A symmetric geometric measure and the dynamics of quantum discord

A symmetric measure of quantum correlation based on the Hilbert–Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are att...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 4; pp. 94 - 102
Main Author 蒋峰建 吕海江 闫新虎 石名俊
Format Journal Article
LanguageEnglish
Published 01.04.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/4/040303

Cover

Abstract A symmetric measure of quantum correlation based on the Hilbert–Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering from dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There exists a certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically.
AbstractList A symmetric measure of quantum correlation based on the Hilbert–Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering from dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There exists a certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically.
Author 蒋峰建 吕海江 闫新虎 石名俊
AuthorAffiliation Depa(tment of Modem Physics, University of Science and Technology of China, Hefei 230026, China School of Information Engineering, Huangshan University, Huangshan 245041, China
Author_xml – sequence: 1
  fullname: 蒋峰建 吕海江 闫新虎 石名俊
BookMark eNqFkD1rwzAQhkVJoUnan1BQty6u9WkrdAqhXxDo0s5CSKfExZYSyR7y7xuTkKFLpzuO97k7nhmahBgAoXtKnihRqqRVLQpKZFUyVoqSCMIJv0JTRqQquOJigqaXzA2a5fxDSEUJ41O0XOJ86DroU2PxBuK568DkIQE2weF-C9gdgukam3H0eD-Y0A8ddk22MblbdO1Nm-HuXOfo-_Xla_VerD_fPlbLdWG5XPSF9YoyRrkEJzyva-YtVEoa5wlUkoKwQJ0H7yRhNSOceSUc8YZxLuRxyufo8bR3l-J-gNzr7vgAtK0JEIesaS25UErQMSpPUZtizgm83qWmM-mgKdGjMj3q0KMOzZgW-qTsyD3_4WzTm76JoU-maf-lH870NobNvgmby1khxYLXC85_AR6xfik
CitedBy_id crossref_primary_10_1007_s11128_020_02709_2
crossref_primary_10_1007_s10773_019_04029_3
crossref_primary_10_1007_s10946_022_10029_2
crossref_primary_10_7498_aps_63_110303
crossref_primary_10_1002_andp_201800178
crossref_primary_10_1088_1674_1056_23_12_120306
crossref_primary_10_1088_1674_1056_23_5_050310
crossref_primary_10_1088_1674_1056_22_10_100306
crossref_primary_10_1088_1674_1056_23_10_104204
crossref_primary_10_1142_S0219749915500069
crossref_primary_10_7498_aps_63_030301
Cites_doi 10.1103/PhysRevA.81.014101
10.1103/PhysRevLett.106.160401
10.1103/PhysRevA.80.024103
10.1126/science.1142654
10.1103/PhysRevLett.89.180402
10.1103/PhysRevLett.85.2014
10.1103/RevModPhys.81.865
10.1103/PhysRevLett.69.2881
10.1103/PhysRevA.69.022309
10.1103/PhysRevA.77.022301
10.1088/1751-8113/41/20/205301
10.1063/1.1498001
10.1103/PhysRevA.81.022116
10.1103/PhysRevLett.93.140404
10.1103/PhysRevLett.100.090502
10.1103/PhysRevLett.100.050502
10.1088/0305-4470/34/35/315
10.1126/science.1167343
10.1103/PhysRevLett.70.1895
10.1103/PhysRevA.80.044102
10.1103/PhysRevA.72.032317
10.1103/PhysRevLett.88.017901
10.1016/j.tcs.2004.03.041
10.1103/PhysRevLett.91.147902
10.1103/PhysRevLett.107.170502
10.1103/PhysRevLett.106.220403
10.1103/PhysRevLett.81.5672
10.1103/PhysRevA.86.042123
10.1103/PhysRevA.83.032323
10.1103/PhysRevLett.83.1054
10.1103/PhysRevA.71.062307
10.1017/CBO9780511535048
10.1088/1674-1056/20/5/050306
10.1103/PhysRevA.81.052107
10.1103/PhysRevA.75.042310
10.1103/PhysRevA.81.052318
10.1103/PhysRevA.83.032324
10.1103/PhysRevLett.104.080501
10.1103/PhysRevA.59.1070
10.1103/PhysRevLett.102.100402
10.1103/PhysRevA.72.042316
10.26421/QIC10.11-12-9
10.1103/PhysRevLett.105.030501
10.1038/474024a
10.26421/QIC2.2-5
10.1103/PhysRevA.82.034302
10.1103/PhysRevLett.105.190502
10.1103/PhysRevLett.104.200401
10.1103/PhysRevLett.102.250503
10.1103/PhysRevLett.106.120401
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/22/4/040303
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A symmetric geometric measure and the dynamics of quantum discord
EISSN 2058-3834
1741-4199
EndPage 102
ExternalDocumentID 10_1088_1674_1056_22_4_040303
45493793
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c359t-cf8122135ed4f3772fce685adf0e651e4ce1dfefd50272032f84d0fa23345fd53
ISSN 1674-1056
IngestDate Thu Sep 04 18:03:55 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Tue Jul 01 04:00:04 EDT 2025
Wed Feb 14 10:42:20 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-cf8122135ed4f3772fce685adf0e651e4ce1dfefd50272032f84d0fa23345fd53
Notes A symmetric measure of quantum correlation based on the Hilbert–Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering from dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There exists a certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically.
Jiang Feng-Jian, Lü Hai-Jiang, Yan Xin-Hu ,Shi Ming-Jun( a) Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China b) School of Information Engineering, Huangshan University, Huangshan 245041, China
11-5639/O4
quantum correlation; geometric measure
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://iopscience.iop.org/article/10.1088/1674-1056/22/4/040303/pdf
PQID 1753488415
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1753488415
crossref_primary_10_1088_1674_1056_22_4_040303
crossref_citationtrail_10_1088_1674_1056_22_4_040303
chongqing_primary_45493793
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2013
References 44
45
46
47
49
52
53
10
12
13
15
16
17
19
Laflamme R (11) 2002; 2
1
3
4
5
6
7
8
9
20
21
23
24
Henderson L (14) 2001; 34
25
26
Rodríguez-Rosario C (22) 2008; 41
27
28
29
Nielsen M A (2) 2000
30
Breuer H P (48) 2002
31
32
33
34
35
36
37
38
39
Wang L C (18) 2011; 20
40
41
Lu X M (50) 2010; 10
Ciccarello F (51) 2011
42
43
References_xml – ident: 45
  doi: 10.1103/PhysRevA.81.014101
– ident: 32
  doi: 10.1103/PhysRevLett.106.160401
– ident: 44
  doi: 10.1103/PhysRevA.80.024103
– ident: 39
  doi: 10.1126/science.1142654
– ident: 16
  doi: 10.1103/PhysRevLett.89.180402
– ident: 7
  doi: 10.1103/PhysRevLett.85.2014
– ident: 1
  doi: 10.1103/RevModPhys.81.865
– ident: 5
  doi: 10.1103/PhysRevLett.69.2881
– ident: 17
  doi: 10.1103/PhysRevA.69.022309
– ident: 21
  doi: 10.1103/PhysRevA.77.022301
– volume: 41
  start-page: 205301
  issn: 1751-8113
  year: 2008
  ident: 22
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/41/20/205301
– ident: 37
  doi: 10.1063/1.1498001
– ident: 43
  doi: 10.1103/PhysRevA.81.022116
– ident: 38
  doi: 10.1103/PhysRevLett.93.140404
– ident: 24
  doi: 10.1103/PhysRevLett.100.090502
– ident: 34
  doi: 10.1103/PhysRevLett.100.050502
– volume: 34
  start-page: 6899
  issn: 0305-4470
  year: 2001
  ident: 14
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/34/35/315
– ident: 40
  doi: 10.1126/science.1167343
– ident: 4
  doi: 10.1103/PhysRevLett.70.1895
– ident: 42
  doi: 10.1103/PhysRevA.80.044102
– ident: 19
  doi: 10.1103/PhysRevA.72.032317
– ident: 15
  doi: 10.1103/PhysRevLett.88.017901
– ident: 9
  doi: 10.1016/j.tcs.2004.03.041
– ident: 8
  doi: 10.1103/PhysRevLett.91.147902
– year: 2002
  ident: 48
  publication-title: The Theory of Open Quantum System
– ident: 52
  doi: 10.1103/PhysRevLett.107.170502
– ident: 33
  doi: 10.1103/PhysRevLett.106.220403
– ident: 10
  doi: 10.1103/PhysRevLett.81.5672
– ident: 36
  doi: 10.1103/PhysRevA.86.042123
– ident: 31
  doi: 10.1103/PhysRevA.83.032323
– ident: 6
  doi: 10.1103/PhysRevLett.83.1054
– ident: 20
  doi: 10.1103/PhysRevA.71.062307
– ident: 47
  doi: 10.1017/CBO9780511535048
– volume: 20
  start-page: 050306
  issn: 1674-1056
  year: 2011
  ident: 18
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/20/5/050306
– ident: 46
  doi: 10.1103/PhysRevA.81.052107
– ident: 13
  doi: 10.1103/PhysRevA.75.042310
– ident: 53
  doi: 10.1103/PhysRevA.81.052318
– ident: 30
  doi: 10.1103/PhysRevA.83.032324
– ident: 26
  doi: 10.1103/PhysRevLett.104.080501
– ident: 3
  doi: 10.1103/PhysRevA.59.1070
– ident: 23
  doi: 10.1103/PhysRevLett.102.100402
– ident: 12
  doi: 10.1103/PhysRevA.72.042316
– year: 2011
  ident: 51
– volume: 10
  start-page: 994
  issn: 1533-7146
  year: 2010
  ident: 50
  publication-title: Quantum Inf. Comput.
  doi: 10.26421/QIC10.11-12-9
– year: 2000
  ident: 2
  publication-title: Quantum Computation and Quantum Information
– ident: 28
  doi: 10.1103/PhysRevLett.105.030501
– ident: 35
  doi: 10.1038/474024a
– volume: 2
  start-page: 166
  issn: 1533-7146
  year: 2002
  ident: 11
  publication-title: Quantum Inf. Comput.
  doi: 10.26421/QIC2.2-5
– ident: 49
  doi: 10.1103/PhysRevA.82.034302
– ident: 27
  doi: 10.1103/PhysRevLett.105.190502
– ident: 41
  doi: 10.1103/PhysRevLett.104.200401
– ident: 25
  doi: 10.1103/PhysRevLett.102.250503
– ident: 29
  doi: 10.1103/PhysRevLett.106.120401
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0358794
Snippet A symmetric measure of quantum correlation based on the Hilbert–Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the...
A symmetric measure of quantum correlation based on the Hilbert-Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 94
SubjectTerms Asymptotic properties
Correlation
Correlation analysis
Dissipation
Dynamical systems
Dynamics
Evolution
Qubits (quantum computing)
Symmetry
几何测量
和谐
对称
希尔伯特
解析表达式
量子关联
量子比特
量子系统
Title A symmetric geometric measure and the dynamics of quantum discord
URI http://lib.cqvip.com/qk/85823A/201304/45493793.html
https://www.proquest.com/docview/1753488415
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbtlkIvS5802wcq9Ba0sfXw4xjKLmnIPg4J5CYUWUoDG7vbxIftr-9Ish0vLHTbizFDLCczX0bz0gxCX7WOlaImJzbmK8JzZclKcU6UySOqVZYYX_J_cZlMFny6FMtDEbs_XbJfnerfD54r-R-pAg3k6k7J_oNku0WBAPcgX7iChOH6KBmPh7u77dbNxNLDtamau20I-3W1kUUYOu9rNm5r4GS9dXkZ73b2TFM3SdvsTBPr2B3GMU83TUwZfvuaTHt4mtV-51IbT113GiQEVZebkkzqLoTjpwcPLzZujbrsRxvc5IeuSCUoyCTloLpF07460MAqcdnkvK9VKe2hh_dUJGgNFrHehhuTQCL5gyod1KCLLrTvdSdYXM9Y7tJOvaX6jbQvr-T5YjaT87Pl_Cl6RtPUZ_C_X133LJ-IpwdPVHAwXDNn2YVNPHEdLZyv3r62PfyVZaOONqJ0xEfhS7jWHD-qcn0LXLxv4tzf4b3ZMn-Jjht_A48DeF6hJ6Z8jZ5fBxm_QeMx7iCEOwjhBkIYIIQBQriFEK4sbiCEGwi9RYvzs_m3CWmmahDNRL4n2oJNR2MmTMEtA-fKapNkQhU2MomIDdcmLqyxhYh8jp7ajBeRVZQxLoDK3qGjsirNe4SpS8MWsWEcvFIWRUqY3MCt0Km2tEgG6KRjivwZuqdILjiYxDkbIN5ySeqmH70bi3IjfV1ElknHaOkYLSmVXAZGD9Bp91i75F8e-NKKQILqdPkwVZqq3knXpBb2LzBhTx7xmQ_oxeEP8REd7X_V5hMYpPvVZw-tP__MftU
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+symmetric+geometric+measure+and+the+dynamics+of+quantum+discord&rft.jtitle=Chinese+physics+B&rft.au=Jiang%2C+Feng-Jian&rft.au=Lu%2C+Hai-Jiang&rft.au=Yan%2C+Xin-Hu&rft.au=Shi%2C+Ming-Jun&rft.date=2013-04-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=22&rft.issue=4&rft.spage=040303&rft.epage=1-040303-9&rft_id=info:doi/10.1088%2F1674-1056%2F22%2F4%2F040303&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg