WiAct: A Passive WiFi-Based Human Activity Recognition System

Nowadays, human behavior recognition research plays a pivotal role in the field of human-computer interaction. However, comprehensive approaches mainly rely on video camera, ambient sensors or wearable devices, which either require arduous deployment or arouse privacy concerns. In this paper, we pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE sensors journal Vol. 20; no. 1; pp. 296 - 305
Main Authors Yan, Huan, Zhang, Yong, Wang, Yujie, Xu, Kangle
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nowadays, human behavior recognition research plays a pivotal role in the field of human-computer interaction. However, comprehensive approaches mainly rely on video camera, ambient sensors or wearable devices, which either require arduous deployment or arouse privacy concerns. In this paper, we propose WiAct, a passive WiFibased human activity recognition system, which explores the correlations between body movement and the amplitude information in Channel State Information (CSI) to classify different activities. The system designs a novel Adaptive Activity Cutting Algorithm (AACA) based on the difference in signal variance between the action and non-action parts, which adjusts the threshold adaptively to achieve the best trade-off between performance and robustness. The Doppler shift correlation value is used as classification features, which is extracted by using the correlation of the WiFi device's antennas. Extreme Learning Machine (ELM) is utilized for activity data classification because of its strong generalization ability and fast learning speed. We implement the WiAct prototype using commercial WiFi equipment and evaluate its performance in real-world environments. In the evaluation, WiAct achieves an average accuracy of 94.2% for distinguishing ten actions. We compare different experimental conditions and classification methods, and the results demonstrate its robustness.
AbstractList Nowadays, human behavior recognition research plays a pivotal role in the field of human-computer interaction. However, comprehensive approaches mainly rely on video camera, ambient sensors or wearable devices, which either require arduous deployment or arouse privacy concerns. In this paper, we propose WiAct, a passive WiFibased human activity recognition system, which explores the correlations between body movement and the amplitude information in Channel State Information (CSI) to classify different activities. The system designs a novel Adaptive Activity Cutting Algorithm (AACA) based on the difference in signal variance between the action and non-action parts, which adjusts the threshold adaptively to achieve the best trade-off between performance and robustness. The Doppler shift correlation value is used as classification features, which is extracted by using the correlation of the WiFi device's antennas. Extreme Learning Machine (ELM) is utilized for activity data classification because of its strong generalization ability and fast learning speed. We implement the WiAct prototype using commercial WiFi equipment and evaluate its performance in real-world environments. In the evaluation, WiAct achieves an average accuracy of 94.2% for distinguishing ten actions. We compare different experimental conditions and classification methods, and the results demonstrate its robustness.
Nowadays, human behavior recognition research plays a pivotal role in the field of human-computer interaction. However, comprehensive approaches mainly rely on video camera, ambient sensors or wearable devices, which either require arduous deployment or arouse privacy concerns. In this paper, we propose WiAct, a passive WiFi-based human activity recognition system, which explores the correlations between body movement and the amplitude information in Channel State Information (CSI) to classify different activities. The system designs a novel Adaptive Activity Cutting Algorithm (AACA) based on the difference in signal variance between the action and non-action parts, which adjusts the threshold adaptively to achieve the best trade-off between performance and robustness. The Doppler shift correlation value is used as classification features, which is extracted by using the correlation of the WiFi device’s antennas. Extreme Learning Machine (ELM) is utilized for activity data classification because of its strong generalization ability and fast learning speed. We implement the WiAct prototype using commercial WiFi equipment and evaluate its performance in real-world environments. In the evaluation, WiAct achieves an average accuracy of 94.2% for distinguishing ten actions. We compare different experimental conditions and classification methods, and the results demonstrate its robustness.
Author Yan, Huan
Wang, Yujie
Zhang, Yong
Xu, Kangle
Author_xml – sequence: 1
  givenname: Huan
  surname: Yan
  fullname: Yan, Huan
  email: 1020021278@qq.com
  organization: School of Computer and Information, Hefei University of Technology, Hefei, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0003-1125-7787
  surname: Zhang
  fullname: Zhang, Yong
  email: yongzhang@hfut.edu.cn
  organization: School of Computer and Information, Hefei University of Technology, Hefei, China
– sequence: 3
  givenname: Yujie
  orcidid: 0000-0002-8654-2622
  surname: Wang
  fullname: Wang, Yujie
  email: wjiejie@hfut.edu.cn
  organization: School of Computer and Information, Hefei University of Technology, Hefei, China
– sequence: 4
  givenname: Kangle
  surname: Xu
  fullname: Xu, Kangle
  email: 1099940239@qq.com
  organization: School of Computer and Information, Hefei University of Technology, Hefei, China
BookMark eNp9kE1LAzEQhoNUsK3-APGy4HlrPjabRPBQS2uVomKVegtJNisp7W5N0kL_vbu0ePDgaQbmeWeGpwc6VV1ZAC4RHCAExc3TfPw8wBCJARaE44yegC6ilKeIZbzT9gSmGWGfZ6AXwhI2JKOsC-4WbmjibTJMXlUIbmeThZu49F4FWyTT7VpVSTN3Oxf3yZs19VfloqurZL4P0a7PwWmpVsFeHGsffEzG76NpOnt5eBwNZ6khVMTUGJwjqnDJSM4gKpnAKLOcU0OJgIwXmhitRc5QqQtdKFNYJDSlSjGtoNGkD64Peze-_t7aEOWy3vqqOSkxIaTZkgneUOxAGV-H4G0pjYuqfTd65VYSQdm6kq0r2bqSR1dNEv1JbrxbK7__N3N1yDhr7S_POYYQ5uQH_Tl1ww
CODEN ISJEAZ
CitedBy_id crossref_primary_10_1109_JSEN_2022_3146137
crossref_primary_10_3390_s22093125
crossref_primary_10_1007_s00521_021_06787_w
crossref_primary_10_1109_ACCESS_2020_3012021
crossref_primary_10_1155_2022_1940218
crossref_primary_10_1155_2022_7353080
crossref_primary_10_1109_THMS_2022_3188726
crossref_primary_10_3390_s23010356
crossref_primary_10_1109_ACCESS_2022_3177273
crossref_primary_10_1016_j_matpr_2022_03_071
crossref_primary_10_61186_itrc_15_2_42
crossref_primary_10_1109_JIOT_2020_3033173
crossref_primary_10_1111_exsy_13256
crossref_primary_10_1016_j_compbiomed_2023_106835
crossref_primary_10_1109_JSYST_2022_3218831
crossref_primary_10_1109_JSEN_2020_3032558
crossref_primary_10_1109_ACCESS_2024_3443231
crossref_primary_10_1109_ACCESS_2022_3155124
crossref_primary_10_1109_OJIM_2024_3502885
crossref_primary_10_1007_s11277_023_10258_x
crossref_primary_10_1109_JIOT_2024_3454223
crossref_primary_10_1109_ACCESS_2021_3071228
crossref_primary_10_1109_LCOMM_2021_3058420
crossref_primary_10_3390_s20061638
crossref_primary_10_3390_s21248404
crossref_primary_10_1109_ACCESS_2021_3134794
crossref_primary_10_3390_s24030862
crossref_primary_10_1016_j_neunet_2021_11_011
crossref_primary_10_1109_JSEN_2024_3486008
crossref_primary_10_1109_JIOT_2023_3234600
crossref_primary_10_1109_JSEN_2021_3114206
crossref_primary_10_3390_s24072111
crossref_primary_10_1109_IOTM_001_2200199
crossref_primary_10_1109_ACCESS_2019_2954651
crossref_primary_10_1109_TBCAS_2022_3229435
crossref_primary_10_3390_su15043342
crossref_primary_10_1007_s10462_021_10116_x
crossref_primary_10_1109_JSEN_2022_3204607
crossref_primary_10_1109_JSEN_2023_3261325
crossref_primary_10_1007_s00530_024_01586_4
crossref_primary_10_3390_electronics13020264
crossref_primary_10_1016_j_jnca_2020_102738
crossref_primary_10_1145_3610930
crossref_primary_10_1109_ACCESS_2022_3222381
crossref_primary_10_30939_ijastech__1431379
crossref_primary_10_1145_3689373
crossref_primary_10_1007_s12243_021_00865_9
crossref_primary_10_3390_su13094859
crossref_primary_10_1109_JSEN_2024_3476346
crossref_primary_10_1109_JSEN_2020_3028561
crossref_primary_10_3390_s25051547
crossref_primary_10_3390_inventions9040090
crossref_primary_10_3390_s22124447
crossref_primary_10_1155_2022_5885475
crossref_primary_10_1109_TMC_2022_3199015
crossref_primary_10_2478_msr_2022_0024
crossref_primary_10_3233_MGS_220328
crossref_primary_10_3390_electronics11162607
crossref_primary_10_1007_s11277_022_10029_0
crossref_primary_10_1109_ACCESS_2024_3457571
crossref_primary_10_1088_1361_6501_ac7779
crossref_primary_10_1109_JIOT_2023_3307155
crossref_primary_10_1145_3632177
crossref_primary_10_1109_JIOT_2024_3470321
crossref_primary_10_1155_2022_4598460
crossref_primary_10_1111_exsy_13680
crossref_primary_10_3390_app13158884
crossref_primary_10_1109_JIOT_2020_2999210
crossref_primary_10_1007_s11042_024_18906_5
crossref_primary_10_1007_s11042_025_20650_3
crossref_primary_10_1109_THMS_2023_3264247
crossref_primary_10_1109_JIOT_2023_3317670
crossref_primary_10_1109_TAES_2023_3276738
crossref_primary_10_3390_s22166018
Cites_doi 10.1109/MIS.2015.18
10.1109/TVT.2017.2737553
10.1109/JIOT.2016.2558659
10.1109/CVPR.2011.5995316
10.1155/2018/6163475
10.1109/MCOM.2017.1700082
10.1145/2789168.2790093
10.1109/JSEN.2017.2772798
10.1109/TVT.2016.2635161
10.1016/j.neucom.2005.12.126
10.1109/TMC.2015.2504935
10.1109/JIOT.2018.2822818
10.1109/ICCNC.2018.8390335
10.1145/2971648.2971738
10.1109/TVT.2018.2878754
10.1109/RTSS.2014.30
10.1109/INFOCOM.2016.7524399
10.1016/j.neucom.2011.12.055
10.1109/JIOT.2018.2849655
10.1109/TII.2017.2712746
10.1109/CVPR.2015.7299059
10.1145/2370216.2370269
10.1109/GlobalSIP.2017.8308660
10.1109/TMC.2016.2557792
10.1109/TII.2016.2587761
10.1145/1963564.1963615
10.1145/3117811.3131266
10.1145/2639108.2639143
10.1145/1851182.1851203
10.1109/JIOT.2015.2511805
10.1109/TAFFC.2014.2339834
10.1145/3025453.3025678
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSEN.2019.2938245
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1558-1748
EndPage 305
ExternalDocumentID 10_1109_JSEN_2019_2938245
8820006
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61801162
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TWZ
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c359t-cc2615a2f736701f79214e885c539078db3cbb9671fbdbdacde19b55aa7ba0cb3
IEDL.DBID RIE
ISSN 1530-437X
IngestDate Mon Jun 30 10:11:47 EDT 2025
Thu Apr 24 23:06:51 EDT 2025
Tue Jul 01 03:36:50 EDT 2025
Wed Aug 27 02:35:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-cc2615a2f736701f79214e885c539078db3cbb9671fbdbdacde19b55aa7ba0cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8654-2622
0000-0003-1125-7787
PQID 2333539498
PQPubID 75733
PageCount 10
ParticipantIDs ieee_primary_8820006
crossref_citationtrail_10_1109_JSEN_2019_2938245
crossref_primary_10_1109_JSEN_2019_2938245
proquest_journals_2333539498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.1,-1
2020-1-1
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.1,-1
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE sensors journal
PublicationTitleAbbrev JSEN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
pu (ref24) 2013
References_xml – ident: ref6
  doi: 10.1109/MIS.2015.18
– ident: ref29
  doi: 10.1109/TVT.2017.2737553
– ident: ref13
  doi: 10.1109/JIOT.2016.2558659
– ident: ref3
  doi: 10.1109/CVPR.2011.5995316
– ident: ref32
  doi: 10.1155/2018/6163475
– ident: ref27
  doi: 10.1109/MCOM.2017.1700082
– ident: ref18
  doi: 10.1145/2789168.2790093
– ident: ref12
  doi: 10.1109/JSEN.2017.2772798
– ident: ref28
  doi: 10.1109/TVT.2016.2635161
– ident: ref30
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref16
  doi: 10.1109/TMC.2015.2504935
– ident: ref15
  doi: 10.1109/JIOT.2018.2822818
– ident: ref9
  doi: 10.1109/ICCNC.2018.8390335
– ident: ref21
  doi: 10.1145/2971648.2971738
– ident: ref22
  doi: 10.1109/TVT.2018.2878754
– ident: ref14
  doi: 10.1109/RTSS.2014.30
– ident: ref1
  doi: 10.1109/INFOCOM.2016.7524399
– ident: ref31
  doi: 10.1016/j.neucom.2011.12.055
– ident: ref23
  doi: 10.1109/JIOT.2018.2849655
– ident: ref10
  doi: 10.1109/TII.2017.2712746
– ident: ref5
  doi: 10.1109/CVPR.2015.7299059
– ident: ref7
  doi: 10.1145/2370216.2370269
– ident: ref33
  doi: 10.1109/GlobalSIP.2017.8308660
– ident: ref20
  doi: 10.1109/TMC.2016.2557792
– ident: ref11
  doi: 10.1109/TII.2016.2587761
– ident: ref4
  doi: 10.1145/1963564.1963615
– ident: ref2
  doi: 10.1145/3117811.3131266
– start-page: 27
  year: 2013
  ident: ref24
  article-title: Whole-home gesture recognition using wireless signals
  publication-title: Proc 19th Int Conf Mobile Comput Netw
– ident: ref19
  doi: 10.1145/2639108.2639143
– ident: ref26
  doi: 10.1145/1851182.1851203
– ident: ref17
  doi: 10.1109/JIOT.2015.2511805
– ident: ref8
  doi: 10.1109/TAFFC.2014.2339834
– ident: ref25
  doi: 10.1145/3025453.3025678
SSID ssj0019757
Score 2.5498564
Snippet Nowadays, human behavior recognition research plays a pivotal role in the field of human-computer interaction. However, comprehensive approaches mainly rely on...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 296
SubjectTerms activity data cutting
Activity recognition
Adaptive algorithms
Adaptive systems
Artificial neural networks
channel state information
Classification
Correlation
Data mining
Doppler effect
extreme learning machine
Feature extraction
Human activity recognition
Human behavior
Human motion recognition
human-computer interaction
Performance evaluation
Robustness
Wearable technology
Wireless communication
Wireless fidelity
Title WiAct: A Passive WiFi-Based Human Activity Recognition System
URI https://ieeexplore.ieee.org/document/8820006
https://www.proquest.com/docview/2333539498
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ui3rwURXrixw8iam7m30k3lZpKQVF1GJvSzJJUZRWdHvQX2-S3ZaiIt72kEB2Jpn3fANwHKIQUsuEImeSxmIYUGH9HWo1bSpQyCjUrhv56jrt9uPeIBkswOmsF8YY44vPTMt9-ly-HuPEhcrOrDUYeHztReu4Vb1as4yByDyqp33AAY1ZNqgzmGEgznp37WtXxCVaVrfxyHUuzekgP1TlhyT26qWzDlfTg1VVJc-tSala-PkNs_G_J9-AtdrOJHl1MTZhwYwasDqHPtiA5XoA-uPHFlgxkmN5TnJyY61pKwHJw1PniV5YHaeJD_STHKtBE-R2WnM0HpEK8Hwb-p32_WWX1pMVKLJElBTROk6JjIaZw28Lh5mIwthwnmDCrLfMtWKolEizcKi00hK1CYVKEikzJQNUbAeWRuOR2QWiOdPWSMlMFqNL4nJjhAowjUOTam54E4IprQusYcfd9IuXwrsfgSgcewrHnqJmTxNOZlteK8yNvxZvOXLPFtaUbsLBlKFF_Srfi4gxZn8wFnzv9137sBI5f9qHWA5gqXybmENrdJTqyN-2L0U-0OQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-q4MB2GINuooMNH3aa5jaJ48TerUOtCrTVtLVab5H97ArE1CKWHuCvx3bSqhoT4paDLTnv2e_7_R7A5xilVEZxioIpmsp5RKXzd6jTtJlEqZLY-G7k0TgbTNOLGZ814OumF8ZaG4rPbNt_hly-WeLKh8o6zhqMAr72rtP7PKm6tTY5A5kHXE_3hCOasnxW5zDjSHYufvXGvoxLtp12E4nvXdrSQmGsyhNZHBRMfx9G66NVdSU37VWp2_jwD2rjS8_-Ft7UlibpVlfjABp2cQivt_AHD2GvHoF-dd8EJ0i6WH4jXfLD2dNOBpLf1_1r-t1pOUNCqJ90sRo1QX6uq46WC1JBnr-Dab83ORvQerYCRcZlSRGd68RVMs89gls8z2USp1YIjpw5f1kYzVBrmeXxXBttFBobS825UrlWEWr2HnYWy4U9AmIEM85MyW2eok_jCmuljjBLY5sZYUULojWtC6yBx_38iz9FcEAiWXj2FJ49Rc2eFnzZbLmtUDeeW9z05N4srCndgpM1Q4v6Xf4tEsaY-8FUig__33UKe4PJaFgMz8eXx_Aq8d51CLicwE55t7IfnQlS6k_h5j0CWzrULg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WiAct%3A+A+Passive+WiFi-Based+Human+Activity+Recognition+System&rft.jtitle=IEEE+sensors+journal&rft.au=Yan%2C+Huan&rft.au=Zhang%2C+Yong&rft.au=Wang%2C+Yujie&rft.au=Xu%2C+Kangle&rft.date=2020-01-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=20&rft.issue=1&rft.spage=296&rft.epage=305&rft_id=info:doi/10.1109%2FJSEN.2019.2938245&rft.externalDocID=8820006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon