WiAct: A Passive WiFi-Based Human Activity Recognition System
Nowadays, human behavior recognition research plays a pivotal role in the field of human-computer interaction. However, comprehensive approaches mainly rely on video camera, ambient sensors or wearable devices, which either require arduous deployment or arouse privacy concerns. In this paper, we pro...
Saved in:
Published in | IEEE sensors journal Vol. 20; no. 1; pp. 296 - 305 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nowadays, human behavior recognition research plays a pivotal role in the field of human-computer interaction. However, comprehensive approaches mainly rely on video camera, ambient sensors or wearable devices, which either require arduous deployment or arouse privacy concerns. In this paper, we propose WiAct, a passive WiFibased human activity recognition system, which explores the correlations between body movement and the amplitude information in Channel State Information (CSI) to classify different activities. The system designs a novel Adaptive Activity Cutting Algorithm (AACA) based on the difference in signal variance between the action and non-action parts, which adjusts the threshold adaptively to achieve the best trade-off between performance and robustness. The Doppler shift correlation value is used as classification features, which is extracted by using the correlation of the WiFi device's antennas. Extreme Learning Machine (ELM) is utilized for activity data classification because of its strong generalization ability and fast learning speed. We implement the WiAct prototype using commercial WiFi equipment and evaluate its performance in real-world environments. In the evaluation, WiAct achieves an average accuracy of 94.2% for distinguishing ten actions. We compare different experimental conditions and classification methods, and the results demonstrate its robustness. |
---|---|
AbstractList | Nowadays, human behavior recognition research plays a pivotal role in the field of human-computer interaction. However, comprehensive approaches mainly rely on video camera, ambient sensors or wearable devices, which either require arduous deployment or arouse privacy concerns. In this paper, we propose WiAct, a passive WiFibased human activity recognition system, which explores the correlations between body movement and the amplitude information in Channel State Information (CSI) to classify different activities. The system designs a novel Adaptive Activity Cutting Algorithm (AACA) based on the difference in signal variance between the action and non-action parts, which adjusts the threshold adaptively to achieve the best trade-off between performance and robustness. The Doppler shift correlation value is used as classification features, which is extracted by using the correlation of the WiFi device's antennas. Extreme Learning Machine (ELM) is utilized for activity data classification because of its strong generalization ability and fast learning speed. We implement the WiAct prototype using commercial WiFi equipment and evaluate its performance in real-world environments. In the evaluation, WiAct achieves an average accuracy of 94.2% for distinguishing ten actions. We compare different experimental conditions and classification methods, and the results demonstrate its robustness. Nowadays, human behavior recognition research plays a pivotal role in the field of human-computer interaction. However, comprehensive approaches mainly rely on video camera, ambient sensors or wearable devices, which either require arduous deployment or arouse privacy concerns. In this paper, we propose WiAct, a passive WiFi-based human activity recognition system, which explores the correlations between body movement and the amplitude information in Channel State Information (CSI) to classify different activities. The system designs a novel Adaptive Activity Cutting Algorithm (AACA) based on the difference in signal variance between the action and non-action parts, which adjusts the threshold adaptively to achieve the best trade-off between performance and robustness. The Doppler shift correlation value is used as classification features, which is extracted by using the correlation of the WiFi device’s antennas. Extreme Learning Machine (ELM) is utilized for activity data classification because of its strong generalization ability and fast learning speed. We implement the WiAct prototype using commercial WiFi equipment and evaluate its performance in real-world environments. In the evaluation, WiAct achieves an average accuracy of 94.2% for distinguishing ten actions. We compare different experimental conditions and classification methods, and the results demonstrate its robustness. |
Author | Yan, Huan Wang, Yujie Zhang, Yong Xu, Kangle |
Author_xml | – sequence: 1 givenname: Huan surname: Yan fullname: Yan, Huan email: 1020021278@qq.com organization: School of Computer and Information, Hefei University of Technology, Hefei, China – sequence: 2 givenname: Yong orcidid: 0000-0003-1125-7787 surname: Zhang fullname: Zhang, Yong email: yongzhang@hfut.edu.cn organization: School of Computer and Information, Hefei University of Technology, Hefei, China – sequence: 3 givenname: Yujie orcidid: 0000-0002-8654-2622 surname: Wang fullname: Wang, Yujie email: wjiejie@hfut.edu.cn organization: School of Computer and Information, Hefei University of Technology, Hefei, China – sequence: 4 givenname: Kangle surname: Xu fullname: Xu, Kangle email: 1099940239@qq.com organization: School of Computer and Information, Hefei University of Technology, Hefei, China |
BookMark | eNp9kE1LAzEQhoNUsK3-APGy4HlrPjabRPBQS2uVomKVegtJNisp7W5N0kL_vbu0ePDgaQbmeWeGpwc6VV1ZAC4RHCAExc3TfPw8wBCJARaE44yegC6ilKeIZbzT9gSmGWGfZ6AXwhI2JKOsC-4WbmjibTJMXlUIbmeThZu49F4FWyTT7VpVSTN3Oxf3yZs19VfloqurZL4P0a7PwWmpVsFeHGsffEzG76NpOnt5eBwNZ6khVMTUGJwjqnDJSM4gKpnAKLOcU0OJgIwXmhitRc5QqQtdKFNYJDSlSjGtoNGkD64Peze-_t7aEOWy3vqqOSkxIaTZkgneUOxAGV-H4G0pjYuqfTd65VYSQdm6kq0r2bqSR1dNEv1JbrxbK7__N3N1yDhr7S_POYYQ5uQH_Tl1ww |
CODEN | ISJEAZ |
CitedBy_id | crossref_primary_10_1109_JSEN_2022_3146137 crossref_primary_10_3390_s22093125 crossref_primary_10_1007_s00521_021_06787_w crossref_primary_10_1109_ACCESS_2020_3012021 crossref_primary_10_1155_2022_1940218 crossref_primary_10_1155_2022_7353080 crossref_primary_10_1109_THMS_2022_3188726 crossref_primary_10_3390_s23010356 crossref_primary_10_1109_ACCESS_2022_3177273 crossref_primary_10_1016_j_matpr_2022_03_071 crossref_primary_10_61186_itrc_15_2_42 crossref_primary_10_1109_JIOT_2020_3033173 crossref_primary_10_1111_exsy_13256 crossref_primary_10_1016_j_compbiomed_2023_106835 crossref_primary_10_1109_JSYST_2022_3218831 crossref_primary_10_1109_JSEN_2020_3032558 crossref_primary_10_1109_ACCESS_2024_3443231 crossref_primary_10_1109_ACCESS_2022_3155124 crossref_primary_10_1109_OJIM_2024_3502885 crossref_primary_10_1007_s11277_023_10258_x crossref_primary_10_1109_JIOT_2024_3454223 crossref_primary_10_1109_ACCESS_2021_3071228 crossref_primary_10_1109_LCOMM_2021_3058420 crossref_primary_10_3390_s20061638 crossref_primary_10_3390_s21248404 crossref_primary_10_1109_ACCESS_2021_3134794 crossref_primary_10_3390_s24030862 crossref_primary_10_1016_j_neunet_2021_11_011 crossref_primary_10_1109_JSEN_2024_3486008 crossref_primary_10_1109_JIOT_2023_3234600 crossref_primary_10_1109_JSEN_2021_3114206 crossref_primary_10_3390_s24072111 crossref_primary_10_1109_IOTM_001_2200199 crossref_primary_10_1109_ACCESS_2019_2954651 crossref_primary_10_1109_TBCAS_2022_3229435 crossref_primary_10_3390_su15043342 crossref_primary_10_1007_s10462_021_10116_x crossref_primary_10_1109_JSEN_2022_3204607 crossref_primary_10_1109_JSEN_2023_3261325 crossref_primary_10_1007_s00530_024_01586_4 crossref_primary_10_3390_electronics13020264 crossref_primary_10_1016_j_jnca_2020_102738 crossref_primary_10_1145_3610930 crossref_primary_10_1109_ACCESS_2022_3222381 crossref_primary_10_30939_ijastech__1431379 crossref_primary_10_1145_3689373 crossref_primary_10_1007_s12243_021_00865_9 crossref_primary_10_3390_su13094859 crossref_primary_10_1109_JSEN_2024_3476346 crossref_primary_10_1109_JSEN_2020_3028561 crossref_primary_10_3390_s25051547 crossref_primary_10_3390_inventions9040090 crossref_primary_10_3390_s22124447 crossref_primary_10_1155_2022_5885475 crossref_primary_10_1109_TMC_2022_3199015 crossref_primary_10_2478_msr_2022_0024 crossref_primary_10_3233_MGS_220328 crossref_primary_10_3390_electronics11162607 crossref_primary_10_1007_s11277_022_10029_0 crossref_primary_10_1109_ACCESS_2024_3457571 crossref_primary_10_1088_1361_6501_ac7779 crossref_primary_10_1109_JIOT_2023_3307155 crossref_primary_10_1145_3632177 crossref_primary_10_1109_JIOT_2024_3470321 crossref_primary_10_1155_2022_4598460 crossref_primary_10_1111_exsy_13680 crossref_primary_10_3390_app13158884 crossref_primary_10_1109_JIOT_2020_2999210 crossref_primary_10_1007_s11042_024_18906_5 crossref_primary_10_1007_s11042_025_20650_3 crossref_primary_10_1109_THMS_2023_3264247 crossref_primary_10_1109_JIOT_2023_3317670 crossref_primary_10_1109_TAES_2023_3276738 crossref_primary_10_3390_s22166018 |
Cites_doi | 10.1109/MIS.2015.18 10.1109/TVT.2017.2737553 10.1109/JIOT.2016.2558659 10.1109/CVPR.2011.5995316 10.1155/2018/6163475 10.1109/MCOM.2017.1700082 10.1145/2789168.2790093 10.1109/JSEN.2017.2772798 10.1109/TVT.2016.2635161 10.1016/j.neucom.2005.12.126 10.1109/TMC.2015.2504935 10.1109/JIOT.2018.2822818 10.1109/ICCNC.2018.8390335 10.1145/2971648.2971738 10.1109/TVT.2018.2878754 10.1109/RTSS.2014.30 10.1109/INFOCOM.2016.7524399 10.1016/j.neucom.2011.12.055 10.1109/JIOT.2018.2849655 10.1109/TII.2017.2712746 10.1109/CVPR.2015.7299059 10.1145/2370216.2370269 10.1109/GlobalSIP.2017.8308660 10.1109/TMC.2016.2557792 10.1109/TII.2016.2587761 10.1145/1963564.1963615 10.1145/3117811.3131266 10.1145/2639108.2639143 10.1145/1851182.1851203 10.1109/JIOT.2015.2511805 10.1109/TAFFC.2014.2339834 10.1145/3025453.3025678 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSEN.2019.2938245 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1558-1748 |
EndPage | 305 |
ExternalDocumentID | 10_1109_JSEN_2019_2938245 8820006 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61801162 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TWZ AAYXX CITATION 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c359t-cc2615a2f736701f79214e885c539078db3cbb9671fbdbdacde19b55aa7ba0cb3 |
IEDL.DBID | RIE |
ISSN | 1530-437X |
IngestDate | Mon Jun 30 10:11:47 EDT 2025 Thu Apr 24 23:06:51 EDT 2025 Tue Jul 01 03:36:50 EDT 2025 Wed Aug 27 02:35:27 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-cc2615a2f736701f79214e885c539078db3cbb9671fbdbdacde19b55aa7ba0cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8654-2622 0000-0003-1125-7787 |
PQID | 2333539498 |
PQPubID | 75733 |
PageCount | 10 |
ParticipantIDs | ieee_primary_8820006 crossref_citationtrail_10_1109_JSEN_2019_2938245 crossref_primary_10_1109_JSEN_2019_2938245 proquest_journals_2333539498 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-Jan.1,-1 2020-1-1 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan.1,-1 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE sensors journal |
PublicationTitleAbbrev | JSEN |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 pu (ref24) 2013 |
References_xml | – ident: ref6 doi: 10.1109/MIS.2015.18 – ident: ref29 doi: 10.1109/TVT.2017.2737553 – ident: ref13 doi: 10.1109/JIOT.2016.2558659 – ident: ref3 doi: 10.1109/CVPR.2011.5995316 – ident: ref32 doi: 10.1155/2018/6163475 – ident: ref27 doi: 10.1109/MCOM.2017.1700082 – ident: ref18 doi: 10.1145/2789168.2790093 – ident: ref12 doi: 10.1109/JSEN.2017.2772798 – ident: ref28 doi: 10.1109/TVT.2016.2635161 – ident: ref30 doi: 10.1016/j.neucom.2005.12.126 – ident: ref16 doi: 10.1109/TMC.2015.2504935 – ident: ref15 doi: 10.1109/JIOT.2018.2822818 – ident: ref9 doi: 10.1109/ICCNC.2018.8390335 – ident: ref21 doi: 10.1145/2971648.2971738 – ident: ref22 doi: 10.1109/TVT.2018.2878754 – ident: ref14 doi: 10.1109/RTSS.2014.30 – ident: ref1 doi: 10.1109/INFOCOM.2016.7524399 – ident: ref31 doi: 10.1016/j.neucom.2011.12.055 – ident: ref23 doi: 10.1109/JIOT.2018.2849655 – ident: ref10 doi: 10.1109/TII.2017.2712746 – ident: ref5 doi: 10.1109/CVPR.2015.7299059 – ident: ref7 doi: 10.1145/2370216.2370269 – ident: ref33 doi: 10.1109/GlobalSIP.2017.8308660 – ident: ref20 doi: 10.1109/TMC.2016.2557792 – ident: ref11 doi: 10.1109/TII.2016.2587761 – ident: ref4 doi: 10.1145/1963564.1963615 – ident: ref2 doi: 10.1145/3117811.3131266 – start-page: 27 year: 2013 ident: ref24 article-title: Whole-home gesture recognition using wireless signals publication-title: Proc 19th Int Conf Mobile Comput Netw – ident: ref19 doi: 10.1145/2639108.2639143 – ident: ref26 doi: 10.1145/1851182.1851203 – ident: ref17 doi: 10.1109/JIOT.2015.2511805 – ident: ref8 doi: 10.1109/TAFFC.2014.2339834 – ident: ref25 doi: 10.1145/3025453.3025678 |
SSID | ssj0019757 |
Score | 2.5498564 |
Snippet | Nowadays, human behavior recognition research plays a pivotal role in the field of human-computer interaction. However, comprehensive approaches mainly rely on... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 296 |
SubjectTerms | activity data cutting Activity recognition Adaptive algorithms Adaptive systems Artificial neural networks channel state information Classification Correlation Data mining Doppler effect extreme learning machine Feature extraction Human activity recognition Human behavior Human motion recognition human-computer interaction Performance evaluation Robustness Wearable technology Wireless communication Wireless fidelity |
Title | WiAct: A Passive WiFi-Based Human Activity Recognition System |
URI | https://ieeexplore.ieee.org/document/8820006 https://www.proquest.com/docview/2333539498 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ui3rwURXrixw8iam7m30k3lZpKQVF1GJvSzJJUZRWdHvQX2-S3ZaiIt72kEB2Jpn3fANwHKIQUsuEImeSxmIYUGH9HWo1bSpQyCjUrhv56jrt9uPeIBkswOmsF8YY44vPTMt9-ly-HuPEhcrOrDUYeHztReu4Vb1as4yByDyqp33AAY1ZNqgzmGEgznp37WtXxCVaVrfxyHUuzekgP1TlhyT26qWzDlfTg1VVJc-tSala-PkNs_G_J9-AtdrOJHl1MTZhwYwasDqHPtiA5XoA-uPHFlgxkmN5TnJyY61pKwHJw1PniV5YHaeJD_STHKtBE-R2WnM0HpEK8Hwb-p32_WWX1pMVKLJElBTROk6JjIaZw28Lh5mIwthwnmDCrLfMtWKolEizcKi00hK1CYVKEikzJQNUbAeWRuOR2QWiOdPWSMlMFqNL4nJjhAowjUOTam54E4IprQusYcfd9IuXwrsfgSgcewrHnqJmTxNOZlteK8yNvxZvOXLPFtaUbsLBlKFF_Srfi4gxZn8wFnzv9137sBI5f9qHWA5gqXybmENrdJTqyN-2L0U-0OQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH-q4MB2GINuooMNH3aa5jaJ48TerUOtCrTVtLVab5H97ArE1CKWHuCvx3bSqhoT4paDLTnv2e_7_R7A5xilVEZxioIpmsp5RKXzd6jTtJlEqZLY-G7k0TgbTNOLGZ814OumF8ZaG4rPbNt_hly-WeLKh8o6zhqMAr72rtP7PKm6tTY5A5kHXE_3hCOasnxW5zDjSHYufvXGvoxLtp12E4nvXdrSQmGsyhNZHBRMfx9G66NVdSU37VWp2_jwD2rjS8_-Ft7UlibpVlfjABp2cQivt_AHD2GvHoF-dd8EJ0i6WH4jXfLD2dNOBpLf1_1r-t1pOUNCqJ90sRo1QX6uq46WC1JBnr-Dab83ORvQerYCRcZlSRGd68RVMs89gls8z2USp1YIjpw5f1kYzVBrmeXxXBttFBobS825UrlWEWr2HnYWy4U9AmIEM85MyW2eok_jCmuljjBLY5sZYUULojWtC6yBx_38iz9FcEAiWXj2FJ49Rc2eFnzZbLmtUDeeW9z05N4srCndgpM1Q4v6Xf4tEsaY-8FUig__33UKe4PJaFgMz8eXx_Aq8d51CLicwE55t7IfnQlS6k_h5j0CWzrULg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=WiAct%3A+A+Passive+WiFi-Based+Human+Activity+Recognition+System&rft.jtitle=IEEE+sensors+journal&rft.au=Yan%2C+Huan&rft.au=Zhang%2C+Yong&rft.au=Wang%2C+Yujie&rft.au=Xu%2C+Kangle&rft.date=2020-01-01&rft.pub=IEEE&rft.issn=1530-437X&rft.volume=20&rft.issue=1&rft.spage=296&rft.epage=305&rft_id=info:doi/10.1109%2FJSEN.2019.2938245&rft.externalDocID=8820006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-437X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-437X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-437X&client=summon |