Short-Term Estimation and Prediction of Pedestrian Density in Urban Hot Spots Based on Mobile Phone Data

Short-term estimation and prediction of pedestrian density in urban hot spots (e.g., railway station, shopping mall, etc.) is an important topic for traffic management and control in densely populated areas. In this paper, we propose a short-term pedestrian density estimation and prediction method b...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 8; pp. 10827 - 10838
Main Authors Huo, Jinbiao, Fu, Xiao, Liu, Zhiyuan, Zhang, Qi
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Short-term estimation and prediction of pedestrian density in urban hot spots (e.g., railway station, shopping mall, etc.) is an important topic for traffic management and control in densely populated areas. In this paper, we propose a short-term pedestrian density estimation and prediction method based on mobile phone data. Firstly, pedestrian density in hot spots is estimated using mobile phone data. To decrease the positioning errors of mobile phone data, a modified particle filter method, which considers the movements of pedestrians, is applied for pre-processing the data. An efficient spatial access method (i.e., Hilbert R-tree) is adopted to construct pedestrians' position indexes for realizing the short-term estimation. Secondly, based on the estimation results, the spatiotemporal extended Kalman filter (SEKF) is proposed for the short-term prediction of pedestrian density. A massive mobile phone dataset collected in Nanjing, China is used in the case study. The estimated pedestrian density from Monday to Thursday is used for pedestrian density prediction on Friday. The results show that the proposed method can estimate and predict pedestrian density in hot spots, especially in small-scale sites of hot spots efficiently in a short time. Comparing with classical prediction methods, the proposed SEKF method predicts short-term pedestrian density in urban hot spots more accurately.
AbstractList Short-term estimation and prediction of pedestrian density in urban hot spots (e.g., railway station, shopping mall, etc.) is an important topic for traffic management and control in densely populated areas. In this paper, we propose a short-term pedestrian density estimation and prediction method based on mobile phone data. Firstly, pedestrian density in hot spots is estimated using mobile phone data. To decrease the positioning errors of mobile phone data, a modified particle filter method, which considers the movements of pedestrians, is applied for pre-processing the data. An efficient spatial access method (i.e., Hilbert R-tree) is adopted to construct pedestrians’ position indexes for realizing the short-term estimation. Secondly, based on the estimation results, the spatiotemporal extended Kalman filter (SEKF) is proposed for the short-term prediction of pedestrian density. A massive mobile phone dataset collected in Nanjing, China is used in the case study. The estimated pedestrian density from Monday to Thursday is used for pedestrian density prediction on Friday. The results show that the proposed method can estimate and predict pedestrian density in hot spots, especially in small-scale sites of hot spots efficiently in a short time. Comparing with classical prediction methods, the proposed SEKF method predicts short-term pedestrian density in urban hot spots more accurately.
Author Zhang, Qi
Liu, Zhiyuan
Huo, Jinbiao
Fu, Xiao
Author_xml – sequence: 1
  givenname: Jinbiao
  orcidid: 0000-0003-0022-420X
  surname: Huo
  fullname: Huo, Jinbiao
  organization: Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing, China
– sequence: 2
  givenname: Xiao
  orcidid: 0000-0003-0446-0971
  surname: Fu
  fullname: Fu, Xiao
  email: fuxiao@seu.edu.cn
  organization: Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing, China
– sequence: 3
  givenname: Zhiyuan
  orcidid: 0000-0002-6331-0810
  surname: Liu
  fullname: Liu, Zhiyuan
  organization: Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing, China
– sequence: 4
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
  organization: Jiangsu Key Laboratory of Urban ITS, Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, School of Transportation, Southeast University, Nanjing, China
BookMark eNp9kc9PwyAUx4mZiU79A4wXEs-d0NIWjrr5Y4nGJavn5rW8ZixbmcAO---lznjw4Al4-X54jw9jMuptj4RcczbhnKm7al4tJylL-SRjqkhLcULOeZ7LhDFejIZ9KhLFcnZGxt6vY1XknJ-T1XJlXUgqdFv66IPZQjC2p9BrunCoTft9tB1doEYfnIGezrD3Jhyo6emHa2LhxQa63Nng6QN41DQSb7YxG6SLVRyTziDAJTntYOPx6me9IB9Pj9X0JXl9f55P71-TNstVSHRW6kJmAFBybBrkGStK1TDeyUzKHLGEVEIpFBSFVlq1nZAKBJMSU0g1ZBfk9njvztnPfRy5Xtu962PLOi0ZE7wQUsZUeUy1znrvsKtbE76fHhyYTc1ZPWitB631oLX-0RpJ_ofcuWjNHf5lbo6MQcTfvBIqfkqRfQGKp4T_
CODEN ITISFG
CitedBy_id crossref_primary_10_1061_JTEPBS_TEENG_7836
crossref_primary_10_1109_TPAMI_2024_3388370
crossref_primary_10_1016_j_tra_2025_104408
crossref_primary_10_1109_TITS_2023_3235805
crossref_primary_10_1155_2022_6185986
crossref_primary_10_1109_TITS_2021_3131337
crossref_primary_10_1155_2022_8151520
crossref_primary_10_1109_TII_2021_3118101
crossref_primary_10_32604_cmc_2024_047836
crossref_primary_10_3934_era_2023010
crossref_primary_10_1016_j_multra_2025_100223
crossref_primary_10_1109_MWC_018_2300534
crossref_primary_10_3934_era_2022229
crossref_primary_10_1109_TNNLS_2023_3268291
crossref_primary_10_1016_j_tbs_2024_100804
crossref_primary_10_1038_s41598_023_32529_0
crossref_primary_10_3390_infrastructures8100145
Cites_doi 10.1016/j.trc.2012.09.009
10.3390/su9010036
10.1109/TITS.2020.3004254
10.1080/23249935.2020.1858206
10.1109/MAES.2010.5546308
10.1016/j.trc.2019.06.009
10.1016/j.compenvurbsys.2019.101348
10.1016/s0968-090x(02)00009-8
10.1109/TITS.2018.2835523
10.1016/0191-2615(84)90002-x
10.3390/s16091447
10.1145/2968219.2968421
10.1016/j.trc.2019.02.013
10.1111/mice.12459
10.1007/978-1-4419-9725-8_68
10.1016/j.trc.2019.09.006
10.1109/ITSC.2017.8317872
10.1109/TITS.2009.2021448
10.1109/TITS.2019.2947145
10.1111/j.1467-8667.2007.00489.x
10.1016/j.trc.2015.02.018
10.1109/TITS.2018.2888500
10.1080/21680566.2019.1602487
10.1109/TCYB.2020.3000929
10.1371/journal.pone.0177328
10.14198/JoPha.2009.3.1.05
10.1080/01441647.2018.1442887
10.1007/s11116-018-9876-5
10.1007/s11116-016-9720-8
10.3390/ijgi6080233
10.1109/AVSS.2017.8078471
10.1016/j.trc.2014.02.006
10.1016/j.trc.2019.12.004
10.1016/j.tbs.2017.02.005
10.1109/ITSC.2018.8569620
10.1016/j.tre.2020.102031
10.1109/TITS.2008.2011693
10.1016/j.scs.2019.101914
10.1007/s40534-019-0193-2
10.1109/MASS.2014.106
10.1109/89.242489
10.1007/978-3-642-04504-2_3
10.1109/THMS.2014.2368092
10.1016/j.cviu.2012.05.005
10.1080/21680566.2018.1517061
10.1016/j.trc.2019.01.027
10.1016/j.trc.2015.08.010
10.1016/j.tre.2019.11.003
10.1109/3477.775269
10.1109/ICMEW.2013.6618350
10.1016/j.trc.2018.09.016
10.1109/ICIP.2017.8296740
10.1007/s11116-013-9470-9
10.1109/ITSC.2018.8569478
10.1145/602259.602266
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2021.3096274
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 10838
ExternalDocumentID 10_1109_TITS_2021_3096274
9495246
Genre orig-research
GrantInformation_xml – fundername: Zhishan Scholars Programs of Southeast University
  funderid: 10.13039/501100008081
– fundername: National Natural Science Foundation of China
  grantid: 71601045
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB1600900
  funderid: 10.13039/501100012166
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-d37d683aaa71ebbe130679b01f83885ee7a28a749a66d9d9cf489a4088e2a2da3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 05:23:29 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Tue Jul 01 04:29:06 EDT 2025
Wed Aug 27 02:23:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-d37d683aaa71ebbe130679b01f83885ee7a28a749a66d9d9cf489a4088e2a2da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0446-0971
0000-0002-6331-0810
0000-0003-0022-420X
PQID 2700416488
PQPubID 75735
PageCount 12
ParticipantIDs proquest_journals_2700416488
crossref_citationtrail_10_1109_TITS_2021_3096274
ieee_primary_9495246
crossref_primary_10_1109_TITS_2021_3096274
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Lin (ref32) 2018; 50
Ahmed (ref43) 1979
ref51
ref46
ref45
ref48
ref47
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
Edes (ref42) 1980; 7
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Kamel (ref50)
ref60
ref62
ref61
References_xml – ident: ref30
  doi: 10.1016/j.trc.2012.09.009
– ident: ref28
  doi: 10.3390/su9010036
– ident: ref2
  doi: 10.1109/TITS.2020.3004254
– start-page: 1
  issue: 722
  year: 1979
  ident: ref43
  article-title: Analysis of freeway traffic time-series data by using Box-Jenkins techniques
  publication-title: Transp. Res. Rec.
– ident: ref4
  doi: 10.1080/23249935.2020.1858206
– ident: ref23
  doi: 10.1016/j.trc.2012.09.009
– ident: ref48
  doi: 10.1109/MAES.2010.5546308
– ident: ref56
  doi: 10.1016/j.trc.2019.06.009
– ident: ref22
  doi: 10.1016/j.compenvurbsys.2019.101348
– ident: ref5
  doi: 10.1016/s0968-090x(02)00009-8
– ident: ref39
  doi: 10.1109/TITS.2018.2835523
– ident: ref44
  doi: 10.1016/0191-2615(84)90002-x
– ident: ref51
  doi: 10.3390/s16091447
– ident: ref13
  doi: 10.3390/su9010036
– ident: ref14
  doi: 10.1145/2968219.2968421
– ident: ref25
  doi: 10.1016/j.trc.2019.02.013
– ident: ref41
  doi: 10.1111/mice.12459
– ident: ref18
  doi: 10.1007/978-1-4419-9725-8_68
– ident: ref47
  doi: 10.1016/j.trc.2019.09.006
– ident: ref37
  doi: 10.1109/ITSC.2017.8317872
– ident: ref1
  doi: 10.1109/TITS.2009.2021448
– start-page: 500
  volume-title: Proc. 20th VLDB Conf.
  ident: ref50
  article-title: Hilbert R-tree: An improved R-tree using fractals
– ident: ref40
  doi: 10.1109/TITS.2019.2947145
– ident: ref45
  doi: 10.1111/j.1467-8667.2007.00489.x
– ident: ref26
  doi: 10.1016/j.trc.2015.02.018
– ident: ref33
  doi: 10.3390/su9010036
– ident: ref49
  doi: 10.1109/TITS.2018.2888500
– ident: ref62
  doi: 10.1080/21680566.2019.1602487
– ident: ref3
  doi: 10.1109/TCYB.2020.3000929
– ident: ref16
  doi: 10.1371/journal.pone.0177328
– ident: ref12
  doi: 10.14198/JoPha.2009.3.1.05
– ident: ref36
  doi: 10.1080/01441647.2018.1442887
– ident: ref24
  doi: 10.1007/s11116-018-9876-5
– ident: ref57
  doi: 10.1007/s11116-016-9720-8
– ident: ref19
  doi: 10.3390/ijgi6080233
– ident: ref17
  doi: 10.1109/AVSS.2017.8078471
– ident: ref46
  doi: 10.1016/j.trc.2014.02.006
– ident: ref59
  doi: 10.1016/j.trc.2019.12.004
– ident: ref27
  doi: 10.1016/j.tbs.2017.02.005
– ident: ref38
  doi: 10.1109/ITSC.2018.8569620
– ident: ref60
  doi: 10.1016/j.tre.2020.102031
– ident: ref53
  doi: 10.1109/TITS.2008.2011693
– volume: 7
  start-page: 28
  issue: 9
  year: 1980
  ident: ref42
  article-title: Improved estimation of traffic flow for real-time control
  publication-title: Characteristics
– ident: ref21
  doi: 10.1016/j.scs.2019.101914
– ident: ref35
  doi: 10.1007/s40534-019-0193-2
– ident: ref29
  doi: 10.1109/MASS.2014.106
– ident: ref54
  doi: 10.1109/89.242489
– ident: ref15
  doi: 10.1007/978-3-642-04504-2_3
– ident: ref52
  doi: 10.1109/THMS.2014.2368092
– ident: ref8
  doi: 10.1016/j.cviu.2012.05.005
– ident: ref10
  doi: 10.1080/21680566.2018.1517061
– ident: ref31
  doi: 10.1016/j.trc.2019.01.027
– ident: ref11
  doi: 10.1016/j.trc.2015.08.010
– ident: ref61
  doi: 10.1016/j.tre.2019.11.003
– ident: ref6
  doi: 10.1109/3477.775269
– ident: ref7
  doi: 10.1109/ICMEW.2013.6618350
– ident: ref20
  doi: 10.1016/j.trc.2018.09.016
– volume: 50
  start-page: 89
  issue: 9
  year: 2018
  ident: ref32
  article-title: Short-term forecasting of urban transport hubs based on mobile phone signaling data
  publication-title: J. Harbin Inst. Technol.
– ident: ref9
  doi: 10.1109/ICIP.2017.8296740
– ident: ref58
  doi: 10.1007/s11116-013-9470-9
– ident: ref55
  doi: 10.1109/ITSC.2018.8569478
– ident: ref34
  doi: 10.1145/602259.602266
SSID ssj0014511
Score 2.4811754
Snippet Short-term estimation and prediction of pedestrian density in urban hot spots (e.g., railway station, shopping mall, etc.) is an important topic for traffic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10827
SubjectTerms Cell phones
Cellular telephones
Computer vision
Density
Estimation
Extended Kalman filter
Forecasting
Hilbert R-tree
Kalman filter
Kalman filters
Mobile handsets
mobile phone data
particle filter
Pedestrian density estimation
Pedestrians
Predictive models
Rail transportation
Railway stations
Shopping malls
short-term prediction
Spatial data
Traffic control
Traffic management
Title Short-Term Estimation and Prediction of Pedestrian Density in Urban Hot Spots Based on Mobile Phone Data
URI https://ieeexplore.ieee.org/document/9495246
https://www.proquest.com/docview/2700416488
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PZUDFApioSAfekJ4m8ROYh_71FJp0Uq7K_UW-THRIlBSbbMH-PWMneyKAkLc8rAVS589j8zMNwCnPg_xmiLlthbIpc8dNz41PEWH1ilfYiQwnX4uJkt5e5ff7cHHXS0MIsbkMxyHyxjL963bhF9lZ5qs-UwW-7BPjltfq7WLGASerciNmkmuk3wbwUwTfbb4tJiTJ5ilY5HEXjOPdFBsqvKHJI7q5eYZTLcL67NKvo43nR27H79xNv7vyo_g6WBnsvN-YzyHPWxewJNf2AePYTVfke3NFySb2TWd9L6IkZnGs9k6xG_ibVuzGXqM7T0adhXy3bvv7EvDlmtLDyZtx-b3bffALkgfekYzpq0lUcNmq7ZBdmU68xKWN9eLywkfGi9wJ3LdcS9KXyhhjClTtBbT4Fdom6S1EkrliKXJlCmlNkXhtdeulkobSQILM5N5I17BQUPfeA0sNDeuE3qHQklnjBJO6lqR0VmXNeZuBMkWisoNrOShOca3Knonia4CelVArxrQG8GH3ZT7npLjX4OPAxq7gQMQIzjZ4l0Nh_ahCjF4sk9JpL35-6y3cJiF6oeY_3cCB916g-_IJuns-7gZfwJEKt2r
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAO5VEqFgr4wAnhbRw7iX2EPrSFbrXSZqXeIj8mWgRKqm32AL--tpNdAUWIWx4exdJnz4wzM98AvHNZiNfkjJqaIxUus1Q7pilDi8ZKV2AkMJ1e5pOF-HyVXe3Ah20tDCLG5DMch8sYy3etXYdfZUfKe_OpyO_BfW_3M9ZXa21jBoFpK7KjpoKqJNvEMFmijsrzcu7Pgikb8yR2m_nNCsW2Knd0cTQwZ49huplan1fybbzuzNj-_IO18X_n_gT2Bk-TfOyXxlPYweYZPPqFf3AflvOl975p6bUzOfV7vS9jJLpxZLYKEZx429Zkhg5jg4-GnISM9-4H-dqQxcr4B5O2I_Prtrshn7xFdMRLTFvjlQ2ZLdsGyYnu9HNYnJ2WxxM6tF6glmeqo44XLpdca10wNAZZOFkok7BacikzxEKnUhdC6Tx3yilbC6m08CoLU506zQ9gt_HfeAEktDeuE_8OuRRWa8mtULX0bmdd1JjZESQbKCo78JKH9hjfq3g-SVQV0KsCetWA3gjeb0Wue1KOfw3eD2hsBw5AjOBwg3c1bNubKkThvYfqldrLv0u9hQeTcnpRXZxffnkFD9NQCxGzAQ9ht1ut8bX3UDrzJi7MW_3e4PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short-Term+Estimation+and+Prediction+of+Pedestrian+Density+in+Urban+Hot+Spots+Based+on+Mobile+Phone+Data&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Huo%2C+Jinbiao&rft.au=Fu%2C+Xiao&rft.au=Liu%2C+Zhiyuan&rft.au=Zhang%2C+Qi&rft.date=2022-08-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=8&rft.spage=10827&rft.epage=10838&rft_id=info:doi/10.1109%2FTITS.2021.3096274&rft.externalDocID=9495246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon