: 0000-0002-6331-0810 surname: Liu fullname: Liu, Zhiyuan organization: Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing, China – sequence: 4 givenname: Qi surname: Zhang fullname: Zhang, Qi organization: Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing, China |
BookMark | eNp9kc9PwyAUx4mZiU79A4wXEs-d0NIWjrr5Y4nGJavn5rW8ZixbmcAO---lznjw4Al4-X54jw9jMuptj4RcczbhnKm7al4tJylL-SRjqkhLcULOeZ7LhDFejIZ9KhLFcnZGxt6vY1XknJ-T1XJlXUgqdFv66IPZQjC2p9BrunCoTft9tB1doEYfnIGezrD3Jhyo6emHa2LhxQa63Nng6QN41DQSb7YxG6SLVRyTziDAJTntYOPx6me9IB9Pj9X0JXl9f55P71-TNstVSHRW6kJmAFBybBrkGStK1TDeyUzKHLGEVEIpFBSFVlq1nZAKBJMSU0g1ZBfk9njvztnPfRy5Xtu962PLOi0ZE7wQUsZUeUy1znrvsKtbE76fHhyYTc1ZPWitB631oLX-0RpJ_ofcuWjNHf5lbo6MQcTfvBIqfkqRfQGKp4T_ |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1061_JTEPBS_TEENG_7836 crossref_primary_10_1109_TPAMI_2024_3388370 crossref_primary_10_1016_j_tra_2025_104408 crossref_primary_10_1109_TITS_2023_3235805 crossref_primary_10_1155_2022_6185986 crossref_primary_10_1109_TITS_2021_3131337 crossref_primary_10_1155_2022_8151520 crossref_primary_10_1109_TII_2021_3118101 crossref_primary_10_32604_cmc_2024_047836 crossref_primary_10_3934_era_2023010 crossref_primary_10_1016_j_multra_2025_100223 crossref_primary_10_1109_MWC_018_2300534 crossref_primary_10_3934_era_2022229 crossref_primary_10_1109_TNNLS_2023_3268291 crossref_primary_10_1016_j_tbs_2024_100804 crossref_primary_10_1038_s41598_023_32529_0 crossref_primary_10_3390_infrastructures8100145 |
Cites_doi | 10.1016/j.trc.2012.09.009 10.3390/su9010036 10.1109/TITS.2020.3004254 10.1080/23249935.2020.1858206 10.1109/MAES.2010.5546308 10.1016/j.trc.2019.06.009 10.1016/j.compenvurbsys.2019.101348 10.1016/s0968-090x(02)00009-8 10.1109/TITS.2018.2835523 10.1016/0191-2615(84)90002-x 10.3390/s16091447 10.1145/2968219.2968421 10.1016/j.trc.2019.02.013 10.1111/mice.12459 10.1007/978-1-4419-9725-8_68 10.1016/j.trc.2019.09.006 10.1109/ITSC.2017.8317872 10.1109/TITS.2009.2021448 10.1109/TITS.2019.2947145 10.1111/j.1467-8667.2007.00489.x 10.1016/j.trc.2015.02.018 10.1109/TITS.2018.2888500 10.1080/21680566.2019.1602487 10.1109/TCYB.2020.3000929 10.1371/journal.pone.0177328 10.14198/JoPha.2009.3.1.05 10.1080/01441647.2018.1442887 10.1007/s11116-018-9876-5 10.1007/s11116-016-9720-8 10.3390/ijgi6080233 10.1109/AVSS.2017.8078471 10.1016/j.trc.2014.02.006 10.1016/j.trc.2019.12.004 10.1016/j.tbs.2017.02.005 10.1109/ITSC.2018.8569620 10.1016/j.tre.2020.102031 10.1109/TITS.2008.2011693 10.1016/j.scs.2019.101914 10.1007/s40534-019-0193-2 10.1109/MASS.2014.106 10.1109/89.242489 10.1007/978-3-642-04504-2_3 10.1109/THMS.2014.2368092 10.1016/j.cviu.2012.05.005 10.1080/21680566.2018.1517061 10.1016/j.trc.2019.01.027 10.1016/j.trc.2015.08.010 10.1016/j.tre.2019.11.003 10.1109/3477.775269 10.1109/ICMEW.2013.6618350 10.1016/j.trc.2018.09.016 10.1109/ICIP.2017.8296740 10.1007/s11116-013-9470-9 10.1109/ITSC.2018.8569478 10.1145/602259.602266 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2021.3096274 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 10838 |
ExternalDocumentID | 10_1109_TITS_2021_3096274 9495246 |
Genre | orig-research |
GrantInformation_xml | – fundername: Zhishan Scholars Programs of Southeast University funderid: 10.13039/501100008081 – fundername: National Natural Science Foundation of China grantid: 71601045 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2018YFB1600900 funderid: 10.13039/501100012166 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-d37d683aaa71ebbe130679b01f83885ee7a28a749a66d9d9cf489a4088e2a2da3 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 05:23:29 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Tue Jul 01 04:29:06 EDT 2025 Wed Aug 27 02:23:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-d37d683aaa71ebbe130679b01f83885ee7a28a749a66d9d9cf489a4088e2a2da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0446-0971 0000-0002-6331-0810 0000-0003-0022-420X |
PQID | 2700416488 |
PQPubID | 75735 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2700416488 crossref_citationtrail_10_1109_TITS_2021_3096274 ieee_primary_9495246 crossref_primary_10_1109_TITS_2021_3096274 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Lin (ref32) 2018; 50 Ahmed (ref43) 1979 ref51 ref46 ref45 ref48 ref47 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 ref1 Edes (ref42) 1980; 7 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Kamel (ref50) ref60 ref62 ref61 |
References_xml | – ident: ref30 doi: 10.1016/j.trc.2012.09.009 – ident: ref28 doi: 10.3390/su9010036 – ident: ref2 doi: 10.1109/TITS.2020.3004254 – start-page: 1 issue: 722 year: 1979 ident: ref43 article-title: Analysis of freeway traffic time-series data by using Box-Jenkins techniques publication-title: Transp. Res. Rec. – ident: ref4 doi: 10.1080/23249935.2020.1858206 – ident: ref23 doi: 10.1016/j.trc.2012.09.009 – ident: ref48 doi: 10.1109/MAES.2010.5546308 – ident: ref56 doi: 10.1016/j.trc.2019.06.009 – ident: ref22 doi: 10.1016/j.compenvurbsys.2019.101348 – ident: ref5 doi: 10.1016/s0968-090x(02)00009-8 – ident: ref39 doi: 10.1109/TITS.2018.2835523 – ident: ref44 doi: 10.1016/0191-2615(84)90002-x – ident: ref51 doi: 10.3390/s16091447 – ident: ref13 doi: 10.3390/su9010036 – ident: ref14 doi: 10.1145/2968219.2968421 – ident: ref25 doi: 10.1016/j.trc.2019.02.013 – ident: ref41 doi: 10.1111/mice.12459 – ident: ref18 doi: 10.1007/978-1-4419-9725-8_68 – ident: ref47 doi: 10.1016/j.trc.2019.09.006 – ident: ref37 doi: 10.1109/ITSC.2017.8317872 – ident: ref1 doi: 10.1109/TITS.2009.2021448 – start-page: 500 volume-title: Proc. 20th VLDB Conf. ident: ref50 article-title: Hilbert R-tree: An improved R-tree using fractals – ident: ref40 doi: 10.1109/TITS.2019.2947145 – ident: ref45 doi: 10.1111/j.1467-8667.2007.00489.x – ident: ref26 doi: 10.1016/j.trc.2015.02.018 – ident: ref33 doi: 10.3390/su9010036 – ident: ref49 doi: 10.1109/TITS.2018.2888500 – ident: ref62 doi: 10.1080/21680566.2019.1602487 – ident: ref3 doi: 10.1109/TCYB.2020.3000929 – ident: ref16 doi: 10.1371/journal.pone.0177328 – ident: ref12 doi: 10.14198/JoPha.2009.3.1.05 – ident: ref36 doi: 10.1080/01441647.2018.1442887 – ident: ref24 doi: 10.1007/s11116-018-9876-5 – ident: ref57 doi: 10.1007/s11116-016-9720-8 – ident: ref19 doi: 10.3390/ijgi6080233 – ident: ref17 doi: 10.1109/AVSS.2017.8078471 – ident: ref46 doi: 10.1016/j.trc.2014.02.006 – ident: ref59 doi: 10.1016/j.trc.2019.12.004 – ident: ref27 doi: 10.1016/j.tbs.2017.02.005 – ident: ref38 doi: 10.1109/ITSC.2018.8569620 – ident: ref60 doi: 10.1016/j.tre.2020.102031 – ident: ref53 doi: 10.1109/TITS.2008.2011693 – volume: 7 start-page: 28 issue: 9 year: 1980 ident: ref42 article-title: Improved estimation of traffic flow for real-time control publication-title: Characteristics – ident: ref21 doi: 10.1016/j.scs.2019.101914 – ident: ref35 doi: 10.1007/s40534-019-0193-2 – ident: ref29 doi: 10.1109/MASS.2014.106 – ident: ref54 doi: 10.1109/89.242489 – ident: ref15 doi: 10.1007/978-3-642-04504-2_3 – ident: ref52 doi: 10.1109/THMS.2014.2368092 – ident: ref8 doi: 10.1016/j.cviu.2012.05.005 – ident: ref10 doi: 10.1080/21680566.2018.1517061 – ident: ref31 doi: 10.1016/j.trc.2019.01.027 – ident: ref11 doi: 10.1016/j.trc.2015.08.010 – ident: ref61 doi: 10.1016/j.tre.2019.11.003 – ident: ref6 doi: 10.1109/3477.775269 – ident: ref7 doi: 10.1109/ICMEW.2013.6618350 – ident: ref20 doi: 10.1016/j.trc.2018.09.016 – volume: 50 start-page: 89 issue: 9 year: 2018 ident: ref32 article-title: Short-term forecasting of urban transport hubs based on mobile phone signaling data publication-title: J. Harbin Inst. Technol. – ident: ref9 doi: 10.1109/ICIP.2017.8296740 – ident: ref58 doi: 10.1007/s11116-013-9470-9 – ident: ref55 doi: 10.1109/ITSC.2018.8569478 – ident: ref34 doi: 10.1145/602259.602266 |
SSID | ssj0014511 |
Score | 2.4811754 |
Snippet | Short-term estimation and prediction of pedestrian density in urban hot spots (e.g., railway station, shopping mall, etc.) is an important topic for traffic... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10827 |
SubjectTerms | Cell phones Cellular telephones Computer vision Density Estimation Extended Kalman filter Forecasting Hilbert R-tree Kalman filter Kalman filters Mobile handsets mobile phone data particle filter Pedestrian density estimation Pedestrians Predictive models Rail transportation Railway stations Shopping malls short-term prediction Spatial data Traffic control Traffic management |
Title | Short-Term Estimation and Prediction of Pedestrian Density in Urban Hot Spots Based on Mobile Phone Data |
URI | https://ieeexplore.ieee.org/document/9495246 https://www.proquest.com/docview/2700416488 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PZUDFApioSAfekJ4m8ROYh_71FJp0Uq7K_UW-THRIlBSbbMH-PWMneyKAkLc8rAVS589j8zMNwCnPg_xmiLlthbIpc8dNz41PEWH1ilfYiQwnX4uJkt5e5ff7cHHXS0MIsbkMxyHyxjL963bhF9lZ5qs-UwW-7BPjltfq7WLGASerciNmkmuk3wbwUwTfbb4tJiTJ5ilY5HEXjOPdFBsqvKHJI7q5eYZTLcL67NKvo43nR27H79xNv7vyo_g6WBnsvN-YzyHPWxewJNf2AePYTVfke3NFySb2TWd9L6IkZnGs9k6xG_ibVuzGXqM7T0adhXy3bvv7EvDlmtLDyZtx-b3bffALkgfekYzpq0lUcNmq7ZBdmU68xKWN9eLywkfGi9wJ3LdcS9KXyhhjClTtBbT4Fdom6S1EkrliKXJlCmlNkXhtdeulkobSQILM5N5I17BQUPfeA0sNDeuE3qHQklnjBJO6lqR0VmXNeZuBMkWisoNrOShOca3Knonia4CelVArxrQG8GH3ZT7npLjX4OPAxq7gQMQIzjZ4l0Nh_ahCjF4sk9JpL35-6y3cJiF6oeY_3cCB916g-_IJuns-7gZfwJEKt2r |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAO5VEqFgr4wAnhbRw7iX2EPrSFbrXSZqXeIj8mWgRKqm32AL--tpNdAUWIWx4exdJnz4wzM98AvHNZiNfkjJqaIxUus1Q7pilDi8ZKV2AkMJ1e5pOF-HyVXe3Ah20tDCLG5DMch8sYy3etXYdfZUfKe_OpyO_BfW_3M9ZXa21jBoFpK7KjpoKqJNvEMFmijsrzcu7Pgikb8yR2m_nNCsW2Knd0cTQwZ49huplan1fybbzuzNj-_IO18X_n_gT2Bk-TfOyXxlPYweYZPPqFf3AflvOl975p6bUzOfV7vS9jJLpxZLYKEZx429Zkhg5jg4-GnISM9-4H-dqQxcr4B5O2I_Prtrshn7xFdMRLTFvjlQ2ZLdsGyYnu9HNYnJ2WxxM6tF6glmeqo44XLpdca10wNAZZOFkok7BacikzxEKnUhdC6Tx3yilbC6m08CoLU506zQ9gt_HfeAEktDeuE_8OuRRWa8mtULX0bmdd1JjZESQbKCo78JKH9hjfq3g-SVQV0KsCetWA3gjeb0Wue1KOfw3eD2hsBw5AjOBwg3c1bNubKkThvYfqldrLv0u9hQeTcnpRXZxffnkFD9NQCxGzAQ9ht1ut8bX3UDrzJi7MW_3e4PQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Estimation+and+Prediction+of+Pedestrian+Density+in+Urban+Hot+Spots+Based+on+Mobile+Phone+Data&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Huo%2C+Jinbiao&rft.au=Fu%2C+Xiao&rft.au=Liu%2C+Zhiyuan&rft.au=Zhang%2C+Qi&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=8&rft.spage=10827&rft.epage=10838&rft_id=info:doi/10.1109%2FTITS.2021.3096274&rft.externalDocID=9495246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |