Ultrafast hot-carrier cooling in quasi freestanding bilayer graphene with hydrogen intercalated atoms

Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monol...

Full description

Saved in:
Bibliographic Details
Published inNanoscale advances Vol. 5; no. 2; pp. 485 - 492
Main Authors Sharma, Sachin, Myers-Ward, Rachael L, Gaskill, Kurt D, Chatzakis, Ioannis
Format Journal Article
LanguageEnglish
Published England RSC 18.01.2023
Subjects
Online AccessGet full text
ISSN2516-0230
2516-0230
DOI10.1039/d2na00678b

Cover

Loading…
Abstract Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monolayer graphene, which increase nonlinearly with excitation intensity. The increased relaxation times are due to the decoupling of the graphene layer from the SiC substrate after hydrogen intercalation which increases the distance between graphene and substrate. Furthermore, our measurements show that the supercollision mechanism is not related to the cooling process of the hot carriers, which is ultimately achieved by electron optical phonon scattering. Investigation of the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen intercalation by femtosecond optical pump THz-probe spectroscopy.
AbstractList Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monolayer graphene, which increase nonlinearly with excitation intensity. The increased relaxation times are due to the decoupling of the graphene layer from the SiC substrate after hydrogen intercalation which increases the distance between graphene and substrate. Furthermore, our measurements show that the supercollision mechanism is not related to the cooling process of the hot carriers, which is ultimately achieved by electron optical phonon scattering.
Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monolayer graphene, which increase nonlinearly with excitation intensity. The increased relaxation times are due to the decoupling of the graphene layer from the SiC substrate after hydrogen intercalation which increases the distance between graphene and substrate. Furthermore, our measurements show that the supercollision mechanism is not related to the cooling process of the hot carriers, which is ultimately achieved by electron optical phonon scattering. Investigation of the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen intercalation by femtosecond optical pump THz-probe spectroscopy.
Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monolayer graphene, which increase nonlinearly with excitation intensity. The increased relaxation times are due to the decoupling of the graphene layer from the SiC substrate after hydrogen intercalation which increases the distance between graphene and substrate. Furthermore, our measurements show that the supercollision mechanism is not related to the cooling process of the hot carriers, which is ultimately achieved by electron optical phonon scattering.Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial graphene with hydrogen interacalation. We observe longer decay time constants, in the range of 2.6 to 6.4 ps, compared to previous studies on monolayer graphene, which increase nonlinearly with excitation intensity. The increased relaxation times are due to the decoupling of the graphene layer from the SiC substrate after hydrogen intercalation which increases the distance between graphene and substrate. Furthermore, our measurements show that the supercollision mechanism is not related to the cooling process of the hot carriers, which is ultimately achieved by electron optical phonon scattering.
Author Chatzakis, Ioannis
Sharma, Sachin
Myers-Ward, Rachael L
Gaskill, Kurt D
AuthorAffiliation U.S. Naval Research Laboratory
Texas Tech University Department of Physics & Astronomy
Institute for Research in Electronics and Applied Physics
University of Maryland
AuthorAffiliation_xml – sequence: 0
  name: Texas Tech University Department of Physics & Astronomy
– sequence: 0
  name: Institute for Research in Electronics and Applied Physics
– sequence: 0
  name: U.S. Naval Research Laboratory
– sequence: 0
  name: University of Maryland
Author_xml – sequence: 1
  givenname: Sachin
  surname: Sharma
  fullname: Sharma, Sachin
– sequence: 2
  givenname: Rachael L
  surname: Myers-Ward
  fullname: Myers-Ward, Rachael L
– sequence: 3
  givenname: Kurt D
  surname: Gaskill
  fullname: Gaskill, Kurt D
– sequence: 4
  givenname: Ioannis
  surname: Chatzakis
  fullname: Chatzakis, Ioannis
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36756263$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtPxCAUhYnR-N6413RpTEaBUlo2Jr41MbrRNbmlt1NMB0boaObfi46OGhaQy8c5OZwtsuq8Q0L2GD1mNFcnDXdAqSyreoVs8oLJEeU5Xf1z3iC7Mb5QSjkTQpRqnWzksiwkl_kmwed-CNBCHLLODyMDIVgMmfG-t26cWZe9ziDarA2IcQDXfE5r28M8UeMA0w4dZu926LJu3gQ_RpceDRgM9DBgk8HgJ3GHrLXQR9z93rfJ8_XV08Xt6P7x5u7i7H5k8kIl96YsqAIlUjDJKsZTKlHUnBojQLRt1cq8xhK4YVjSRAuoa1RGSEYLqIt8m5wudKezeoKNQZfC9Xoa7ATCXHuw-v-Ns50e-zetKiHTSgKH3wLBv85SYj2x0WDfg0M_i5qXpaiUkFQl9OCv19Lk528TcLQATPAxBmyXCKP6szt9yR_Ovro7T_D-Ag7RLLnfbvMPns-X-w
Cites_doi 10.1103/PhysRevLett.102.206410
10.1088/2053-1583/aa5c75
10.1021/nl102824h
10.1038/nphys2494
10.1021/nl302321k
10.1088/0022-3727/47/9/094013
10.1103/PhysRevLett.107.237401
10.1103/PhysRevB.86.045413
10.1103/PhysRevB.90.165420
10.1016/j.carbon.2014.09.030
10.1109/LED.2007.891668
10.1103/PhysRevLett.109.106602
10.1103/PhysRevLett.100.125504
10.1063/1.4905192
10.1021/nl202800h
10.1038/nature04233
10.1063/1.2990753
10.1021/nl8019399
10.1103/PhysRevLett.109.056805
10.1103/PhysRevLett.108.167401
10.1126/sciadv.aar5313
10.1103/PhysRevB.80.245435
10.1103/PhysRevLett.101.196405
10.1103/PhysRevLett.111.027403
10.1103/PhysRevB.83.205411
10.1063/1.4899142
10.1038/nature09405
10.1103/PhysRevB.81.195442
10.1021/nn300989g
10.1021/acsnano.0c10864
10.1021/nl502163d
10.1021/nl303988q
10.1038/nature04235
10.1063/1.3643034
10.1038/nmat3757
10.1063/1.2837539
10.1103/PhysRevB.81.245404
10.1039/D0NR09166A
10.1103/PhysRevLett.114.107402
10.1038/nphoton.2010.186
10.1038/nphys2564
10.1016/j.carbon.2019.08.019
10.1038/ncomms9105
10.1103/PhysRevB.84.125449
10.1103/PhysRevLett.104.136802
10.1103/PhysRevLett.108.246104
10.1016/j.ssc.2008.02.024
10.1126/science.1184289
10.1021/acs.jpcc.1c07783
10.1126/science.1156965
10.1038/nphys2493
10.1021/nn203506n
10.1063/1.3224887
10.1038/nnano.2011.146
10.1103/PhysRevLett.95.187403
10.1103/PhysRevLett.103.246804
10.1021/nl404826r
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2023 RSC
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2023 RSC
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1039/d2na00678b
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2516-0230
EndPage 492
ExternalDocumentID PMC9846464
36756263
10_1039_D2NA00678B
d2na00678b
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: Unassigned
GroupedDBID AAFWJ
ADBBV
ALMA_UNASSIGNED_HOLDINGS
ANUXI
BCNDV
C6K
EBS
GROUPED_DOAJ
H13
M~E
OK1
RPM
SMJ
AAYXX
AFPKN
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c359t-cd7509a940396181278b45b20cc4a4ff8f63be7a2c1e70cd74abbe9c46105ab53
ISSN 2516-0230
IngestDate Thu Aug 21 18:38:53 EDT 2025
Thu Jul 10 21:55:57 EDT 2025
Thu Jan 02 22:55:00 EST 2025
Tue Jul 01 04:28:18 EDT 2025
Tue Dec 17 20:59:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-cd7509a940396181278b45b20cc4a4ff8f63be7a2c1e70cd74abbe9c46105ab53
Notes https://doi.org/10.1039/d2na00678b
Electronic supplementary information (ESI) available: Details on the supercollision model. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3568-2174
OpenAccessLink http://dx.doi.org/10.1039/d2na00678b
PMID 36756263
PQID 2774894609
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9846464
crossref_primary_10_1039_D2NA00678B
rsc_primary_d2na00678b
proquest_miscellaneous_2774894609
pubmed_primary_36756263
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-18
PublicationDateYYYYMMDD 2023-01-18
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-18
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nanoscale advances
PublicationTitleAlternate Nanoscale Adv
PublicationYear 2023
Publisher RSC
Publisher_xml – name: RSC
References Lemme (D2NA00678B/cit10/1) 2007; 28
Ju (D2NA00678B/cit13/1) 2011; 6
Li (D2NA00678B/cit37/1) 2012; 108
Tielrooij (D2NA00678B/cit46/1) 2013; 9
Forti (D2NA00678B/cit49/1) 2014; 47
Shi (D2NA00678B/cit16/1) 2014; 14
Winnerl (D2NA00678B/cit47/1) 2013; 25
Tomadin (D2NA00678B/cit17/1) 2018; 4
Alencar (D2NA00678B/cit43/1) 2014; 14
Forti (D2NA00678B/cit51/1) 2011; 84
Jablan (D2NA00678B/cit11/1) 2009; 80
Mihnev (D2NA00678B/cit25/1) 2015; 6
Jnawali (D2NA00678B/cit18/1) 2013; 13
Bao (D2NA00678B/cit15/1) 2012; 6
Tedesco (D2NA00678B/cit54/1) 2009; 95
George (D2NA00678B/cit19/1) 2008; 8
Ristein (D2NA00678B/cit53/1) 2012; 108
Winnerl (D2NA00678B/cit30/1) 2011; 107
Luo (D2NA00678B/cit23/1) 2015; 114
Sun (D2NA00678B/cit32/1) 2010; 104
Pogna (D2NA00678B/cit56/1) 2021; 15
Chatzakis (D2NA00678B/cit39/1) 2011; 83
Emery (D2NA00678B/cit48/1) 2014; 105
Song (D2NA00678B/cit27/1) 2012; 109
El Fatimy (D2NA00678B/cit44/1) 2019; 154
Viljas (D2NA00678B/cit57/1) 2010; 81
Strait (D2NA00678B/cit38/1) 2011; 11
Novoselov (D2NA00678B/cit1/1) 2005; 438
Bolotin (D2NA00678B/cit3/1) 2008; 146
Liao (D2NA00678B/cit14/1) 2010; 467
Graham (D2NA00678B/cit42/1) 2013; 9
Dawlaty (D2NA00678B/cit34/1) 2008; 3
Dawlaty (D2NA00678B/cit8/1) 2008; 93
Bonaccorso (D2NA00678B/cit4/1) 2010; 4
Yan (D2NA00678B/cit9/1) 2011; 5
Hass (D2NA00678B/cit52/1) 2008; 100
Gierz (D2NA00678B/cit33/1) 2013; 12
Betz (D2NA00678B/cit40/1) 2012; 109
Zhang (D2NA00678B/cit2/1) 2005; 438
Jia (D2NA00678B/cit21/1) 2021; 125
Bistritzer (D2NA00678B/cit26/1) 2009; 102
Johannsen (D2NA00678B/cit28/1) 2013; 111
Speck (D2NA00678B/cit55/1) 2011; 99
Low (D2NA00678B/cit29/1) 2012; 86
Kar (D2NA00678B/cit22/1) 2014; 80
Kampfrath (D2NA00678B/cit24/1) 2005; 95
Betz (D2NA00678B/cit41/1) 2013; 9
Heyman (D2NA00678B/cit31/1) 2015; 117
Daniels (D2NA00678B/cit58/1) 2017; 4
Nair (D2NA00678B/cit7/1) 2008; 320
Avouris (D2NA00678B/cit5/1) 2010; 10
Amer (D2NA00678B/cit35/1) 2012; 12
Massicotte (D2NA00678B/cit36/1) 2021; 13
Perebeinos (D2NA00678B/cit45/1) 2010; 81
Kar (D2NA00678B/cit20/1) 2014; 90
Mak (D2NA00678B/cit6/1) 2008; 101
Lin (D2NA00678B/cit12/1) 2010; 327
Riedl (D2NA00678B/cit50/1) 2009; 103
References_xml – volume: 102
  start-page: 206410
  year: 2009
  ident: D2NA00678B/cit26/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.206410
– volume: 4
  start-page: 025034
  year: 2017
  ident: D2NA00678B/cit58/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa5c75
– volume: 10
  start-page: 4285
  year: 2010
  ident: D2NA00678B/cit5/1
  publication-title: Nano Lett.
  doi: 10.1021/nl102824h
– volume: 9
  start-page: 109
  year: 2013
  ident: D2NA00678B/cit41/1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2494
– volume: 12
  start-page: 4843
  year: 2012
  ident: D2NA00678B/cit35/1
  publication-title: Nano Lett.
  doi: 10.1021/nl302321k
– volume: 47
  start-page: 094013
  year: 2014
  ident: D2NA00678B/cit49/1
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/9/094013
– volume: 107
  start-page: 237401
  year: 2011
  ident: D2NA00678B/cit30/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.237401
– volume: 86
  start-page: 045413
  year: 2012
  ident: D2NA00678B/cit29/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.86.045413
– volume: 90
  start-page: 165420
  year: 2014
  ident: D2NA00678B/cit20/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.90.165420
– volume: 80
  start-page: 762
  year: 2014
  ident: D2NA00678B/cit22/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.09.030
– volume: 28
  start-page: 282
  year: 2007
  ident: D2NA00678B/cit10/1
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2007.891668
– volume: 109
  start-page: 106602
  year: 2012
  ident: D2NA00678B/cit27/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.106602
– volume: 100
  start-page: 125504
  year: 2008
  ident: D2NA00678B/cit52/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.125504
– volume: 117
  start-page: 015101
  year: 2015
  ident: D2NA00678B/cit31/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4905192
– volume: 11
  start-page: 4902
  year: 2011
  ident: D2NA00678B/cit38/1
  publication-title: Nano Lett.
  doi: 10.1021/nl202800h
– volume: 438
  start-page: 197
  year: 2005
  ident: D2NA00678B/cit1/1
  publication-title: Nature
  doi: 10.1038/nature04233
– volume: 93
  start-page: 131905
  year: 2008
  ident: D2NA00678B/cit8/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2990753
– volume: 8
  start-page: 4248
  year: 2008
  ident: D2NA00678B/cit19/1
  publication-title: Nano Lett.
  doi: 10.1021/nl8019399
– volume: 109
  start-page: 056805
  year: 2012
  ident: D2NA00678B/cit40/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.056805
– volume: 108
  start-page: 167401
  year: 2012
  ident: D2NA00678B/cit37/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.167401
– volume: 4
  start-page: eaar5313
  year: 2018
  ident: D2NA00678B/cit17/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar5313
– volume: 80
  start-page: 245435
  year: 2009
  ident: D2NA00678B/cit11/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.80.245435
– volume: 101
  start-page: 196405
  year: 2008
  ident: D2NA00678B/cit6/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.196405
– volume: 111
  start-page: 027403
  year: 2013
  ident: D2NA00678B/cit28/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.027403
– volume: 83
  start-page: 205411
  year: 2011
  ident: D2NA00678B/cit39/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.83.205411
– volume: 105
  start-page: 161602
  year: 2014
  ident: D2NA00678B/cit48/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4899142
– volume: 467
  start-page: 305
  year: 2010
  ident: D2NA00678B/cit14/1
  publication-title: Nature
  doi: 10.1038/nature09405
– volume: 81
  start-page: 195442
  year: 2010
  ident: D2NA00678B/cit45/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.195442
– volume: 6
  start-page: 3677
  year: 2012
  ident: D2NA00678B/cit15/1
  publication-title: ACS Nano
  doi: 10.1021/nn300989g
– volume: 15
  start-page: 11285
  year: 2021
  ident: D2NA00678B/cit56/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10864
– volume: 14
  start-page: 5621
  year: 2014
  ident: D2NA00678B/cit43/1
  publication-title: Nano Lett.
  doi: 10.1021/nl502163d
– volume: 13
  start-page: 524
  year: 2013
  ident: D2NA00678B/cit18/1
  publication-title: Nano Lett.
  doi: 10.1021/nl303988q
– volume: 25
  start-page: 054202
  year: 2013
  ident: D2NA00678B/cit47/1
  publication-title: J. Phys.: Condens. Matter
– volume: 438
  start-page: 201
  year: 2005
  ident: D2NA00678B/cit2/1
  publication-title: Nature
  doi: 10.1038/nature04235
– volume: 99
  start-page: 122106
  year: 2011
  ident: D2NA00678B/cit55/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3643034
– volume: 12
  start-page: 1119
  year: 2013
  ident: D2NA00678B/cit33/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3757
– volume: 3
  start-page: 042116
  year: 2008
  ident: D2NA00678B/cit34/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2837539
– volume: 81
  start-page: 245404
  year: 2010
  ident: D2NA00678B/cit57/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.81.245404
– volume: 13
  start-page: 8376
  year: 2021
  ident: D2NA00678B/cit36/1
  publication-title: Nanoscale
  doi: 10.1039/D0NR09166A
– volume: 114
  start-page: 107402
  year: 2015
  ident: D2NA00678B/cit23/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.107402
– volume: 4
  start-page: 611
  year: 2010
  ident: D2NA00678B/cit4/1
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2010.186
– volume: 9
  start-page: 248
  year: 2013
  ident: D2NA00678B/cit46/1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2564
– volume: 154
  start-page: 497
  year: 2019
  ident: D2NA00678B/cit44/1
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.08.019
– volume: 6
  start-page: 8105
  year: 2015
  ident: D2NA00678B/cit25/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9105
– volume: 84
  start-page: 125449
  year: 2011
  ident: D2NA00678B/cit51/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.84.125449
– volume: 104
  start-page: 136802
  year: 2010
  ident: D2NA00678B/cit32/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.136802
– volume: 108
  start-page: 246104
  year: 2012
  ident: D2NA00678B/cit53/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.246104
– volume: 146
  start-page: 351
  year: 2008
  ident: D2NA00678B/cit3/1
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2008.02.024
– volume: 327
  start-page: 662
  year: 2010
  ident: D2NA00678B/cit12/1
  publication-title: Science
  doi: 10.1126/science.1184289
– volume: 125
  start-page: 27283
  year: 2021
  ident: D2NA00678B/cit21/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c07783
– volume: 320
  start-page: 1308
  year: 2008
  ident: D2NA00678B/cit7/1
  publication-title: Science
  doi: 10.1126/science.1156965
– volume: 9
  start-page: 103
  year: 2013
  ident: D2NA00678B/cit42/1
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2493
– volume: 5
  start-page: 9854
  year: 2011
  ident: D2NA00678B/cit9/1
  publication-title: ACS Nano
  doi: 10.1021/nn203506n
– volume: 95
  start-page: 122102
  year: 2009
  ident: D2NA00678B/cit54/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3224887
– volume: 6
  start-page: 630
  year: 2011
  ident: D2NA00678B/cit13/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.146
– volume: 95
  start-page: 187403
  year: 2005
  ident: D2NA00678B/cit24/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.187403
– volume: 103
  start-page: 246804
  year: 2009
  ident: D2NA00678B/cit50/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.246804
– volume: 14
  start-page: 1578
  year: 2014
  ident: D2NA00678B/cit16/1
  publication-title: Nano Lett.
  doi: 10.1021/nl404826r
SSID ssj0002144479
Score 2.2080112
Snippet Femtosecond-THz optical pump probe spectroscopy is employed to investigate the cooling dynamics of hot carriers in quasi-free standing bilayer epitaxial...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 485
SubjectTerms Chemistry
Title Ultrafast hot-carrier cooling in quasi freestanding bilayer graphene with hydrogen intercalated atoms
URI https://www.ncbi.nlm.nih.gov/pubmed/36756263
https://www.proquest.com/docview/2774894609
https://pubmed.ncbi.nlm.nih.gov/PMC9846464
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokVAvCASF8KiM4LYKpInzOpbyqED0AF3RWzRObO2KJSlJ9kB_PTOO89KCBGilaBV7442_T-OxPfOZsRcajmOtY88tcHx1RSRjFwJQLg4GMpKgCpFQ7vCn8-hsKT5chpfjDr7JLmnly_z6t3kl_4Mq3kNcKUv2H5AdHoo38Dvii1dEGK9_hfFy09agoWkXq6p1c6jN8XN5VW1spsqPLTSUQqLUkL8i1xtAN3thlKrR0HUrsaufRV1hO0Y-okbcgDxRnJBbMXPrvqItrhosVX3swOCRfzES2N0aM4VnDkCSS-9-hS6C_jOYIP3FsOL8HppvVlD747Zux_jj0xW01-TdGiNW0clKsxUKn-KzXGtUlbFk6ENRpLPdgLFmN5ywy5-YUNEd4bNj2r2AlFELvwQzws7sP8Jy9d2AHOAEiAR2xuFtCDrsi_bYTR_nFP5kaYeGbdKOE3HaS9gG6auxrQN2q__13H_ZmZTsxtbu1f1RMsZlubjDbtu5Bj_piHOX3VDlPaYG0vAJabglDV-X3JCGT0nDLWl4TxpOpOE9afiUNNyQ5j5bvnt7cXrm2rM23DwIU2ytINcRUoEvHpHXh28tQul7eS5AaJ3oKJAqBj8_VrGHtQVIqdKc5PpDkGFwyPbLqlQPGS98EDKPhUZvkw5ySTQl6kJCSn2FzpXDnvc9mF11kiqZCYUI0uyNf35iuvy1w571nZuhxaNtLChVtW0yBE8kqYi81GEPus4entOj5LB4BsNQgdTU5yXlemVU1VP8g_hx2CECNtQfOfDoj409Zgcj7Z-w_bbeqqfoqrbyyCzxHBmi_QJvFJxm
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+hot-carrier+cooling+in+quasi+freestanding+bilayer+graphene+with+hydrogen+intercalated+atoms&rft.jtitle=Nanoscale+advances&rft.au=Sharma%2C+Sachin&rft.au=Myers-Ward%2C+Rachael+L&rft.au=Gaskill%2C+Kurt+D&rft.au=Chatzakis%2C+Ioannis&rft.date=2023-01-18&rft.eissn=2516-0230&rft.volume=5&rft.issue=2&rft.spage=485&rft_id=info:doi/10.1039%2Fd2na00678b&rft_id=info%3Apmid%2F36756263&rft.externalDocID=36756263
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-0230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-0230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-0230&client=summon