Multi-Agent Reinforcement Learning Based Resource Management in MEC- and UAV-Assisted Vehicular Networks

In this paper, we investigate multi-dimensional resource management for unmanned aerial vehicles (UAVs) assisted vehicular networks. To efficiently provide on-demand resource access, the macro eNodeB and UAV, both mounted with multi-access edge computing (MEC) servers, cooperatively make association...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal on selected areas in communications Vol. 39; no. 1; pp. 131 - 141
Main Authors Peng, Haixia, Shen, Xuemin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0733-8716
1558-0008
DOI10.1109/JSAC.2020.3036962

Cover

Loading…
Abstract In this paper, we investigate multi-dimensional resource management for unmanned aerial vehicles (UAVs) assisted vehicular networks. To efficiently provide on-demand resource access, the macro eNodeB and UAV, both mounted with multi-access edge computing (MEC) servers, cooperatively make association decisions and allocate proper amounts of resources to vehicles. Since there is no central controller, we formulate the resource allocation at the MEC servers as a distributive optimization problem to maximize the number of offloaded tasks while satisfying their heterogeneous quality-of-service (QoS) requirements, and then solve it with a multi-agent deep deterministic policy gradient (MADDPG)-based method. Through centrally training the MADDPG model offline, the MEC servers, acting as learning agents, then can rapidly make vehicle association and resource allocation decisions during the online execution stage. From our simulation results, the MADDPG-based method can converge within 200 training episodes, comparable to the single-agent DDPG (SADDPG)-based one. Moreover, the proposed MADDPG-based resource management scheme can achieve higher delay/QoS satisfaction ratios than the SADDPG-based and random schemes.
AbstractList In this paper, we investigate multi-dimensional resource management for unmanned aerial vehicles (UAVs) assisted vehicular networks. To efficiently provide on-demand resource access, the macro eNodeB and UAV, both mounted with multi-access edge computing (MEC) servers, cooperatively make association decisions and allocate proper amounts of resources to vehicles. Since there is no central controller, we formulate the resource allocation at the MEC servers as a distributive optimization problem to maximize the number of offloaded tasks while satisfying their heterogeneous quality-of-service (QoS) requirements, and then solve it with a multi-agent deep deterministic policy gradient (MADDPG)-based method. Through centrally training the MADDPG model offline, the MEC servers, acting as learning agents, then can rapidly make vehicle association and resource allocation decisions during the online execution stage. From our simulation results, the MADDPG-based method can converge within 200 training episodes, comparable to the single-agent DDPG (SADDPG)-based one. Moreover, the proposed MADDPG-based resource management scheme can achieve higher delay/QoS satisfaction ratios than the SADDPG-based and random schemes.
Author Shen, Xuemin
Peng, Haixia
Author_xml – sequence: 1
  givenname: Haixia
  orcidid: 0000-0001-7206-4706
  surname: Peng
  fullname: Peng, Haixia
  email: h27peng@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
– sequence: 2
  givenname: Xuemin
  orcidid: 0000-0002-4140-287X
  surname: Shen
  fullname: Shen, Xuemin
  email: sshen@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
BookMark eNp9kElPwzAQhS0EEqXwAxCXSJxTxmucY6hY1YLE0mvkJuPWUBywXSH-PamKOHDgNBq9783yDsiu7zwSckxhRCmUZ7eP1XjEgMGIA1elYjtkQKXUOQDoXTKAgvNcF1Ttk4MYXwCoEJoNyHK6XiWXVwv0KXtA520XGnzbdBM0wTu_yM5NxLYXY7futWxqvFlsEeez6cU4z4xvs-dqllcxuph6eIZL16xXJmR3mD678BoPyZ41q4hHP3VIni8vnsbX-eT-6mZcTfKGyzLljZWNtprqBqwBSoVqqeRsrnUJ8xIVM_1TlrbMGhQttgoLwZQEinLObSH4kJxu576H7mONMdUv_dm-X1kzUYDiUijWU8WWakIXY0BbNy6Z5DqfgnGrmkK9ibXexFpvYq1_Yu2d9I_zPbg3E77-9ZxsPQ4Rf_mSSQEl598nBoRy
CODEN ISACEM
CitedBy_id crossref_primary_10_1109_TAES_2024_3418944
crossref_primary_10_1109_JIOT_2023_3244783
crossref_primary_10_1016_j_phycom_2023_102240
crossref_primary_10_1109_JSAC_2023_3310048
crossref_primary_10_1109_TWC_2023_3310477
crossref_primary_10_1007_s12083_024_01730_x
crossref_primary_10_1016_j_ins_2023_119523
crossref_primary_10_1109_TVT_2024_3493137
crossref_primary_10_1109_JSAC_2023_3310047
crossref_primary_10_1109_TSC_2022_3225473
crossref_primary_10_1109_TVT_2023_3338612
crossref_primary_10_1016_j_comcom_2023_06_008
crossref_primary_10_1109_OJVT_2021_3087355
crossref_primary_10_1016_j_adhoc_2023_103371
crossref_primary_10_1109_COMST_2024_3405075
crossref_primary_10_1007_s00521_023_08527_8
crossref_primary_10_1016_j_adhoc_2025_103801
crossref_primary_10_1109_TWC_2023_3342991
crossref_primary_10_1109_JIOT_2024_3366009
crossref_primary_10_1016_j_comnet_2024_110242
crossref_primary_10_1109_TWC_2023_3282909
crossref_primary_10_3390_s24165273
crossref_primary_10_1109_TWC_2023_3306880
crossref_primary_10_1109_TNSM_2024_3454758
crossref_primary_10_1109_COMST_2024_3372083
crossref_primary_10_1016_j_dcan_2023_11_010
crossref_primary_10_1109_TNSM_2024_3439389
crossref_primary_10_1109_JIOT_2021_3078514
crossref_primary_10_1109_JSEN_2024_3369038
crossref_primary_10_1109_TCOMM_2022_3220870
crossref_primary_10_1109_JSEN_2023_3283413
crossref_primary_10_1109_JIOT_2021_3128636
crossref_primary_10_1109_TCC_2021_3117604
crossref_primary_10_1109_TVT_2024_3402222
crossref_primary_10_1109_TITS_2022_3198507
crossref_primary_10_1109_MWC_121_2100071
crossref_primary_10_1109_JIOT_2023_3264253
crossref_primary_10_1109_JIOT_2024_3385414
crossref_primary_10_3390_math11061556
crossref_primary_10_1109_JIOT_2023_3326820
crossref_primary_10_1109_TIV_2022_3227367
crossref_primary_10_1038_s41598_024_67886_x
crossref_primary_10_1109_TITS_2024_3422039
crossref_primary_10_1016_j_ins_2024_121790
crossref_primary_10_1145_3712599
crossref_primary_10_1007_s00521_021_05766_5
crossref_primary_10_1109_TCE_2023_3338745
crossref_primary_10_3390_fi17020050
crossref_primary_10_1109_TSC_2023_3347741
crossref_primary_10_1109_JIOT_2023_3287737
crossref_primary_10_1109_TICPS_2023_3311394
crossref_primary_10_1109_MWC_101_2100056
crossref_primary_10_1109_ACCESS_2022_3218134
crossref_primary_10_1109_JIOT_2023_3240173
crossref_primary_10_1109_JIOT_2023_3287187
crossref_primary_10_1109_TWC_2023_3268082
crossref_primary_10_1016_j_jnca_2022_103439
crossref_primary_10_1109_JIOT_2024_3487913
crossref_primary_10_1109_LWC_2022_3227033
crossref_primary_10_1109_TVT_2022_3232806
crossref_primary_10_1109_JIOT_2023_3337262
crossref_primary_10_1109_TMC_2023_3247579
crossref_primary_10_1109_TVT_2022_3221485
crossref_primary_10_1016_j_adhoc_2024_103434
crossref_primary_10_1016_j_compeleceng_2022_108278
crossref_primary_10_1109_TMC_2024_3432491
crossref_primary_10_1109_TCOMM_2024_3454702
crossref_primary_10_1109_JIOT_2024_3447090
crossref_primary_10_1109_TII_2023_3292522
crossref_primary_10_1109_JIOT_2023_3292387
crossref_primary_10_1016_j_comcom_2023_07_006
crossref_primary_10_1002_dac_6107
crossref_primary_10_3390_a16070354
crossref_primary_10_1109_TCOMM_2022_3222460
crossref_primary_10_1109_TVT_2023_3335663
crossref_primary_10_1016_j_aap_2023_107179
crossref_primary_10_1109_TWC_2024_3468162
crossref_primary_10_1007_s11042_024_18176_1
crossref_primary_10_1016_j_comcom_2022_05_004
crossref_primary_10_1109_JIOT_2024_3418882
crossref_primary_10_3390_electronics13224401
crossref_primary_10_1109_JIOT_2023_3268316
crossref_primary_10_1109_TII_2022_3164395
crossref_primary_10_3390_math11030760
crossref_primary_10_1109_JIOT_2022_3161571
crossref_primary_10_1109_JIOT_2023_3241087
crossref_primary_10_1109_JIOT_2022_3228863
crossref_primary_10_1109_OJCOMS_2024_3380509
crossref_primary_10_1109_TITS_2021_3117974
crossref_primary_10_1109_TMC_2024_3383041
crossref_primary_10_1155_2021_5051328
crossref_primary_10_1109_JIOT_2022_3196842
crossref_primary_10_1016_j_cosrev_2025_100734
crossref_primary_10_26599_TST_2024_9010142
crossref_primary_10_1109_JIOT_2023_3345853
crossref_primary_10_1109_TWC_2023_3260304
crossref_primary_10_3390_computers12030063
crossref_primary_10_3390_electronics12122708
crossref_primary_10_1109_TR_2022_3192020
crossref_primary_10_1016_j_comnet_2024_110279
crossref_primary_10_1109_TIFS_2024_3423428
crossref_primary_10_1109_TVT_2023_3271613
crossref_primary_10_1155_2022_1177544
crossref_primary_10_1016_j_comnet_2024_111006
crossref_primary_10_1109_TMC_2022_3141080
crossref_primary_10_1016_j_phycom_2025_102621
crossref_primary_10_1109_TCDS_2023_3246107
crossref_primary_10_1007_s11276_021_02789_7
crossref_primary_10_1109_TWC_2024_3392608
crossref_primary_10_1007_s42486_024_00159_8
crossref_primary_10_1109_TCCN_2024_3391318
crossref_primary_10_1016_j_eswa_2023_120406
crossref_primary_10_1109_COMST_2022_3224279
crossref_primary_10_1145_3711900
crossref_primary_10_1016_j_comcom_2024_107993
crossref_primary_10_1109_TWC_2023_3245637
crossref_primary_10_1109_TWC_2023_3335597
crossref_primary_10_1109_TWC_2021_3126147
crossref_primary_10_1109_TWC_2022_3153316
crossref_primary_10_1002_sat_1517
crossref_primary_10_1109_MNET_009_2100585
crossref_primary_10_1109_TMC_2024_3439016
crossref_primary_10_1016_j_jestch_2024_101699
crossref_primary_10_1109_TR_2024_3399389
crossref_primary_10_1109_TCE_2024_3426513
crossref_primary_10_1007_s11276_024_03804_3
crossref_primary_10_3233_JIFS_233819
crossref_primary_10_1109_JIOT_2024_3373225
crossref_primary_10_3390_electronics14010192
crossref_primary_10_1016_j_adhoc_2023_103341
crossref_primary_10_3390_app12010426
crossref_primary_10_1109_LWC_2023_3294749
crossref_primary_10_1109_TITS_2023_3342271
crossref_primary_10_1109_JIOT_2022_3155667
crossref_primary_10_1109_TMC_2024_3366186
crossref_primary_10_1109_TVT_2021_3134272
crossref_primary_10_1109_JSYST_2024_3439746
crossref_primary_10_1016_j_comnet_2024_110615
crossref_primary_10_1109_TWC_2023_3248962
crossref_primary_10_1109_JSAC_2021_3118352
crossref_primary_10_1109_TCOMM_2022_3208113
crossref_primary_10_1109_TCOMM_2023_3274165
crossref_primary_10_1109_TNSM_2024_3434997
crossref_primary_10_1109_TITS_2022_3190280
crossref_primary_10_1109_ACCESS_2022_3202956
crossref_primary_10_1109_JSAC_2024_3460053
crossref_primary_10_1109_JIOT_2023_3327656
crossref_primary_10_1109_JIOT_2022_3156100
crossref_primary_10_1109_TITS_2023_3314929
crossref_primary_10_1109_TNSE_2022_3153172
crossref_primary_10_1109_TSC_2023_3247049
crossref_primary_10_1016_j_iot_2024_101342
crossref_primary_10_3390_rs15164046
crossref_primary_10_3390_drones8090485
crossref_primary_10_1109_JIOT_2023_3339514
crossref_primary_10_1109_ACCESS_2021_3070336
crossref_primary_10_1109_TMC_2023_3289940
crossref_primary_10_1109_TCOMM_2022_3211083
crossref_primary_10_1109_TGCN_2021_3099523
crossref_primary_10_1109_TII_2022_3224986
crossref_primary_10_1016_j_jksuci_2022_05_016
crossref_primary_10_1109_TMC_2024_3470831
crossref_primary_10_3390_s23167083
crossref_primary_10_1109_ACCESS_2023_3331752
crossref_primary_10_1109_TWC_2022_3210955
crossref_primary_10_3390_s24227328
crossref_primary_10_1109_TSC_2024_3377156
crossref_primary_10_1109_JIOT_2023_3294535
crossref_primary_10_1109_OJCOMS_2023_3243870
crossref_primary_10_1109_TWC_2022_3216049
crossref_primary_10_3390_electronics12061304
crossref_primary_10_1016_j_comnet_2024_110873
crossref_primary_10_1109_JIOT_2023_3263574
crossref_primary_10_3390_s24248014
crossref_primary_10_1109_MRA_2022_3163081
crossref_primary_10_1109_TVT_2024_3429507
crossref_primary_10_1109_TVT_2023_3347744
crossref_primary_10_26599_TST_2024_9010071
crossref_primary_10_1016_j_dcan_2023_04_004
crossref_primary_10_1109_JSAC_2024_3459089
crossref_primary_10_3390_drones7100619
crossref_primary_10_1109_TITS_2021_3082539
crossref_primary_10_1109_TVT_2022_3163430
crossref_primary_10_1109_TCOMM_2022_3229033
crossref_primary_10_1109_MWC_010_2300200
crossref_primary_10_1109_JIOT_2023_3285950
crossref_primary_10_1016_j_future_2023_03_038
crossref_primary_10_1109_TMC_2024_3367124
crossref_primary_10_1109_TWC_2023_3235997
crossref_primary_10_1109_TVT_2023_3262261
crossref_primary_10_1016_j_comcom_2024_107953
crossref_primary_10_1016_j_jksuci_2022_10_011
crossref_primary_10_1109_TCOMM_2023_3331029
crossref_primary_10_1016_j_comcom_2023_01_009
crossref_primary_10_1109_TNSM_2023_3300962
crossref_primary_10_1109_TGCN_2023_3298039
crossref_primary_10_1109_TITS_2021_3088862
crossref_primary_10_1109_TITS_2021_3129837
crossref_primary_10_1109_JIOT_2022_3228246
crossref_primary_10_1145_3604933
crossref_primary_10_32604_cmc_2023_037154
crossref_primary_10_1016_j_vehcom_2025_100895
crossref_primary_10_1109_JIOT_2023_3320796
crossref_primary_10_1109_COMST_2022_3199544
crossref_primary_10_1142_S2301385024420019
crossref_primary_10_1109_COMST_2021_3106401
crossref_primary_10_1109_JIOT_2021_3063686
crossref_primary_10_1109_COMST_2023_3312221
crossref_primary_10_1109_TMC_2023_3276314
crossref_primary_10_1016_j_dsp_2023_104127
crossref_primary_10_1109_TNSM_2022_3217320
crossref_primary_10_3390_electronics12234763
crossref_primary_10_1109_JIOT_2022_3199382
crossref_primary_10_1109_JIOT_2024_3418488
crossref_primary_10_1109_TMC_2024_3439556
crossref_primary_10_1109_JIOT_2023_3305708
crossref_primary_10_1016_j_vehcom_2025_100889
crossref_primary_10_2139_ssrn_4111779
crossref_primary_10_3390_drones7090579
crossref_primary_10_1109_COMST_2022_3175453
crossref_primary_10_1109_TNSE_2023_3310055
crossref_primary_10_1109_JSTSP_2021_3120872
crossref_primary_10_1109_TWC_2024_3458194
crossref_primary_10_1016_j_dcan_2024_10_005
crossref_primary_10_1109_JIOT_2022_3230786
crossref_primary_10_1109_TWC_2022_3215795
crossref_primary_10_3390_drones7080534
crossref_primary_10_1109_MWC_003_2100690
crossref_primary_10_1109_JIOT_2021_3095677
crossref_primary_10_1016_j_icte_2022_07_002
crossref_primary_10_1109_ACCESS_2024_3418900
crossref_primary_10_1109_COMST_2023_3323344
crossref_primary_10_1109_JIOT_2022_3155608
crossref_primary_10_1109_JIOT_2024_3445171
crossref_primary_10_1109_JIOT_2023_3300700
crossref_primary_10_1109_TVT_2023_3259688
crossref_primary_10_1109_TWC_2023_3291692
crossref_primary_10_1109_TNSE_2024_3391289
crossref_primary_10_3390_en16124655
crossref_primary_10_1109_JIOT_2023_3290145
crossref_primary_10_1109_TNSE_2024_3371434
crossref_primary_10_1109_JSAC_2023_3310062
crossref_primary_10_1360_SSI_2023_0177
crossref_primary_10_1016_j_neucom_2022_09_154
crossref_primary_10_1109_TCCN_2023_3234290
crossref_primary_10_1109_TVT_2021_3083255
crossref_primary_10_1007_s42486_023_00146_5
crossref_primary_10_1109_TVT_2024_3435393
crossref_primary_10_1109_TITS_2024_3440391
crossref_primary_10_1007_s12083_021_01235_x
crossref_primary_10_1016_j_eswa_2024_123152
crossref_primary_10_1016_j_comnet_2024_110469
crossref_primary_10_1109_TVT_2023_3256067
crossref_primary_10_1109_IOTM_001_2300067
crossref_primary_10_1109_TVT_2023_3327604
crossref_primary_10_1109_JIOT_2024_3421529
crossref_primary_10_1186_s13677_025_00738_9
crossref_primary_10_1109_TNET_2023_3342020
crossref_primary_10_1109_JIOT_2024_3441236
crossref_primary_10_1016_j_dcan_2022_12_016
crossref_primary_10_1109_JIOT_2021_3081626
crossref_primary_10_1109_JSAC_2023_3310080
crossref_primary_10_1016_j_jnca_2024_103834
crossref_primary_10_1145_3715319
crossref_primary_10_1109_ACCESS_2022_3210337
crossref_primary_10_1109_ACCESS_2021_3112963
crossref_primary_10_3390_rs15164059
crossref_primary_10_1109_TVT_2022_3232841
crossref_primary_10_1016_j_comnet_2022_109430
crossref_primary_10_1109_TVT_2023_3272648
crossref_primary_10_1007_s12083_021_01245_9
crossref_primary_10_1109_TCOMM_2024_3356795
Cites_doi 10.1109/TWC.2019.2928539
10.1109/ACCESS.2018.2878552
10.1109/TVT.2019.2929741
10.1109/TVT.2018.2859740
10.1109/TWC.2019.2935201
10.1109/ACCESS.2018.2872753
10.1109/JSAC.2020.3000416
10.1109/TNSE.2020.2978856
10.1109/TVT.2019.2897134
10.1109/JIOT.2018.2878435
10.1109/JSAC.2019.2933973
10.1109/TVT.2020.2993849
10.1109/AiDAS47888.2019.8970890
10.1109/TVT.2019.2935877
10.1109/JIOT.2018.2878876
10.1109/TMC.2020.2984261
10.1109/JSAC.2018.2864426
10.1109/TITS.2019.2922656
10.1109/TVT.2018.2833427
10.1109/TVT.2017.2723430
10.1109/JPROC.2019.2951169
10.1109/TWC.2019.2927313
10.1109/TITS.2019.2893067
10.1109/JSAC.2019.2933962
10.1109/MNET.2019.1800222
10.1109/OJVT.2020.2965100
10.1109/TVT.2018.2890685
10.1109/JSAC.2020.2986615
10.1109/MCOM.2018.1701092
10.1109/JPROC.2019.2957798
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JSAC.2020.3036962
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 141
ExternalDocumentID 10_1109_JSAC_2020_3036962
9254093
Genre orig-research
GrantInformation_xml – fundername: research grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada
  funderid: 10.13039/501100000038
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c359t-cf5c8f818c0fa01146d1532b8890b9e62a558f1d2fae4ded6e7426501e5b3f743
IEDL.DBID RIE
ISSN 0733-8716
IngestDate Mon Jun 30 10:23:54 EDT 2025
Tue Jul 01 02:06:31 EDT 2025
Thu Apr 24 23:05:03 EDT 2025
Wed Aug 27 02:32:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-cf5c8f818c0fa01146d1532b8890b9e62a558f1d2fae4ded6e7426501e5b3f743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4140-287X
0000-0001-7206-4706
PQID 2470635462
PQPubID 85481
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_JSAC_2020_3036962
crossref_primary_10_1109_JSAC_2020_3036962
proquest_journals_2470635462
ieee_primary_9254093
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref32
ref10
(ref21) 2020
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
(ref34) 2020
(ref37) 2020
foerster (ref36) 2016
ref24
ref23
ref26
ref20
ref22
puterman (ref30) 2014
(ref14) 2020
ng (ref33) 1999; 99
ref28
lowe (ref31) 2017
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
lillicrap (ref35) 2016
ref40
peng (ref25) 2020
peng (ref8) 2020
References_xml – start-page: 1
  year: 2020
  ident: ref25
  article-title: DDPG-based resource management for MEC/UAV-assisted vehicular networks
  publication-title: Proc IEEE VTC Fall
– volume: 99
  start-page: 278
  year: 1999
  ident: ref33
  article-title: Policy invariance under reward transformations: Theory and application to reward shaping
  publication-title: Proc ICML
– ident: ref10
  doi: 10.1109/TWC.2019.2928539
– ident: ref7
  doi: 10.1109/ACCESS.2018.2878552
– ident: ref3
  doi: 10.1109/TVT.2019.2929741
– ident: ref39
  doi: 10.1109/TVT.2018.2859740
– ident: ref28
  doi: 10.1109/TWC.2019.2935201
– ident: ref12
  doi: 10.1109/ACCESS.2018.2872753
– ident: ref24
  doi: 10.1109/JSAC.2020.3000416
– year: 2020
  ident: ref8
  article-title: Deep reinforcement learning based resource management for multi-access edge computing in vehicular networks
  publication-title: IEEE Transactions on Network Science and Engineering
  doi: 10.1109/TNSE.2020.2978856
– ident: ref4
  doi: 10.1109/TVT.2019.2897134
– ident: ref27
  doi: 10.1109/JIOT.2018.2878435
– ident: ref26
  doi: 10.1109/JSAC.2019.2933973
– start-page: 6379
  year: 2017
  ident: ref31
  article-title: Multi-agent actor-critic for mixed cooperative-competitive environments
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref23
  doi: 10.1109/TVT.2020.2993849
– ident: ref40
  doi: 10.1109/AiDAS47888.2019.8970890
– ident: ref16
  doi: 10.1109/TVT.2019.2935877
– ident: ref9
  doi: 10.1109/JIOT.2018.2878876
– year: 2014
  ident: ref30
  publication-title: Markov Decision Processes Discrete Stochastic Dynamic Programming
– ident: ref15
  doi: 10.1109/TMC.2020.2984261
– ident: ref29
  doi: 10.1109/JSAC.2018.2864426
– ident: ref13
  doi: 10.1109/TITS.2019.2922656
– start-page: 2137
  year: 2016
  ident: ref36
  article-title: Learning to communicate with deep multi-agent reinforcement learning
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref5
  doi: 10.1109/TVT.2018.2833427
– ident: ref38
  doi: 10.1109/TVT.2017.2723430
– ident: ref17
  doi: 10.1109/JPROC.2019.2951169
– start-page: 1
  year: 2016
  ident: ref35
  article-title: Continuous control with deep reinforcement learning
  publication-title: Proc ICLR
– ident: ref20
  doi: 10.1109/TWC.2019.2927313
– ident: ref1
  doi: 10.1109/TITS.2019.2893067
– year: 2020
  ident: ref21
  publication-title: Building an Ecosystem for Responsible Drone Use and Development on Microsoft Azure
– ident: ref6
  doi: 10.1109/JSAC.2019.2933962
– ident: ref11
  doi: 10.1109/MNET.2019.1800222
– ident: ref32
  doi: 10.1109/OJVT.2020.2965100
– year: 2020
  ident: ref37
  publication-title: PTV Vissim
– ident: ref19
  doi: 10.1109/TVT.2018.2890685
– year: 2020
  ident: ref34
  publication-title: Deep Reinforcement Learning Models Tips & Tricks for Writing Reward Functions
– ident: ref18
  doi: 10.1109/JSAC.2020.2986615
– year: 2020
  ident: ref14
  publication-title: Why Autonomous Vehicles Will Rely on Edge Computing and Not the Cloud?
– ident: ref22
  doi: 10.1109/MCOM.2018.1701092
– ident: ref2
  doi: 10.1109/JPROC.2019.2957798
SSID ssj0014482
Score 2.7055008
Snippet In this paper, we investigate multi-dimensional resource management for unmanned aerial vehicles (UAVs) assisted vehicular networks. To efficiently provide...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Decisions
Delays
Edge computing
Learning
Mobile computing
multi-access edge computing
multi-agent DDPG
multi-dimensional resource management
Multiagent systems
Optimization
Quality of service
Resource allocation
Resource management
Servers
Task analysis
Training
unmanned aerial vehicle
Unmanned aerial vehicles
Vehicles
Vehicular networks
Wireless communication
Title Multi-Agent Reinforcement Learning Based Resource Management in MEC- and UAV-Assisted Vehicular Networks
URI https://ieeexplore.ieee.org/document/9254093
https://www.proquest.com/docview/2470635462
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4FUR5yQMTwiV1YjceS0WFkMoAFLFFiX0GBAoI2oVfz9lJy1OILYMdWfkuvvvuCbDv_CATpSRHqSOeKEP3YAcJkFSjcCkpnDBjaXiuTkfJ2Y28mYPDWS0MIobkM2z7xxDLt09m4l1lR5rYDDHweZgn4lbVas0iBkQzQsSgG8fck4A6gtmJ9NHZZa9PTFAQQY38-DrxRQeFoSo_buKgXgbLMJwerMoqeWhPxkXbvH3r2fjfk6_AUm1nsl4lGKswh-UaLH7qPtiEu1B8y3u-uIpdYGihaoK3kNVdV2_ZMSk5y6Y-fvaRLMPuSzY86XOWl5aNeteccPYSY9k13t2H5FZ2XqWYv67DaHBy1T_l9eAFbmKpx9w4aVICKjWRyz1jUpYuRlGkqY4KjUrkUqauY4XLMbFoFRLBJlOvg7KIHdkkG9Aon0rcBEbvE06niUssfYFI5prWS3RK5mTK2bgF0RSKzNRdyf1wjMcssJNIZx69zKOX1ei14GC25blqyfHX4qZHY7awBqIFO1O8s_qnfc1E0iWDTSZKbP2-axsWhE9pCR6YHWiMXya4SzbJuNgLwvgOgXvbGA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOCx74LEs2vL0gRNal9SJTXwsFag82gNQxC1K7DEgVmEF7YVfz9hJy1OIWw52ZOWbeOabJ8C284NMlJIcpY54ogzdgy0kQFKNwqWkcMKMpV5fdQfJ8ZW8moK_k1oYRAzJZ9j0jyGWb-_NyLvKdjWxGWLg0zBLej_RVbXWJGZARCPEDPbimHsaUMcwW5HePT5vd4gLCqKokR9gJ95ooTBW5cNdHBTM4QL0xker8krumqNh0TRP77o2fvfsizBfW5qsXYnGEkxh-Qt-vuo_uAw3ofyWt315FTvD0ETVBH8hq_uuXrN9UnOWjb387CVdht2WrHfQ4SwvLRu0Lzkh7WXGsku8uQ3praxfJZk__obB4cFFp8vr0QvcxFIPuXHSpARVaiKXe86kLF2NokhTHRUalcilTF3LCpdjYtEqJIpNxl4LZRE7skpWYKa8L_EPMHqfcDpNXGLpC0Qy17ReolMyJ2POxg2IxlBkpu5L7sdj_MsCP4l05tHLPHpZjV4DdiZb_ldNOb5avOzRmCysgWjA-hjvrP5tHzOR7JHJJhMlVj_ftQU_uhe90-z0qH-yBnPCJ7gEf8w6zAwfRrhBFsqw2AyC-Qwrqd5o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Agent+Reinforcement+Learning+Based+Resource+Management+in+MEC-+and+UAV-Assisted+Vehicular+Networks&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Peng%2C+Haixia&rft.au=Shen%2C+Xuemin&rft.date=2021-01-01&rft.issn=0733-8716&rft.eissn=1558-0008&rft.volume=39&rft.issue=1&rft.spage=131&rft.epage=141&rft_id=info:doi/10.1109%2FJSAC.2020.3036962&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSAC_2020_3036962
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon