A symmetric geometric measure and the dynamics of quantum discord
A symmetric measure of quantum correlation based on the Hilbert–Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are att...
Saved in:
Published in | Chinese physics B Vol. 22; no. 4; pp. 94 - 102 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.04.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/22/4/040303 |
Cover
Abstract | A symmetric measure of quantum correlation based on the Hilbert–Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering from dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There exists a certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically. |
---|---|
AbstractList | A symmetric measure of quantum correlation based on the Hilbert–Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering from dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There exists a certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically. |
Author | 蒋峰建 吕海江 闫新虎 石名俊 |
AuthorAffiliation | Depa(tment of Modem Physics, University of Science and Technology of China, Hefei 230026, China School of Information Engineering, Huangshan University, Huangshan 245041, China |
Author_xml | – sequence: 1 fullname: 蒋峰建 吕海江 闫新虎 石名俊 |
BookMark | eNqFkD1rwzAQhkVJoUnan1BQty6u9WkrdAqhXxDo0s5CSKfExZYSyR7y7xuTkKFLpzuO97k7nhmahBgAoXtKnihRqqRVLQpKZFUyVoqSCMIJv0JTRqQquOJigqaXzA2a5fxDSEUJ41O0XOJ86DroU2PxBuK568DkIQE2weF-C9gdgukam3H0eD-Y0A8ddk22MblbdO1Nm-HuXOfo-_Xla_VerD_fPlbLdWG5XPSF9YoyRrkEJzyva-YtVEoa5wlUkoKwQJ0H7yRhNSOceSUc8YZxLuRxyufo8bR3l-J-gNzr7vgAtK0JEIesaS25UErQMSpPUZtizgm83qWmM-mgKdGjMj3q0KMOzZgW-qTsyD3_4WzTm76JoU-maf-lH870NobNvgmby1khxYLXC85_AR6xfik |
CitedBy_id | crossref_primary_10_1007_s11128_020_02709_2 crossref_primary_10_1007_s10773_019_04029_3 crossref_primary_10_1007_s10946_022_10029_2 crossref_primary_10_7498_aps_63_110303 crossref_primary_10_1002_andp_201800178 crossref_primary_10_1088_1674_1056_23_12_120306 crossref_primary_10_1088_1674_1056_23_5_050310 crossref_primary_10_1088_1674_1056_22_10_100306 crossref_primary_10_1088_1674_1056_23_10_104204 crossref_primary_10_1142_S0219749915500069 crossref_primary_10_7498_aps_63_030301 |
Cites_doi | 10.1103/PhysRevA.81.014101 10.1103/PhysRevLett.106.160401 10.1103/PhysRevA.80.024103 10.1126/science.1142654 10.1103/PhysRevLett.89.180402 10.1103/PhysRevLett.85.2014 10.1103/RevModPhys.81.865 10.1103/PhysRevLett.69.2881 10.1103/PhysRevA.69.022309 10.1103/PhysRevA.77.022301 10.1088/1751-8113/41/20/205301 10.1063/1.1498001 10.1103/PhysRevA.81.022116 10.1103/PhysRevLett.93.140404 10.1103/PhysRevLett.100.090502 10.1103/PhysRevLett.100.050502 10.1088/0305-4470/34/35/315 10.1126/science.1167343 10.1103/PhysRevLett.70.1895 10.1103/PhysRevA.80.044102 10.1103/PhysRevA.72.032317 10.1103/PhysRevLett.88.017901 10.1016/j.tcs.2004.03.041 10.1103/PhysRevLett.91.147902 10.1103/PhysRevLett.107.170502 10.1103/PhysRevLett.106.220403 10.1103/PhysRevLett.81.5672 10.1103/PhysRevA.86.042123 10.1103/PhysRevA.83.032323 10.1103/PhysRevLett.83.1054 10.1103/PhysRevA.71.062307 10.1017/CBO9780511535048 10.1088/1674-1056/20/5/050306 10.1103/PhysRevA.81.052107 10.1103/PhysRevA.75.042310 10.1103/PhysRevA.81.052318 10.1103/PhysRevA.83.032324 10.1103/PhysRevLett.104.080501 10.1103/PhysRevA.59.1070 10.1103/PhysRevLett.102.100402 10.1103/PhysRevA.72.042316 10.26421/QIC10.11-12-9 10.1103/PhysRevLett.105.030501 10.1038/474024a 10.26421/QIC2.2-5 10.1103/PhysRevA.82.034302 10.1103/PhysRevLett.105.190502 10.1103/PhysRevLett.104.200401 10.1103/PhysRevLett.102.250503 10.1103/PhysRevLett.106.120401 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
DOI | 10.1088/1674-1056/22/4/040303 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | A symmetric geometric measure and the dynamics of quantum discord |
EISSN | 2058-3834 1741-4199 |
EndPage | 102 |
ExternalDocumentID | 10_1088_1674_1056_22_4_040303 45493793 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD AEINN H8D L7M |
ID | FETCH-LOGICAL-c359t-cf8122135ed4f3772fce685adf0e651e4ce1dfefd50272032f84d0fa23345fd53 |
ISSN | 1674-1056 |
IngestDate | Thu Sep 04 18:03:55 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Tue Jul 01 04:00:04 EDT 2025 Wed Feb 14 10:42:20 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c359t-cf8122135ed4f3772fce685adf0e651e4ce1dfefd50272032f84d0fa23345fd53 |
Notes | A symmetric measure of quantum correlation based on the Hilbert–Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the optimization procedure so that numerical evaluation can be performed efficiently. Analytical expressions for the quantum correlation are attained for some special states. We further investigate the dynamics of quantum correlation of the system qubits in the presence of independent dissipative environments. Several nontrivial aspects are demonstrated. We find that the quantum correlation can increase even if the system state is suffering from dissipative noise. Sudden changes occur, even twice, in the time evolution of quantum correlation. There exists a certain correspondence between the evolution of quantum correlation in the systems and that in the environments, and the quantum correlation in the systems will be transferred into the environments completely and asymptotically. Jiang Feng-Jian, Lü Hai-Jiang, Yan Xin-Hu ,Shi Ming-Jun( a) Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China b) School of Information Engineering, Huangshan University, Huangshan 245041, China 11-5639/O4 quantum correlation; geometric measure ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/1674-1056/22/4/040303/pdf |
PQID | 1753488415 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1753488415 crossref_primary_10_1088_1674_1056_22_4_040303 crossref_citationtrail_10_1088_1674_1056_22_4_040303 chongqing_primary_45493793 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-04-01 |
PublicationDateYYYYMMDD | 2013-04-01 |
PublicationDate_xml | – month: 04 year: 2013 text: 2013-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2013 |
References | 44 45 46 47 49 52 53 10 12 13 15 16 17 19 Laflamme R (11) 2002; 2 1 3 4 5 6 7 8 9 20 21 23 24 Henderson L (14) 2001; 34 25 26 Rodríguez-Rosario C (22) 2008; 41 27 28 29 Nielsen M A (2) 2000 30 Breuer H P (48) 2002 31 32 33 34 35 36 37 38 39 Wang L C (18) 2011; 20 40 41 Lu X M (50) 2010; 10 Ciccarello F (51) 2011 42 43 |
References_xml | – ident: 45 doi: 10.1103/PhysRevA.81.014101 – ident: 32 doi: 10.1103/PhysRevLett.106.160401 – ident: 44 doi: 10.1103/PhysRevA.80.024103 – ident: 39 doi: 10.1126/science.1142654 – ident: 16 doi: 10.1103/PhysRevLett.89.180402 – ident: 7 doi: 10.1103/PhysRevLett.85.2014 – ident: 1 doi: 10.1103/RevModPhys.81.865 – ident: 5 doi: 10.1103/PhysRevLett.69.2881 – ident: 17 doi: 10.1103/PhysRevA.69.022309 – ident: 21 doi: 10.1103/PhysRevA.77.022301 – volume: 41 start-page: 205301 issn: 1751-8113 year: 2008 ident: 22 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/41/20/205301 – ident: 37 doi: 10.1063/1.1498001 – ident: 43 doi: 10.1103/PhysRevA.81.022116 – ident: 38 doi: 10.1103/PhysRevLett.93.140404 – ident: 24 doi: 10.1103/PhysRevLett.100.090502 – ident: 34 doi: 10.1103/PhysRevLett.100.050502 – volume: 34 start-page: 6899 issn: 0305-4470 year: 2001 ident: 14 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/34/35/315 – ident: 40 doi: 10.1126/science.1167343 – ident: 4 doi: 10.1103/PhysRevLett.70.1895 – ident: 42 doi: 10.1103/PhysRevA.80.044102 – ident: 19 doi: 10.1103/PhysRevA.72.032317 – ident: 15 doi: 10.1103/PhysRevLett.88.017901 – ident: 9 doi: 10.1016/j.tcs.2004.03.041 – ident: 8 