TDFL: Truth Discovery Based Byzantine Robust Federated Learning

Federated learning (FL) enables data owners to train a joint global model without sharing private data. However, it is vulnerable to Byzantine attackers that can launch poisoning attacks to destroy model training. Existing defense strategies rely on the additional datasets to train trustable server...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 33; no. 12; pp. 1 - 14
Main Authors Xu, Chang, Jia, Yu, Zhu, Liehuang, Zhang, Chuan, Jin, Guoxie, Sharif, Kashif
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated learning (FL) enables data owners to train a joint global model without sharing private data. However, it is vulnerable to Byzantine attackers that can launch poisoning attacks to destroy model training. Existing defense strategies rely on the additional datasets to train trustable server models or trusted execution environments to mitigate attacks. Besides, these strategies can only tolerate a small number of malicious users or resist a few types of poisoning attacks. To address these challenges, we design a novel federated learning method TDFL , T ruth D iscovery based F ederated L earning, which can defend against multiple poisoning attacks without additional datasets even when the Byzantine users are <inline-formula><tex-math notation="LaTeX">\geq 50\%</tex-math></inline-formula>. Specifically, the TDFL considers different scenarios with different malicious proportions. For Honest-majority setting (Byzantine <inline-formula><tex-math notation="LaTeX">< 50\%</tex-math></inline-formula>), we design a special robust truth discovery aggregation scheme to remove malicious model updates, which can assign weights according to users' contribution; for Byzantine-majority setting (Byzantine <inline-formula><tex-math notation="LaTeX">\geq 50\%</tex-math></inline-formula>), we use maximum clique-based filter to guarantee global model quality. To the best of our knowledge, this is the first study that uses truth discovery to defend against poisoning attacks. It is also the first scheme which can achieve strong robustness under multiple kinds of attacks launched by high proportion attackers without root datasets. Extensive comparative experiments are designed with five state-of-the-art aggregation rules under five types of classical poisoning attacks on different datasets. The experimental results demonstrate that TDFL is practical and achieves reasonable Byzantine-robustness.
AbstractList Federated learning (FL) enables data owners to train a joint global model without sharing private data. However, it is vulnerable to Byzantine attackers that can launch poisoning attacks to destroy model training. Existing defense strategies rely on the additional datasets to train trustable server models or trusted execution environments to mitigate attacks. Besides, these strategies can only tolerate a small number of malicious users or resist a few types of poisoning attacks. To address these challenges, we design a novel federated learning method TDFL , T ruth D iscovery based F ederated L earning, which can defend against multiple poisoning attacks without additional datasets even when the Byzantine users are <inline-formula><tex-math notation="LaTeX">\geq 50\%</tex-math></inline-formula>. Specifically, the TDFL considers different scenarios with different malicious proportions. For Honest-majority setting (Byzantine <inline-formula><tex-math notation="LaTeX">< 50\%</tex-math></inline-formula>), we design a special robust truth discovery aggregation scheme to remove malicious model updates, which can assign weights according to users' contribution; for Byzantine-majority setting (Byzantine <inline-formula><tex-math notation="LaTeX">\geq 50\%</tex-math></inline-formula>), we use maximum clique-based filter to guarantee global model quality. To the best of our knowledge, this is the first study that uses truth discovery to defend against poisoning attacks. It is also the first scheme which can achieve strong robustness under multiple kinds of attacks launched by high proportion attackers without root datasets. Extensive comparative experiments are designed with five state-of-the-art aggregation rules under five types of classical poisoning attacks on different datasets. The experimental results demonstrate that TDFL is practical and achieves reasonable Byzantine-robustness.
Federated learning (FL) enables data owners to train a joint global model without sharing private data. However, it is vulnerable to Byzantine attackers that can launch poisoning attacks to destroy model training. Existing defense strategies rely on the additional datasets to train trustable server models or trusted execution environments to mitigate attacks. Besides, these strategies can only tolerate a small number of malicious users or resist a few types of poisoning attacks. To address these challenges, we design a novel federated learning method TDFL , T ruth D iscovery based F ederated L earning, which can defend against multiple poisoning attacks without additional datasets even when the Byzantine users are [Formula Omitted]. Specifically, the TDFL considers different scenarios with different malicious proportions. For Honest-majority setting (Byzantine [Formula Omitted]), we design a special robust truth discovery aggregation scheme to remove malicious model updates, which can assign weights according to users’ contribution; for Byzantine-majority setting (Byzantine [Formula Omitted]), we use maximum clique-based filter to guarantee global model quality. To the best of our knowledge, this is the first study that uses truth discovery to defend against poisoning attacks. It is also the first scheme which can achieve strong robustness under multiple kinds of attacks launched by high proportion attackers without root datasets. Extensive comparative experiments are designed with five state-of-the-art aggregation rules under five types of classical poisoning attacks on different datasets. The experimental results demonstrate that TDFL is practical and achieves reasonable Byzantine-robustness.
Author Xu, Chang
Zhang, Chuan
Jin, Guoxie
Sharif, Kashif
Jia, Yu
Zhu, Liehuang
Author_xml – sequence: 1
  givenname: Chang
  orcidid: 0000-0002-9726-7232
  surname: Xu
  fullname: Xu, Chang
  organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Yu
  orcidid: 0000-0001-7115-403X
  surname: Jia
  fullname: Jia, Yu
  organization: School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Liehuang
  orcidid: 0000-0003-3277-3887
  surname: Zhu
  fullname: Zhu, Liehuang
  organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Chuan
  orcidid: 0000-0001-7684-8540
  surname: Zhang
  fullname: Zhang, Chuan
  organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Guoxie
  surname: Jin
  fullname: Jin, Guoxie
  organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China
– sequence: 6
  givenname: Kashif
  orcidid: 0000-0001-7214-6568
  surname: Sharif
  fullname: Sharif, Kashif
  organization: School of Cyberspace Science and Technology, Beijing Institute of Technology, Beijing, China
BookMark eNp9kE1LAzEQhoMo2FZ_gHhZ8Lw1H5tN4kVsa1VYUHQ9h-xmqil1tyZZof56t7R48OBpXpj3mYFniA6btgGEzggeE4LVZfk0exlTTOmYUcwFyQ7QgHAuU0okO-wzzniqKFHHaBjCEmOScZwN0HU5mxdXSem7-J7MXKjbL_CbZGIC2GSy-TZNdA0kz23VhZjMwYI3sV8VYHzjmrcTdLQwqwCn-zlCr_PbcnqfFo93D9ObIq0ZVzGtraykoDi3lWU2F0oRaYzluRUShKDSEgoil7msGZbALAYFmC8qUJJUC8JG6GJ3d-3bzw5C1Mu2803_UlNBFOdCUta3xK5V-zYEDwtdu2iia5vojVtpgvXWlt7a0ltbem-rJ8kfcu3dh_Gbf5nzHeMA4LevpBQKK_YDz3B2Cw
CODEN ITDSEO
CitedBy_id crossref_primary_10_14778_3665844_3665860
crossref_primary_10_3390_wevj15010018
crossref_primary_10_1109_JSTARS_2023_3276781
crossref_primary_10_1109_JIOT_2024_3370938
crossref_primary_10_1109_JIOT_2024_3409610
crossref_primary_10_1109_TDSC_2024_3354736
crossref_primary_10_1109_TNET_2024_3379439
crossref_primary_10_1016_j_future_2025_107780
crossref_primary_10_1016_j_sysarc_2024_103304
crossref_primary_10_1109_OJCOMS_2024_3438264
crossref_primary_10_1016_j_cose_2024_104161
crossref_primary_10_1109_TCSS_2023_3296885
crossref_primary_10_1007_s00607_024_01356_0
crossref_primary_10_1109_TIFS_2024_3461449
crossref_primary_10_1109_ACCESS_2024_3353131
crossref_primary_10_1016_j_comnet_2024_110730
crossref_primary_10_1109_JIOT_2024_3399259
Cites_doi 10.1109/5.726791
10.1145/362342.362367
10.1561/9781680837896
10.1145/2588555.2610509
10.3934/mbe.2022078
10.1109/NaNA51271.2020.00066
10.1109/GLOBECOM38437.2019.9013890
10.1109/TIFS.2021.3108434
10.1109/ICASSP40776.2020.9054676
10.1109/ICDE53745.2022.00077
10.14722/ndss.2021.24498
10.1145/3128572.3140451
10.1145/3442381.3450066
10.1109/JSAC.2020.3041404
10.1145/2991079.2991125
10.14722/ndss.2021.24434
10.1609/aaai.v35i8.16849
10.1007/978-3-030-88418-5_24
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2022.3205714
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 14
ExternalDocumentID 10_1109_TPDS_2022_3205714
9887909
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61972037; 61872041; U1804263
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M700435; 2021TQ0042
– fundername: National Cryptography Development Fund
  grantid: MMJJ20180412
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
TWZ
UHB
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-cd8b87206dbd3d679918aad56d78e7728d12e76868c308e3d0e9e05fbe981bf13
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Mon Jun 30 04:21:21 EDT 2025
Thu Apr 24 23:05:32 EDT 2025
Tue Jul 01 03:58:40 EDT 2025
Wed Aug 27 02:18:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-cd8b87206dbd3d679918aad56d78e7728d12e76868c308e3d0e9e05fbe981bf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3277-3887
0000-0001-7684-8540
0000-0002-9726-7232
0000-0001-7115-403X
0000-0001-7214-6568
PQID 2719557823
PQPubID 85437
PageCount 14
ParticipantIDs proquest_journals_2719557823
crossref_citationtrail_10_1109_TPDS_2022_3205714
ieee_primary_9887909
crossref_primary_10_1109_TPDS_2022_3205714
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
muñoz-gonzález (ref10) 2019
ref12
yin (ref9) 2018
ref14
bonawitz (ref18) 2019; 1
ref30
ref11
pan (ref28) 2020
xie (ref33) 2020
ref17
ref16
ref19
blanchard (ref5) 2017
bo (ref22) 0
xiao (ref31) 2017
mcmahan (ref20) 2017
zhao (ref34) 2018
ref24
zhao (ref13) 2021
ref23
ref26
ref25
fang (ref2) 2020
ref21
krizhevsky (ref32) 2009
ref27
ref29
li (ref15) 2020
ref8
ref7
bagdasaryan (ref4) 2020
ref3
bhagoji (ref1) 2019
mhamdi (ref6) 2018
References_xml – ident: ref30
  doi: 10.1109/5.726791
– ident: ref29
  doi: 10.1145/362342.362367
– ident: ref19
  doi: 10.1561/9781680837896
– ident: ref21
  doi: 10.1145/2588555.2610509
– ident: ref25
  doi: 10.3934/mbe.2022078
– ident: ref17
  doi: 10.1109/NaNA51271.2020.00066
– ident: ref27
  doi: 10.1109/GLOBECOM38437.2019.9013890
– start-page: 119
  year: 2017
  ident: ref5
  article-title: Machine learning with adversaries: Byzantine tolerant gradient descent
  publication-title: Proc Adv Neural Inf Process Syst
– start-page: 634
  year: 2019
  ident: ref1
  article-title: Analyzing federated learning through an adversarial lens
  publication-title: Proc 36th Int Conf Mach Learn
– start-page: 1273
  year: 2017
  ident: ref20
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– ident: ref26
  doi: 10.1109/TIFS.2021.3108434
– ident: ref7
  doi: 10.1109/ICASSP40776.2020.9054676
– year: 2009
  ident: ref32
  article-title: Learning multiple layers of features from tiny images
  publication-title: Dept Comp Sci
– start-page: 1641
  year: 2020
  ident: ref28
  article-title: Justinian's gaavernor: Robust distributed learning with gradient aggregation agent
  publication-title: Proc 29th USENIX Secur Symp
– volume: 1
  start-page: 374
  year: 2019
  ident: ref18
  article-title: Towards federated learning at scale: System design
  publication-title: Proc Mach Learn Syst
– year: 2018
  ident: ref34
  article-title: Federated learning with non-iid data
– start-page: 5636
  year: 2018
  ident: ref9
  article-title: Byzantine-robust distributed learning: Towards optimal statistical rates
  publication-title: Proc 35th Int Conf Mach Learn
– start-page: 1605
  year: 2020
  ident: ref2
  article-title: Local model poisoning attacks to byzantine-robust federated learning
  publication-title: Proc 29th USENIX Secur Symp
– ident: ref35
  doi: 10.1109/ICDE53745.2022.00077
– year: 2017
  ident: ref31
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
– start-page: 1
  year: 2020
  ident: ref33
  article-title: DBA: Distributed backdoor attacks against federated learning
  publication-title: Proc 8th Int Conf Learn Representations
– year: 2020
  ident: ref15
  article-title: Learning to detect malicious clients for robust federated learning
– ident: ref12
  doi: 10.14722/ndss.2021.24498
– start-page: 2938
  year: 2020
  ident: ref4
  article-title: How to backdoor federated learning
  publication-title: Proc 23rd Int Conf Artif Intell Statist
– start-page: 3518
  year: 2018
  ident: ref6
  article-title: The hidden vulnerability of distributed learning in byzantium
  publication-title: Proc 35th Int Conf Mach Learn
– ident: ref3
  doi: 10.1145/3128572.3140451
– ident: ref23
  doi: 10.1145/3442381.3450066
– ident: ref24
  doi: 10.1109/JSAC.2020.3041404
– year: 2021
  ident: ref13
  article-title: FedCom: A byzantine-robust local model aggregation rule using data commitment for federated learning
– year: 0
  ident: ref22
  article-title: A probabilistic model for estimating real-valued truth from conflicting sources
  publication-title: Proc Int Workshop Qual Databases
– year: 2019
  ident: ref10
  article-title: Byzantine-robust federated machine learning through adaptive model averaging
– ident: ref8
  doi: 10.1145/2991079.2991125
– ident: ref11
  doi: 10.14722/ndss.2021.24434
– ident: ref14
  doi: 10.1609/aaai.v35i8.16849
– ident: ref16
  doi: 10.1007/978-3-030-88418-5_24
SSID ssj0014504
Score 2.5260494
Snippet Federated learning (FL) enables data owners to train a joint global model without sharing private data. However, it is vulnerable to Byzantine attackers that...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Agglomeration
Collaborative work
Data models
Data privacy
Datasets
Environment models
Federated learning
Poisoning
poisoning attack
Robustness
Servers
Soft sensors
Training
truth discovery
Title TDFL: Truth Discovery Based Byzantine Robust Federated Learning
URI https://ieeexplore.ieee.org/document/9887909
https://www.proquest.com/docview/2719557823
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED51PLGHMWDTCgz5YU-IFCeu7XgviK5UCAFCrEi8RYl9AbSpRTR5gF_POXErYAjtLQ-2Zfl8vu9yd98B_NDKKjJUcSQQc3JQnIxyXeqI81Jq4YTSiS9wPj1TR5f94yt51YHdRS0MIjbJZ9jzn00s301t7X-V7RnSCOOr9T6Q49bWai0iBn3ZtAok70JGhtQwRDBjbvbG58Pf5AkmSU8kBE_i_gsb1DRV-eclbszLaAVO5xtrs0r-9Oqq6NnHV5yN_7vzz_Ap4Ex20F6MVejgZA1W5j0cWFDpNfj4jJBwHfbHw9HJTza-r6sbNrydWZ_g-cAGZOocGzw85r6vBLKLaVHPKjbyRBSEVR0LLK3XX-BydDj-dRSFFguRFdJUkXVpkeqEK1c44ZQmtJjmuZPK6RQJeKcuTpA8EpVawVMUjqNBLssCDeHdMhZfYWkyneA3YNJaeliFw1Jhn2BC4YO6igCHEznaMukCnx96ZgP_uG-D8Tdr_BBuMi-nzMspC3Lqws5iyl1LvvHe4HV_7ouB4ci7sDWXbBbUc5YlOjbSE_mLjbdnbcKyX7vNW9mCpeq-xu-EPqpiu7l2TysZ0_s
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hONAeSoFWbKHgQ09Vszjx2o57qQrLatvuoqoNErcosSdQtdqt2OQAv77jxLvqlxC3HGzZ8ng8bzIzbwBeaWUVGao4EogFOShORoWudMR5JbVwQunEFzhPz9X4YvDxUl6uwZtVLQwitsln2PefbSzfzW3jf5UdG9II46v1Nsjuy7ir1lrFDAaybRZI_oWMDCliiGHG3Bxnn4dfyRdMkr5ICKDEgz-sUNtW5Z-3uDUwoy2YLrfW5ZV87zd12bd3f7E2PnTvT-FJQJrsfXc1tmENZzuwteziwIJS78Dj3ygJd-FdNhxN3rLspqmv2fDbwvoUz1t2QsbOsZPbu8J3lkD2ZV42i5qNPBUFoVXHAk_r1TO4GJ1lp-MoNFmIrJCmjqxLy1QnXLnSCac04cW0KJxUTqdI0Dt1cYLkk6jUCp6icBwNclmVaAjxVrF4Duuz-Qz3gElr6WkVDiuFAwIKpQ_rKoIcThRoq6QHfHnouQ0M5L4Rxo-89US4yb2cci-nPMipB69XU3529Bv3Dd71574aGI68BwdLyeZBQRd5omMjPZW_ePH_WUewOc6mk3zy4fzTPjzy63RZLAewXt80-JKwSF0etlfwF2af10Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TDFL%3A+Truth+Discovery+Based+Byzantine+Robust+Federated+Learning&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Xu%2C+Chang&rft.au=Jia%2C+Yu&rft.au=Zhu%2C+Liehuang&rft.au=Zhang%2C+Chuan&rft.date=2022-12-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.volume=33&rft.issue=12&rft.spage=4835&rft.epage=4848&rft_id=info:doi/10.1109%2FTPDS.2022.3205714&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2022_3205714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon