Ultrafast hot-carrier cooling in quasi freestanding bilayer graphene with hydrogen intercalated atoms
Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monol...
Saved in:
Published in | Nanoscale advances Vol. 5; no. 2; pp. 485 - 492 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
RSC
18.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2516-0230 2516-0230 |
DOI | 10.1039/d2na00678b |
Cover
Loading…
Abstract | Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monolayer graphene, which increase nonlinearly with excitation intensity. The increased relaxation times are due to the decoupling of the graphene layer from the SiC substrate after hydrogen intercalation which increases the distance between graphene and substrate. Furthermore, our measurements show that the supercollision mechanism is not related to the cooling process of the hot carriers, which is ultimately achieved by electron optical phonon scattering.
Investigation of the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen intercalation by femtosecond optical pump THz-probe spectroscopy. |
---|---|
AbstractList | Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monolayer graphene, which increase nonlinearly with excitation intensity. The increased relaxation times are due to the decoupling of the graphene layer from the SiC substrate after hydrogen intercalation which increases the distance between graphene and substrate. Furthermore, our measurements show that the supercollision mechanism is not related to the cooling process of the hot carriers, which is ultimately achieved by electron optical phonon scattering. Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monolayer graphene, which increase nonlinearly with excitation intensity. The increased relaxation times are due to the decoupling of the graphene layer from the SiC substrate after hydrogen intercalation which increases the distance between graphene and substrate. Furthermore, our measurements show that the supercollision mechanism is not related to the cooling process of the hot carriers, which is ultimately achieved by electron optical phonon scattering. Investigation of the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen intercalation by femtosecond optical pump THz-probe spectroscopy. Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monolayer graphene, which increase nonlinearly with excitation intensity. The increased relaxation times are due to the decoupling of the graphene layer from the SiC substrate after hydrogen intercalation which increases the distance between graphene and substrate. Furthermore, our measurements show that the supercollision mechanism is not related to the cooling process of the hot carriers, which is ultimately achieved by electron optical phonon scattering.Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monolayer graphene, which increase nonlinearly with excitation intensity. The increased relaxation times are due to the decoupling of the graphene layer from the SiC substrate after hydrogen intercalation which increases the distance between graphene and substrate. Furthermore, our measurements show that the supercollision mechanism is not related to the cooling process of the hot carriers, which is ultimately achieved by electron optical phonon scattering. |
Author | Chatzakis, Ioannis Sharma, Sachin Myers-Ward, Rachael L Gaskill, Kurt D |
AuthorAffiliation | U.S. Naval Research Laboratory Texas Tech University Department of Physics & Astronomy Institute for Research in Electronics and Applied Physics University of Maryland |
AuthorAffiliation_xml | – sequence: 0 name: Texas Tech University Department of Physics & Astronomy – sequence: 0 name: Institute for Research in Electronics and Applied Physics – sequence: 0 name: U.S. Naval Research Laboratory – sequence: 0 name: University of Maryland |
Author_xml | – sequence: 1 givenname: Sachin surname: Sharma fullname: Sharma, Sachin – sequence: 2 givenname: Rachael L surname: Myers-Ward fullname: Myers-Ward, Rachael L – sequence: 3 givenname: Kurt D surname: Gaskill fullname: Gaskill, Kurt D – sequence: 4 givenname: Ioannis surname: Chatzakis fullname: Chatzakis, Ioannis |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36756263$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtPxCAUhYnR-N6413RpTEaBUlo2Jr41MbrRNbmlt1NMB0boaObfi46OGhaQy8c5OZwtsuq8Q0L2GD1mNFcnDXdAqSyreoVs8oLJEeU5Xf1z3iC7Mb5QSjkTQpRqnWzksiwkl_kmwed-CNBCHLLODyMDIVgMmfG-t26cWZe9ziDarA2IcQDXfE5r28M8UeMA0w4dZu926LJu3gQ_RpceDRgM9DBgk8HgJ3GHrLXQR9z93rfJ8_XV08Xt6P7x5u7i7H5k8kIl96YsqAIlUjDJKsZTKlHUnBojQLRt1cq8xhK4YVjSRAuoa1RGSEYLqIt8m5wudKezeoKNQZfC9Xoa7ATCXHuw-v-Ns50e-zetKiHTSgKH3wLBv85SYj2x0WDfg0M_i5qXpaiUkFQl9OCv19Lk528TcLQATPAxBmyXCKP6szt9yR_Ovro7T_D-Ag7RLLnfbvMPns-X-w |
Cites_doi | 10.1103/PhysRevLett.102.206410 10.1088/2053-1583/aa5c75 10.1021/nl102824h 10.1038/nphys2494 10.1021/nl302321k 10.1088/0022-3727/47/9/094013 10.1103/PhysRevLett.107.237401 10.1103/PhysRevB.86.045413 10.1103/PhysRevB.90.165420 10.1016/j.carbon.2014.09.030 10.1109/LED.2007.891668 10.1103/PhysRevLett.109.106602 10.1103/PhysRevLett.100.125504 10.1063/1.4905192 10.1021/nl202800h 10.1038/nature04233 10.1063/1.2990753 10.1021/nl8019399 10.1103/PhysRevLett.109.056805 10.1103/PhysRevLett.108.167401 10.1126/sciadv.aar5313 10.1103/PhysRevB.80.245435 10.1103/PhysRevLett.101.196405 10.1103/PhysRevLett.111.027403 10.1103/PhysRevB.83.205411 10.1063/1.4899142 10.1038/nature09405 10.1103/PhysRevB.81.195442 10.1021/nn300989g 10.1021/acsnano.0c10864 10.1021/nl502163d 10.1021/nl303988q 10.1038/nature04235 10.1063/1.3643034 10.1038/nmat3757 10.1063/1.2837539 10.1103/PhysRevB.81.245404 10.1039/D0NR09166A 10.1103/PhysRevLett.114.107402 10.1038/nphoton.2010.186 10.1038/nphys2564 10.1016/j.carbon.2019.08.019 10.1038/ncomms9105 10.1103/PhysRevB.84.125449 10.1103/PhysRevLett.104.136802 10.1103/PhysRevLett.108.246104 10.1016/j.ssc.2008.02.024 10.1126/science.1184289 10.1021/acs.jpcc.1c07783 10.1126/science.1156965 10.1038/nphys2493 10.1021/nn203506n 10.1063/1.3224887 10.1038/nnano.2011.146 10.1103/PhysRevLett.95.187403 10.1103/PhysRevLett.103.246804 10.1021/nl404826r |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2023 RSC |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2023 RSC |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1039/d2na00678b |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2516-0230 |
EndPage | 492 |
ExternalDocumentID | PMC9846464 36756263 10_1039_D2NA00678B d2na00678b |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: Unassigned |
GroupedDBID | AAFWJ ADBBV ALMA_UNASSIGNED_HOLDINGS ANUXI BCNDV C6K EBS GROUPED_DOAJ H13 M~E OK1 RPM SMJ AAYXX AFPKN CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c359t-cd7509a940396181278b45b20cc4a4ff8f63be7a2c1e70cd74abbe9c46105ab53 |
ISSN | 2516-0230 |
IngestDate | Thu Aug 21 18:38:53 EDT 2025 Thu Jul 10 21:55:57 EDT 2025 Thu Jan 02 22:55:00 EST 2025 Tue Jul 01 04:28:18 EDT 2025 Tue Dec 17 20:59:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c359t-cd7509a940396181278b45b20cc4a4ff8f63be7a2c1e70cd74abbe9c46105ab53 |
Notes | https://doi.org/10.1039/d2na00678b Electronic supplementary information (ESI) available: Details on the supercollision model. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3568-2174 |
OpenAccessLink | http://dx.doi.org/10.1039/d2na00678b |
PMID | 36756263 |
PQID | 2774894609 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9846464 crossref_primary_10_1039_D2NA00678B rsc_primary_d2na00678b proquest_miscellaneous_2774894609 pubmed_primary_36756263 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-18 |
PublicationDateYYYYMMDD | 2023-01-18 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nanoscale advances |
PublicationTitleAlternate | Nanoscale Adv |
PublicationYear | 2023 |
Publisher | RSC |
Publisher_xml | – name: RSC |
References | Lemme (D2NA00678B/cit10/1) 2007; 28 Ju (D2NA00678B/cit13/1) 2011; 6 Li (D2NA00678B/cit37/1) 2012; 108 Tielrooij (D2NA00678B/cit46/1) 2013; 9 Forti (D2NA00678B/cit49/1) 2014; 47 Shi (D2NA00678B/cit16/1) 2014; 14 Winnerl (D2NA00678B/cit47/1) 2013; 25 Tomadin (D2NA00678B/cit17/1) 2018; 4 Alencar (D2NA00678B/cit43/1) 2014; 14 Forti (D2NA00678B/cit51/1) 2011; 84 Jablan (D2NA00678B/cit11/1) 2009; 80 Mihnev (D2NA00678B/cit25/1) 2015; 6 Jnawali (D2NA00678B/cit18/1) 2013; 13 Bao (D2NA00678B/cit15/1) 2012; 6 Tedesco (D2NA00678B/cit54/1) 2009; 95 George (D2NA00678B/cit19/1) 2008; 8 Ristein (D2NA00678B/cit53/1) 2012; 108 Winnerl (D2NA00678B/cit30/1) 2011; 107 Luo (D2NA00678B/cit23/1) 2015; 114 Sun (D2NA00678B/cit32/1) 2010; 104 Pogna (D2NA00678B/cit56/1) 2021; 15 Chatzakis (D2NA00678B/cit39/1) 2011; 83 Emery (D2NA00678B/cit48/1) 2014; 105 Song (D2NA00678B/cit27/1) 2012; 109 El Fatimy (D2NA00678B/cit44/1) 2019; 154 Viljas (D2NA00678B/cit57/1) 2010; 81 Strait (D2NA00678B/cit38/1) 2011; 11 Novoselov (D2NA00678B/cit1/1) 2005; 438 Bolotin (D2NA00678B/cit3/1) 2008; 146 Liao (D2NA00678B/cit14/1) 2010; 467 Graham (D2NA00678B/cit42/1) 2013; 9 Dawlaty (D2NA00678B/cit34/1) 2008; 3 Dawlaty (D2NA00678B/cit8/1) 2008; 93 Bonaccorso (D2NA00678B/cit4/1) 2010; 4 Yan (D2NA00678B/cit9/1) 2011; 5 Hass (D2NA00678B/cit52/1) 2008; 100 Gierz (D2NA00678B/cit33/1) 2013; 12 Betz (D2NA00678B/cit40/1) 2012; 109 Zhang (D2NA00678B/cit2/1) 2005; 438 Jia (D2NA00678B/cit21/1) 2021; 125 Bistritzer (D2NA00678B/cit26/1) 2009; 102 Johannsen (D2NA00678B/cit28/1) 2013; 111 Speck (D2NA00678B/cit55/1) 2011; 99 Low (D2NA00678B/cit29/1) 2012; 86 Kar (D2NA00678B/cit22/1) 2014; 80 Kampfrath (D2NA00678B/cit24/1) 2005; 95 Betz (D2NA00678B/cit41/1) 2013; 9 Heyman (D2NA00678B/cit31/1) 2015; 117 Daniels (D2NA00678B/cit58/1) 2017; 4 Nair (D2NA00678B/cit7/1) 2008; 320 Avouris (D2NA00678B/cit5/1) 2010; 10 Amer (D2NA00678B/cit35/1) 2012; 12 Massicotte (D2NA00678B/cit36/1) 2021; 13 Perebeinos (D2NA00678B/cit45/1) 2010; 81 Kar (D2NA00678B/cit20/1) 2014; 90 Mak (D2NA00678B/cit6/1) 2008; 101 Lin (D2NA00678B/cit12/1) 2010; 327 Riedl (D2NA00678B/cit50/1) 2009; 103 |
References_xml | – volume: 102 start-page: 206410 year: 2009 ident: D2NA00678B/cit26/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.206410 – volume: 4 start-page: 025034 year: 2017 ident: D2NA00678B/cit58/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa5c75 – volume: 10 start-page: 4285 year: 2010 ident: D2NA00678B/cit5/1 publication-title: Nano Lett. doi: 10.1021/nl102824h – volume: 9 start-page: 109 year: 2013 ident: D2NA00678B/cit41/1 publication-title: Nat. Phys. doi: 10.1038/nphys2494 – volume: 12 start-page: 4843 year: 2012 ident: D2NA00678B/cit35/1 publication-title: Nano Lett. doi: 10.1021/nl302321k – volume: 47 start-page: 094013 year: 2014 ident: D2NA00678B/cit49/1 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/47/9/094013 – volume: 107 start-page: 237401 year: 2011 ident: D2NA00678B/cit30/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.237401 – volume: 86 start-page: 045413 year: 2012 ident: D2NA00678B/cit29/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.86.045413 – volume: 90 start-page: 165420 year: 2014 ident: D2NA00678B/cit20/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.90.165420 – volume: 80 start-page: 762 year: 2014 ident: D2NA00678B/cit22/1 publication-title: Carbon doi: 10.1016/j.carbon.2014.09.030 – volume: 28 start-page: 282 year: 2007 ident: D2NA00678B/cit10/1 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2007.891668 – volume: 109 start-page: 106602 year: 2012 ident: D2NA00678B/cit27/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.106602 – volume: 100 start-page: 125504 year: 2008 ident: D2NA00678B/cit52/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.125504 – volume: 117 start-page: 015101 year: 2015 ident: D2NA00678B/cit31/1 publication-title: J. Appl. Phys. doi: 10.1063/1.4905192 – volume: 11 start-page: 4902 year: 2011 ident: D2NA00678B/cit38/1 publication-title: Nano Lett. doi: 10.1021/nl202800h – volume: 438 start-page: 197 year: 2005 ident: D2NA00678B/cit1/1 publication-title: Nature doi: 10.1038/nature04233 – volume: 93 start-page: 131905 year: 2008 ident: D2NA00678B/cit8/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2990753 – volume: 8 start-page: 4248 year: 2008 ident: D2NA00678B/cit19/1 publication-title: Nano Lett. doi: 10.1021/nl8019399 – volume: 109 start-page: 056805 year: 2012 ident: D2NA00678B/cit40/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.056805 – volume: 108 start-page: 167401 year: 2012 ident: D2NA00678B/cit37/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.167401 – volume: 4 start-page: eaar5313 year: 2018 ident: D2NA00678B/cit17/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar5313 – volume: 80 start-page: 245435 year: 2009 ident: D2NA00678B/cit11/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.80.245435 – volume: 101 start-page: 196405 year: 2008 ident: D2NA00678B/cit6/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.196405 – volume: 111 start-page: 027403 year: 2013 ident: D2NA00678B/cit28/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.027403 – volume: 83 start-page: 205411 year: 2011 ident: D2NA00678B/cit39/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.83.205411 – volume: 105 start-page: 161602 year: 2014 ident: D2NA00678B/cit48/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4899142 – volume: 467 start-page: 305 year: 2010 ident: D2NA00678B/cit14/1 publication-title: Nature doi: 10.1038/nature09405 – volume: 81 start-page: 195442 year: 2010 ident: D2NA00678B/cit45/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.195442 – volume: 6 start-page: 3677 year: 2012 ident: D2NA00678B/cit15/1 publication-title: ACS Nano doi: 10.1021/nn300989g – volume: 15 start-page: 11285 year: 2021 ident: D2NA00678B/cit56/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c10864 – volume: 14 start-page: 5621 year: 2014 ident: D2NA00678B/cit43/1 publication-title: Nano Lett. doi: 10.1021/nl502163d – volume: 13 start-page: 524 year: 2013 ident: D2NA00678B/cit18/1 publication-title: Nano Lett. doi: 10.1021/nl303988q – volume: 25 start-page: 054202 year: 2013 ident: D2NA00678B/cit47/1 publication-title: J. Phys.: Condens. Matter – volume: 438 start-page: 201 year: 2005 ident: D2NA00678B/cit2/1 publication-title: Nature doi: 10.1038/nature04235 – volume: 99 start-page: 122106 year: 2011 ident: D2NA00678B/cit55/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3643034 – volume: 12 start-page: 1119 year: 2013 ident: D2NA00678B/cit33/1 publication-title: Nat. Mater. doi: 10.1038/nmat3757 – volume: 3 start-page: 042116 year: 2008 ident: D2NA00678B/cit34/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2837539 – volume: 81 start-page: 245404 year: 2010 ident: D2NA00678B/cit57/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.81.245404 – volume: 13 start-page: 8376 year: 2021 ident: D2NA00678B/cit36/1 publication-title: Nanoscale doi: 10.1039/D0NR09166A – volume: 114 start-page: 107402 year: 2015 ident: D2NA00678B/cit23/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.107402 – volume: 4 start-page: 611 year: 2010 ident: D2NA00678B/cit4/1 publication-title: Nat. Photon doi: 10.1038/nphoton.2010.186 – volume: 9 start-page: 248 year: 2013 ident: D2NA00678B/cit46/1 publication-title: Nat. Phys. doi: 10.1038/nphys2564 – volume: 154 start-page: 497 year: 2019 ident: D2NA00678B/cit44/1 publication-title: Carbon doi: 10.1016/j.carbon.2019.08.019 – volume: 6 start-page: 8105 year: 2015 ident: D2NA00678B/cit25/1 publication-title: Nat. Commun. doi: 10.1038/ncomms9105 – volume: 84 start-page: 125449 year: 2011 ident: D2NA00678B/cit51/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.84.125449 – volume: 104 start-page: 136802 year: 2010 ident: D2NA00678B/cit32/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.136802 – volume: 108 start-page: 246104 year: 2012 ident: D2NA00678B/cit53/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.246104 – volume: 146 start-page: 351 year: 2008 ident: D2NA00678B/cit3/1 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2008.02.024 – volume: 327 start-page: 662 year: 2010 ident: D2NA00678B/cit12/1 publication-title: Science doi: 10.1126/science.1184289 – volume: 125 start-page: 27283 year: 2021 ident: D2NA00678B/cit21/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.1c07783 – volume: 320 start-page: 1308 year: 2008 ident: D2NA00678B/cit7/1 publication-title: Science doi: 10.1126/science.1156965 – volume: 9 start-page: 103 year: 2013 ident: D2NA00678B/cit42/1 publication-title: Nat. Phys. doi: 10.1038/nphys2493 – volume: 5 start-page: 9854 year: 2011 ident: D2NA00678B/cit9/1 publication-title: ACS Nano doi: 10.1021/nn203506n – volume: 95 start-page: 122102 year: 2009 ident: D2NA00678B/cit54/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3224887 – volume: 6 start-page: 630 year: 2011 ident: D2NA00678B/cit13/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.146 – volume: 95 start-page: 187403 year: 2005 ident: D2NA00678B/cit24/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.187403 – volume: 103 start-page: 246804 year: 2009 ident: D2NA00678B/cit50/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.246804 – volume: 14 start-page: 1578 year: 2014 ident: D2NA00678B/cit16/1 publication-title: Nano Lett. doi: 10.1021/nl404826r |
SSID | ssj0002144479 |
Score | 2.2080112 |
Snippet | Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 485 |
SubjectTerms | Chemistry |
Title | Ultrafast hot-carrier cooling in quasi freestanding bilayer graphene with hydrogen intercalated atoms |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36756263 https://www.proquest.com/docview/2774894609 https://pubmed.ncbi.nlm.nih.gov/PMC9846464 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokVAvCASF8KiM4LYKpInzOpbyqED0AF3RWzRObO2KJSlJ9kB_PTOO89KCBGilaBV7442_T-OxPfOZsRcajmOtY88tcHx1RSRjFwJQLg4GMpKgCpFQ7vCn8-hsKT5chpfjDr7JLmnly_z6t3kl_4Mq3kNcKUv2H5AdHoo38Dvii1dEGK9_hfFy09agoWkXq6p1c6jN8XN5VW1spsqPLTSUQqLUkL8i1xtAN3thlKrR0HUrsaufRV1hO0Y-okbcgDxRnJBbMXPrvqItrhosVX3swOCRfzES2N0aM4VnDkCSS-9-hS6C_jOYIP3FsOL8HppvVlD747Zux_jj0xW01-TdGiNW0clKsxUKn-KzXGtUlbFk6ENRpLPdgLFmN5ywy5-YUNEd4bNj2r2AlFELvwQzws7sP8Jy9d2AHOAEiAR2xuFtCDrsi_bYTR_nFP5kaYeGbdKOE3HaS9gG6auxrQN2q__13H_ZmZTsxtbu1f1RMsZlubjDbtu5Bj_piHOX3VDlPaYG0vAJabglDV-X3JCGT0nDLWl4TxpOpOE9afiUNNyQ5j5bvnt7cXrm2rM23DwIU2ytINcRUoEvHpHXh28tQul7eS5AaJ3oKJAqBj8_VrGHtQVIqdKc5PpDkGFwyPbLqlQPGS98EDKPhUZvkw5ySTQl6kJCSn2FzpXDnvc9mF11kiqZCYUI0uyNf35iuvy1w571nZuhxaNtLChVtW0yBE8kqYi81GEPus4entOj5LB4BsNQgdTU5yXlemVU1VP8g_hx2CECNtQfOfDoj409Zgcj7Z-w_bbeqqfoqrbyyCzxHBmi_QJvFJxm |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+hot-carrier+cooling+in+quasi+freestanding+bilayer+graphene+with+hydrogen+intercalated+atoms&rft.jtitle=Nanoscale+advances&rft.au=Sharma%2C+Sachin&rft.au=Myers-Ward%2C+Rachael+L&rft.au=Gaskill%2C+Kurt+D&rft.au=Chatzakis%2C+Ioannis&rft.date=2023-01-18&rft.eissn=2516-0230&rft.volume=5&rft.issue=2&rft.spage=485&rft_id=info:doi/10.1039%2Fd2na00678b&rft_id=info%3Apmid%2F36756263&rft.externalDocID=36756263 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-0230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-0230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-0230&client=summon |