doi: 10.1103/PhysRevLett.91.147902 – year: 2002 ident: 48 publication-title: The Theory of Open Quantum System – ident: 52 doi: 10.1103/PhysRevLett.107.170502 – ident: 33 doi: 10.1103/PhysRevLett.106.220403 – ident: 10 doi: 10.1103/PhysRevLett.81.5672 – ident: 36 doi: 10.1103/PhysRevA.86.042123 – ident: 31 doi: 10.1103/PhysRevA.83.032323 – ident: 6 doi: 10.1103/PhysRevLett.83.1054 – ident: 20 doi: 10.1103/PhysRevA.71.062307 – ident: 47 doi: 10.1017/CBO9780511535048 – volume: 20 start-page: 050306 issn: 1674-1056 year: 2011 ident: 18 publication-title: Chin. Phys. doi: 10.1088/1674-1056/20/5/050306 – ident: 46 doi: 10.1103/PhysRevA.81.052107 – ident: 13 doi: 10.1103/PhysRevA.75.042310 – ident: 53 doi: 10.1103/PhysRevA.81.052318 – ident: 30 doi: 10.1103/PhysRevA.83.032324 – ident: 26 doi: 10.1103/PhysRevLett.104.080501 – ident: 3 doi: 10.1103/PhysRevA.59.1070 – ident: 23 doi: 10.1103/PhysRevLett.102.100402 – ident: 12 doi: 10.1103/PhysRevA.72.042316 – year: 2011 ident: 51 – volume: 10 start-page: 994 issn: 1533-7146 year: 2010 ident: 50 publication-title: Quantum Inf. Comput. doi: 10.26421/QIC10.11-12-9 – year: 2000 ident: 2 publication-title: Quantum Computation and Quantum Information – ident: 28 doi: 10.1103/PhysRevLett.105.030501 – ident: 35 doi: 10.1038/474024a – volume: 2 start-page: 166 issn: 1533-7146 year: 2002 ident: 11 publication-title: Quantum Inf. Comput. doi: 10.26421/QIC2.2-5 – ident: 49 doi: 10.1103/PhysRevA.82.034302 – ident: 27 doi: 10.1103/PhysRevLett.105.190502 – ident: 41 doi: 10.1103/PhysRevLett.104.200401 – ident: 25 doi: 10.1103/PhysRevLett.102.250503 – ident: 29 doi: 10.1103/PhysRevLett.106.120401 |
SSID | ssj0061023 ssib054405859 ssib000804704 |
Score | 2.0358794 |
Snippet | A symmetric measure of quantum correlation based on the Hilbert–Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the... A symmetric measure of quantum correlation based on the Hilbert-Schmidt distance is presented in this paper. For two-qubit states, we considerably simplify the... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 94 |
SubjectTerms | Asymptotic properties Correlation Correlation analysis Dissipation Dynamical systems Dynamics Evolution Qubits (quantum computing) Symmetry 几何测量 和谐 对称 希尔伯特 解析表达式 量子关联 量子比特 量子系统 |
Title | A symmetric geometric measure and the dynamics of quantum discord |
URI | http://lib.cqvip.com/qk/85823A/201304/45493793.html https://www.proquest.com/docview/1753488415 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbtlkIvS5802wcq9Ba0sfXw4xjKLmnIPg4J5CYUWUoDG7vbxIftr-9Ish0vLHTbizFDLCczX0bz0gxCX7WOlaImJzbmK8JzZclKcU6UySOqVZYYX_J_cZlMFny6FMtDEbs_XbJfnerfD54r-R-pAg3k6k7J_oNku0WBAPcgX7iChOH6KBmPh7u77dbNxNLDtamau20I-3W1kUUYOu9rNm5r4GS9dXkZ73b2TFM3SdvsTBPr2B3GMU83TUwZfvuaTHt4mtV-51IbT113GiQEVZebkkzqLoTjpwcPLzZujbrsRxvc5IeuSCUoyCTloLpF07460MAqcdnkvK9VKe2hh_dUJGgNFrHehhuTQCL5gyod1KCLLrTvdSdYXM9Y7tJOvaX6jbQvr-T5YjaT87Pl_Cl6RtPUZ_C_X133LJ-IpwdPVHAwXDNn2YVNPHEdLZyv3r62PfyVZaOONqJ0xEfhS7jWHD-qcn0LXLxv4tzf4b3ZMn-Jjht_A48DeF6hJ6Z8jZ5fBxm_QeMx7iCEOwjhBkIYIIQBQriFEK4sbiCEGwi9RYvzs_m3CWmmahDNRL4n2oJNR2MmTMEtA-fKapNkQhU2MomIDdcmLqyxhYh8jp7ajBeRVZQxLoDK3qGjsirNe4SpS8MWsWEcvFIWRUqY3MCt0Km2tEgG6KRjivwZuqdILjiYxDkbIN5ySeqmH70bi3IjfV1ElknHaOkYLSmVXAZGD9Bp91i75F8e-NKKQILqdPkwVZqq3knXpBb2LzBhTx7xmQ_oxeEP8REd7X_V5hMYpPvVZw-tP__MftU |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+symmetric+geometric+measure+and+the+dynamics+of+quantum+discord&rft.jtitle=Chinese+physics+B&rft.au=Jiang%2C+Feng-Jian&rft.au=Lu%2C+Hai-Jiang&rft.au=Yan%2C+Xin-Hu&rft.au=Shi%2C+Ming-Jun&rft.date=2013-04-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=22&rft.issue=4&rft.spage=040303&rft.epage=1-040303-9&rft_id=info:doi/10.1088%2F1674-1056%2F22%2F4%2F040303&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |