Diffusion properties of transfer RNAs in the yeast cytoplasm under normal and osmotic stress conditions

The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentratio...

Full description

Saved in:
Bibliographic Details
Published inBiochimica et biophysica acta. General subjects Vol. 1869; no. 6; p. 130798
Main Authors Kompella, Vijay Phanindra Srikanth, Romano, Maria Carmen, Stansfield, Ian, Mancera, Ricardo L.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentration of macromolecules in the cytoplasm, reducing protein diffusion. The impact of macromolecular crowding on the translation machinery in eukaryotes remains uncharacterised. In this study Brownian dynamics simulation were used for the first time to study the effect of macromolecular crowding on the microsecond-time scale diffusion properties of tRNAs and their ternary complexes within a model yeast cytoplasmic environment. Under normal cell-like conditions, the diffusion of tRNAs and ternary complexes was predicted to be reduced by up to 8-fold (compared with dilute conditions), whilst diffusion under severe osmotic stress conditions decreased by up to a remarkable 80-fold. All molecules exhibited sub-diffusive behaviour, which was stronger under osmotic stress. These findings may be readily used to predict protein translation dynamics, including the crucial process of tRNA delivery to the ribosome, under a variety of conditions. •Macromolecular crowding induces sub-diffusive dynamics in the microsecond-time scale.•Diffusion of tRNAs and their complexes are reduced 8-fold in the yeast cytoplasm.•Diffusion under severe osmotic stress decreases by 80-fold.•Macromolecular concentration, composition and size distribution affect diffusion.
AbstractList The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentration of macromolecules in the cytoplasm, reducing protein diffusion. The impact of macromolecular crowding on the translation machinery in eukaryotes remains uncharacterised. In this study Brownian dynamics simulation were used for the first time to study the effect of macromolecular crowding on the microsecond-time scale diffusion properties of tRNAs and their ternary complexes within a model yeast cytoplasmic environment. Under normal cell-like conditions, the diffusion of tRNAs and ternary complexes was predicted to be reduced by up to 8-fold (compared with dilute conditions), whilst diffusion under severe osmotic stress conditions decreased by up to a remarkable 80-fold. All molecules exhibited sub-diffusive behaviour, which was stronger under osmotic stress. These findings may be readily used to predict protein translation dynamics, including the crucial process of tRNA delivery to the ribosome, under a variety of conditions.The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentration of macromolecules in the cytoplasm, reducing protein diffusion. The impact of macromolecular crowding on the translation machinery in eukaryotes remains uncharacterised. In this study Brownian dynamics simulation were used for the first time to study the effect of macromolecular crowding on the microsecond-time scale diffusion properties of tRNAs and their ternary complexes within a model yeast cytoplasmic environment. Under normal cell-like conditions, the diffusion of tRNAs and ternary complexes was predicted to be reduced by up to 8-fold (compared with dilute conditions), whilst diffusion under severe osmotic stress conditions decreased by up to a remarkable 80-fold. All molecules exhibited sub-diffusive behaviour, which was stronger under osmotic stress. These findings may be readily used to predict protein translation dynamics, including the crucial process of tRNA delivery to the ribosome, under a variety of conditions.
The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentration of macromolecules in the cytoplasm, reducing protein diffusion. The impact of macromolecular crowding on the translation machinery in eukaryotes remains uncharacterised. In this study Brownian dynamics simulation were used for the first time to study the effect of macromolecular crowding on the microsecond-time scale diffusion properties of tRNAs and their ternary complexes within a model yeast cytoplasmic environment. Under normal cell-like conditions, the diffusion of tRNAs and ternary complexes was predicted to be reduced by up to 8-fold (compared with dilute conditions), whilst diffusion under severe osmotic stress conditions decreased by up to a remarkable 80-fold. All molecules exhibited sub-diffusive behaviour, which was stronger under osmotic stress. These findings may be readily used to predict protein translation dynamics, including the crucial process of tRNA delivery to the ribosome, under a variety of conditions.
The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentration of macromolecules in the cytoplasm, reducing protein diffusion. The impact of macromolecular crowding on the translation machinery in eukaryotes remains uncharacterised. In this study Brownian dynamics simulation were used for the first time to study the effect of macromolecular crowding on the microsecond-time scale diffusion properties of tRNAs and their ternary complexes within a model yeast cytoplasmic environment. Under normal cell-like conditions, the diffusion of tRNAs and ternary complexes was predicted to be reduced by up to 8-fold (compared with dilute conditions), whilst diffusion under severe osmotic stress conditions decreased by up to a remarkable 80-fold. All molecules exhibited sub-diffusive behaviour, which was stronger under osmotic stress. These findings may be readily used to predict protein translation dynamics, including the crucial process of tRNA delivery to the ribosome, under a variety of conditions. •Macromolecular crowding induces sub-diffusive dynamics in the microsecond-time scale.•Diffusion of tRNAs and their complexes are reduced 8-fold in the yeast cytoplasm.•Diffusion under severe osmotic stress decreases by 80-fold.•Macromolecular concentration, composition and size distribution affect diffusion.
ArticleNumber 130798
Author Romano, Maria Carmen
Mancera, Ricardo L.
Stansfield, Ian
Kompella, Vijay Phanindra Srikanth
Author_xml – sequence: 1
  givenname: Vijay Phanindra Srikanth
  surname: Kompella
  fullname: Kompella, Vijay Phanindra Srikanth
  organization: Curtin Medical School, Curtin Medical Research Institute, Curtin University, Perth, WA, Australia
– sequence: 2
  givenname: Maria Carmen
  surname: Romano
  fullname: Romano, Maria Carmen
  organization: Department of Physics, Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 3
  givenname: Ian
  surname: Stansfield
  fullname: Stansfield, Ian
  organization: Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 4
  givenname: Ricardo L.
  surname: Mancera
  fullname: Mancera, Ricardo L.
  email: R.Mancera@curtin.edu.au
  organization: Curtin Medical School, Curtin Medical Research Institute, Curtin University, Perth, WA, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40154754$$D View this record in MEDLINE/PubMed
BookMark eNp9kU-LFDEQxYOsuLOr30AkRy89Jp2kO7kIy_oXFgXRc8ikK2uG7mRMpYX59mbp1aN1qUP93oNX74pcpJyAkJec7Tnjw5vj_nBw95D2PevVngs2Gv2E7Lge-04zNlyQHRNMdpIP6pJcIR5ZG2XUM3IpGVdyVHJH7t_FEFaMOdFTyScoNQLSHGgtLmGAQr99uUEaE60_gZ7BYaX-XPNpdrjQNU2NSLksbqYuTTTjkmv0FGsBROpzmmJt5vicPA1uRnjxuK_Jjw_vv99-6u6-fvx8e3PXeaFM7bwZwIiDC2b0YnBgtBajM9KwgQfDJBcq-OB76Sc_Oq3V5NvBC9MzAMmduCavN9-W5tcKWO0S0cM8uwR5RSu4FsOoNDcNffWIrocFJnsqcXHlbP8-pwFyA3zJiAXCP4Qz-9CBPdqtA_vQgd06aLK3mwxazt8RikUfIXmYYgFf7ZTj_w3-AMpakeA
Cites_doi 10.1021/ja211115q
10.1016/j.febslet.2009.10.069
10.1137/S003614450342061
10.1093/nar/gkm276
10.1002/jcc.540140114
10.1038/nprot.2010.5
10.1111/j.1365-2958.2010.07201.x
10.1186/1471-2105-9-40
10.1002/prot.24065
10.1021/acs.jpcb.0c04846
10.1038/nmeth.3213
10.1016/j.bpj.2009.05.014
10.1002/pro.3280
10.1021/acs.jpclett.9b00345
10.1074/jbc.M707245200
10.1093/nar/gkh381
10.1006/jmbi.1993.1626
10.1371/journal.pcbi.1002203
10.1002/elps.1150181505
10.1073/pnas.1310377110
10.1146/annurev-biophys-051013-022717
10.1002/prot.24179
10.1007/BF01869695
10.1007/s00709-004-0079-x
10.1002/jcc.23971
10.1073/pnas.1011354107
10.1016/j.bpj.2023.12.002
10.1016/j.bpj.2011.06.046
10.1128/JB.00536-08
10.1016/j.bpj.2013.02.041
10.1073/pnas.181342398
10.1093/nar/gkq808
10.1371/journal.pcbi.1000694
10.3389/fmolb.2019.00097
10.1021/acs.jpcb.7b03570
10.1021/cr400113m
10.1093/nar/gkw1132
10.1093/nar/gkx514
10.1093/nar/gkw787
10.1074/jbc.274.2.666
10.1098/rstb.2011.0138
10.1073/pnas.1215367110
10.1002/andp.19053220806
10.1002/jcc.23354
10.1021/jp209302e
10.1088/1751-8121/aba39c
10.1093/nar/gky427
10.1110/ps.9.9.1753
10.1002/jcc.24307
10.1529/biophysj.107.116053
10.1128/AEM.02313-15
10.1021/acs.biochem.6b00257
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 The Author(s)
– notice: Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bbagen.2025.130798
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1872-8006
ExternalDocumentID 40154754
10_1016_j_bbagen_2025_130798
S0304416525000431
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABEFU
ABFNM
ABGSF
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UQL
WH7
WUQ
XJT
XPP
~G-
AAYWO
AAYXX
ACIUM
ACVFH
ADCNI
AEHWI
AEUPX
AFPUW
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c359t-c96e93baf97c36ae98837a949061f904135fcfc24cdc7a885dc61fc3920ee41a3
IEDL.DBID .~1
ISSN 0304-4165
1872-8006
IngestDate Wed Jul 02 05:12:39 EDT 2025
Sat May 31 02:14:03 EDT 2025
Tue Jul 01 04:59:56 EDT 2025
Sat May 03 15:40:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Macromolecular crowding
Brownian dynamics
Yeast cytoplasm
Subdiffusion
Osmotic stress
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c96e93baf97c36ae98837a949061f904135fcfc24cdc7a885dc61fc3920ee41a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304416525000431
PMID 40154754
PQID 3183675819
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3183675819
pubmed_primary_40154754
crossref_primary_10_1016_j_bbagen_2025_130798
elsevier_sciencedirect_doi_10_1016_j_bbagen_2025_130798
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biochimica et biophysica acta. General subjects
PublicationTitleAlternate Biochim Biophys Acta Gen Subj
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Werner (bb0055) 2011; 39
Baker, Sept, Joseph, Holst, McCammon (bb0155) 2001; 98
Yang, Yan, Roy, Xu, Poisson, Zhang (bb0210) 2015; 12
Konopka, Sochacki, Bratton, Shkel, Record, Weisshaar (bb0085) 2009; 91
McGuffee, Elcock (bb0260) 2010; 6
Hohmann (bb0080) 2009; 583
Lawley (bb0275) 2020; 53
Holst, Saied (bb0145) 1993; 14
Waterhouse, Bertoni, Bienert, Studer, Tauriello, Gumienny, Heer, De Beer, Rempfer, Bordoli, Lepore, Schwede (bb0175) 2018; 46
Guex, Peitsch (bb0105) 1997; 18
Xu, Zhang (bb0220) 2012; 80
Dolinsky, Nielsen, McCammon, Baker (bb0125) 2004; 32
Jurrus, Engel, Star, Monson, Brandi, Felberg, Brookes, Wilson, Chen, Liles, Chun, Li, Gohara, Dolinsky, Konecny, Koes, Nielsen, Head-Gordon, Geng, Krasny (bb0140) 2018; 27
Xu, Zhang (bb0215) 2013; 81
Šali, Blundell (bb0190) 1993; 234
Feig, Yu, Wang, Nawrocki, Sugita (bb0015) 2017; 121
Gromadski, Schümmer, Strømgaard, Knudsen, Kinzy, Rodnina (bb0230) 2007; 282
Wilcox, LoConte, Slade (bb0035) 2016; 55
Kompella, Stansfield, Romano, Mancera (bb0090) 2019; 6
BIOVIA (bb0110) 2020
Dolinsky, Czodrowski, Li, Nielsen, Jensen, Klebe, Baker (bb0130) 2007; 35
Miermont, Waharte, Hu, McClean, Bottani, Léon, Hersen (bb0075) 2013; 110
Ridgway, Broderick, Lopez-Campistrous, Ru’Aini, Winter, Hamilton, Boulanger, Kovalenko, Ellison (bb0040) 2008; 94
Feig, Sugita (bb0060) 2012; 116
Fiser, Do, Šali (bb0195) 2000; 9
Zhang (bb0200) 2008; 9
Skóra, Vaghefikia, Fitter, Kondrat (bb0265) 2020; 124
Roy, Kucukural, Zhang (bb0205) 2010; 5
Nissen, Kjeldgaard, Thirup, Polekhina, Reshetnikova, Clark, Nyborg (bb0170) 1979; 270
Asami, Hanai, Koizumi (bb0030) 1976; 28
Cohen, Venkatachalam (bb0160) 2014; 43
Ben-Shem, De Loubresse, Melnikov, Jenner, Yusupova, Yusupov (bb0095) 1979; 334
Plochowietz, Farrell, Smilansky, Cooperman, Kapanidis (bb0050) 2017; 45
Dreher, Uhlenbeck, Browning (bb0185) 1999; 274
Xu, Vanommeslaeghe, Aleksandrov, MacKerell, Nilsson (bb0120) 2016; 37
Ortega, Amorós, García De La Torre (bb0165) 2011; 101
Wohlgemuth, Pohl, Mittelstaet, Konevega, Rodnina (bb0010) 2011; 366
Harada, Sugita, Feig (bb0025) 2012; 134
Kompella, Romano, Stansfield, Mancera (bb0100) 2024; 123
Evans, Clark, Zheng, Pan (bb0225) 2017; 45
Martinez, Bruce, Romanowska, Kokh, Ozboyaci, Yu, Öztürk, Richter, Wade (bb0245) 2015; 36
Klumpp, Scott, Pedersen, Hwa (bb0070) 2013; 110
Nakano, Miyoshi, Sugimoto (bb0020) 2014; 114
Huang, Mackerell (bb0115) 2013; 34
Einstein (bb0250) 1905; 17
Bienert, Waterhouse, De Beer, Tauriello, Studer, Bordoli, Schwede (bb0180) 2017; 45
Haugh (bb0280) 2009; 97
Grimaldo, Lopez, Beck, Roosen-Runge, Moulin, Devos, Laux, Härtlein, Da Vela, Schweins, Mariani, Zhang, Barrat, Oettel, Forsyth, Seydel, Schreiber (bb0240) 2019; 10
Fernández-Niño, Marquina, Swinnen, Rodríguez-Porrata, Nevoigt, Ariño (bb0135) 2015; 81
Liarzi, Epel (bb0255) 2005; 225
Ando, Skolnick (bb0045) 2010; 107
Balbo, Mereghetti, Herten, Wade (bb0065) 2013; 104
Mika, van den Bogaart, Veenhoff, Krasnikov, Poolman (bb0270) 2010; 77
Bank, Holst (bb0150) 2003; 45
Brackley, Romano, Thiel (bb0005) 2011; 7
Jorgensen, Nishikawa, Breitkreutz, Tyers (bb0235) 1979; 297
Huang (10.1016/j.bbagen.2025.130798_bb0115) 2013; 34
Hohmann (10.1016/j.bbagen.2025.130798_bb0080) 2009; 583
Xu (10.1016/j.bbagen.2025.130798_bb0220) 2012; 80
Liarzi (10.1016/j.bbagen.2025.130798_bb0255) 2005; 225
Mika (10.1016/j.bbagen.2025.130798_bb0270) 2010; 77
Fernández-Niño (10.1016/j.bbagen.2025.130798_bb0135) 2015; 81
Zhang (10.1016/j.bbagen.2025.130798_bb0200) 2008; 9
Nakano (10.1016/j.bbagen.2025.130798_bb0020) 2014; 114
Miermont (10.1016/j.bbagen.2025.130798_bb0075) 2013; 110
Xu (10.1016/j.bbagen.2025.130798_bb0215) 2013; 81
Kompella (10.1016/j.bbagen.2025.130798_bb0100) 2024; 123
Roy (10.1016/j.bbagen.2025.130798_bb0205) 2010; 5
Lawley (10.1016/j.bbagen.2025.130798_bb0275) 2020; 53
Ridgway (10.1016/j.bbagen.2025.130798_bb0040) 2008; 94
McGuffee (10.1016/j.bbagen.2025.130798_bb0260) 2010; 6
Asami (10.1016/j.bbagen.2025.130798_bb0030) 1976; 28
Wilcox (10.1016/j.bbagen.2025.130798_bb0035) 2016; 55
Werner (10.1016/j.bbagen.2025.130798_bb0055) 2011; 39
Dolinsky (10.1016/j.bbagen.2025.130798_bb0125) 2004; 32
Bank (10.1016/j.bbagen.2025.130798_bb0150) 2003; 45
Cohen (10.1016/j.bbagen.2025.130798_bb0160) 2014; 43
Brackley (10.1016/j.bbagen.2025.130798_bb0005) 2011; 7
Dolinsky (10.1016/j.bbagen.2025.130798_bb0130) 2007; 35
Waterhouse (10.1016/j.bbagen.2025.130798_bb0175) 2018; 46
Kompella (10.1016/j.bbagen.2025.130798_bb0090) 2019; 6
Grimaldo (10.1016/j.bbagen.2025.130798_bb0240) 2019; 10
Evans (10.1016/j.bbagen.2025.130798_bb0225) 2017; 45
Haugh (10.1016/j.bbagen.2025.130798_bb0280) 2009; 97
Baker (10.1016/j.bbagen.2025.130798_bb0155) 2001; 98
Ben-Shem (10.1016/j.bbagen.2025.130798_bb0095) 1979; 334
Guex (10.1016/j.bbagen.2025.130798_bb0105) 1997; 18
Dreher (10.1016/j.bbagen.2025.130798_bb0185) 1999; 274
Balbo (10.1016/j.bbagen.2025.130798_bb0065) 2013; 104
Skóra (10.1016/j.bbagen.2025.130798_bb0265) 2020; 124
Plochowietz (10.1016/j.bbagen.2025.130798_bb0050) 2017; 45
Harada (10.1016/j.bbagen.2025.130798_bb0025) 2012; 134
Feig (10.1016/j.bbagen.2025.130798_bb0060) 2012; 116
Xu (10.1016/j.bbagen.2025.130798_bb0120) 2016; 37
Ortega (10.1016/j.bbagen.2025.130798_bb0165) 2011; 101
Einstein (10.1016/j.bbagen.2025.130798_bb0250) 1905; 17
Yang (10.1016/j.bbagen.2025.130798_bb0210) 2015; 12
Gromadski (10.1016/j.bbagen.2025.130798_bb0230) 2007; 282
Klumpp (10.1016/j.bbagen.2025.130798_bb0070) 2013; 110
Martinez (10.1016/j.bbagen.2025.130798_bb0245) 2015; 36
Bienert (10.1016/j.bbagen.2025.130798_bb0180) 2017; 45
Feig (10.1016/j.bbagen.2025.130798_bb0015) 2017; 121
Konopka (10.1016/j.bbagen.2025.130798_bb0085) 2009; 91
Jurrus (10.1016/j.bbagen.2025.130798_bb0140) 2018; 27
Holst (10.1016/j.bbagen.2025.130798_bb0145) 1993; 14
Jorgensen (10.1016/j.bbagen.2025.130798_bb0235) 1979; 297
Fiser (10.1016/j.bbagen.2025.130798_bb0195) 2000; 9
Ando (10.1016/j.bbagen.2025.130798_bb0045) 2010; 107
Wohlgemuth (10.1016/j.bbagen.2025.130798_bb0010) 2011; 366
BIOVIA (10.1016/j.bbagen.2025.130798_bb0110) 2020
Nissen (10.1016/j.bbagen.2025.130798_bb0170) 1979; 270
Šali (10.1016/j.bbagen.2025.130798_bb0190) 1993; 234
References_xml – volume: 270
  start-page: 1464
  year: 1979
  end-page: 1472
  ident: bb0170
  article-title: Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog
  publication-title: Science
– volume: 91
  start-page: 231
  year: 2009
  end-page: 237
  ident: bb0085
  article-title: Cytoplasmic protein mobility in osmotically stressed
  publication-title: J. Bacteriol.
– volume: 121
  start-page: 8009
  year: 2017
  end-page: 8025
  ident: bb0015
  article-title: Crowding in cellular environments at an atomistic level from computer simulations
  publication-title: J. Phys. Chem. B
– volume: 274
  start-page: 666
  year: 1999
  end-page: 672
  ident: bb0185
  article-title: Quantitative assessment of EF-1α·GTP binding to aminoacyl-tRNAs, aminoacyl-viral RNA, and tRNA shows close correspondence to the RNA binding properties of EF-Tu *
  publication-title: J. Biol. Chem.
– volume: 39
  year: 2011
  ident: bb0055
  article-title: Predicting translational diffusion of evolutionary conserved RNA structures by the nucleotide number
  publication-title: Nucleic Acids Res.
– volume: 45
  year: 2017
  ident: bb0225
  article-title: Determination of tRNA aminoacylation levels by high-throughput sequencing
  publication-title: Nucleic Acids Res.
– volume: 110
  start-page: 5725
  year: 2013
  end-page: 5730
  ident: bb0075
  article-title: Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 43
  start-page: 211
  year: 2014
  end-page: 232
  ident: bb0160
  article-title: Bringing bioelectricity to light
  publication-title: Annu. Rev. Biophys.
– volume: 5
  start-page: 725
  year: 2010
  end-page: 738
  ident: bb0205
  article-title: I-TASSER: a unified platform for automated protein structure and function prediction
  publication-title: Nat. Protoc.
– volume: 134
  start-page: 4842
  year: 2012
  end-page: 4849
  ident: bb0025
  article-title: Protein crowding affects hydration structure and dynamics
  publication-title: J. Am. Chem. Soc.
– year: 2020
  ident: bb0110
  article-title: Dassault Systèmes, Discovery Studio Visualizer
– volume: 116
  start-page: 599
  year: 2012
  end-page: 605
  ident: bb0060
  article-title: Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding
  publication-title: J. Phys. Chem. B
– volume: 81
  start-page: 229
  year: 2013
  end-page: 239
  ident: bb0215
  article-title: Toward optimal fragment generations for ab initio protein structure assembly
  publication-title: Proteins
– volume: 55
  start-page: 3550
  year: 2016
  end-page: 3558
  ident: bb0035
  article-title: Effects of macromolecular crowding on alcohol dehydrogenase activity are substrate-dependent
  publication-title: Biochemistry
– volume: 124
  start-page: 7537
  year: 2020
  end-page: 7543
  ident: bb0265
  article-title: Macromolecular crowding: how shape and interactions affect diffusion
  publication-title: J. Phys. Chem. B
– volume: 80
  start-page: 1715
  year: 2012
  end-page: 1735
  ident: bb0220
  article-title: Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field
  publication-title: Proteins
– volume: 36
  start-page: 1631
  year: 2015
  end-page: 1645
  ident: bb0245
  article-title: SDA 7: a modular and parallel implementation of the simulation of diffusional association software
  publication-title: J. Comput. Chem.
– volume: 46
  start-page: W296
  year: 2018
  end-page: W303
  ident: bb0175
  article-title: SWISS-MODEL: homology modelling of protein structures and complexes
  publication-title: Nucleic Acids Res.
– volume: 27
  start-page: 112
  year: 2018
  end-page: 128
  ident: bb0140
  article-title: Improvements to the APBS biomolecular solvation software suite
  publication-title: Protein Sci.
– volume: 32
  start-page: W655
  year: 2004
  end-page: W657
  ident: bb0125
  article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
  publication-title: Nucleic Acids Res.
– volume: 104
  start-page: 1576
  year: 2013
  end-page: 1584
  ident: bb0065
  article-title: The shape of protein crowders is a major determinant of protein diffusion
  publication-title: Biophys. J.
– volume: 366
  start-page: 2979
  year: 2011
  end-page: 2986
  ident: bb0010
  article-title: Evolutionary optimization of speed and accuracy of decoding on the ribosome
  publication-title: Phil. Trans. Royal Soc. B Biol. Sci.
– volume: 28
  start-page: 169
  year: 1976
  end-page: 180
  ident: bb0030
  article-title: Dielectric properties of yeast cells
  publication-title: J. Membr. Biol.
– volume: 17
  start-page: 549
  year: 1905
  end-page: 560
  ident: bb0250
  article-title: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
  publication-title: Ann. Phys.
– volume: 81
  start-page: 7813
  year: 2015
  end-page: 7821
  ident: bb0135
  article-title: The cytosolic pH of individual
  publication-title: Appl. Environ. Microbiol.
– volume: 225
  start-page: 67
  year: 2005
  end-page: 76
  ident: bb0255
  article-title: Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals
  publication-title: Protoplasma
– volume: 37
  start-page: 896
  year: 2016
  end-page: 912
  ident: bb0120
  article-title: Additive CHARMM force field for naturally occurring modified ribonucleotides
  publication-title: J. Comput. Chem.
– volume: 6
  year: 2019
  ident: bb0090
  article-title: Definition of the minimal contents for the molecular simulation of the yeast cytoplasm
  publication-title: Front. Mol. Biosci.
– volume: 34
  start-page: 2135
  year: 2013
  end-page: 2145
  ident: bb0115
  article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data
  publication-title: J. Comput. Chem.
– volume: 6
  year: 2010
  ident: bb0260
  article-title: Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm
  publication-title: PLoS Comput. Biol.
– volume: 107
  start-page: 18457
  year: 2010
  end-page: 18462
  ident: bb0045
  article-title: Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 94
  start-page: 3748
  year: 2008
  end-page: 3759
  ident: bb0040
  article-title: Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm
  publication-title: Biophys. J.
– volume: 334
  start-page: 1524
  year: 1979
  end-page: 1529
  ident: bb0095
  article-title: The structure of the eukaryotic ribosome at 30 Å resolution
  publication-title: Science
– volume: 282
  start-page: 35629
  year: 2007
  end-page: 35637
  ident: bb0230
  article-title: Kinetics of the interactions between yeast elongation factors 1A and 1Bα, guanine nucleotides, and aminoacyl-tRNA
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 2714
  year: 1997
  end-page: 2723
  ident: bb0105
  article-title: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling
  publication-title: Electrophoresis
– volume: 35
  start-page: W522
  year: 2007
  end-page: W525
  ident: bb0130
  article-title: PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations
  publication-title: Nucleic Acids Res.
– volume: 97
  start-page: 435
  year: 2009
  end-page: 442
  ident: bb0280
  article-title: Analysis of reaction-diffusion systems with anomalous subdiffusion
  publication-title: Biophys. J.
– volume: 110
  start-page: 16754
  year: 2013
  end-page: 16759
  ident: bb0070
  article-title: Molecular crowding limits translation and cell growth
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 1753
  year: 2000
  end-page: 1773
  ident: bb0195
  article-title: Modeling of loops in protein structures
  publication-title: Protein Sci.
– volume: 45
  start-page: 926
  year: 2017
  end-page: 937
  ident: bb0050
  article-title: In vivo single-RNA tracking shows that most tRNA diffuses freely in live bacteria
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: 105
  year: 1993
  end-page: 113
  ident: bb0145
  article-title: Multigrid solution of the Poisson-Boltzmann equation
  publication-title: J. Comput. Chem.
– volume: 234
  start-page: 779
  year: 1993
  end-page: 815
  ident: bb0190
  article-title: Comparative protein modelling by satisfaction of spatial restraints
  publication-title: J. Mol. Biol.
– volume: 77
  start-page: 200
  year: 2010
  end-page: 207
  ident: bb0270
  article-title: Molecular sieving properties of the cytoplasm of
  publication-title: Mol. Microbiol.
– volume: 583
  start-page: 4025
  year: 2009
  end-page: 4029
  ident: bb0080
  article-title: Control of high osmolarity signalling in the yeast
  publication-title: FEBS Lett.
– volume: 101
  start-page: 892
  year: 2011
  end-page: 898
  ident: bb0165
  article-title: Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models
  publication-title: Biophys. J.
– volume: 297
  start-page: 395
  year: 1979
  end-page: 400
  ident: bb0235
  article-title: Systematic identification of pathways that couple cell growth and division in yeast
  publication-title: Science
– volume: 7
  year: 2011
  ident: bb0005
  article-title: The dynamics of supply and demand in mRNA translation
  publication-title: PLoS Comput. Biol.
– volume: 123
  start-page: 134
  year: 2024
  end-page: 146
  ident: bb0100
  article-title: What determines sub-diffusive behavior in crowded protein solutions?
  publication-title: Biophys. J.
– volume: 53
  year: 2020
  ident: bb0275
  article-title: Extreme statistics of anomalous subdiffusion following a fractional Fokker-Planck equation: subdiffusion is faster than normal diffusion
  publication-title: J. Phys. A Math. Theor.
– volume: 45
  start-page: D313
  year: 2017
  end-page: D319
  ident: bb0180
  article-title: The SWISS-MODEL repository-new features and functionality
  publication-title: Nucleic Acids Res.
– volume: 9
  start-page: 1
  year: 2008
  end-page: 8
  ident: bb0200
  article-title: I-TASSER server for protein 3D structure prediction
  publication-title: BMC Bioinform.
– volume: 114
  start-page: 2733
  year: 2014
  end-page: 2758
  ident: bb0020
  article-title: Effects of molecular crowding on the structures, interactions, and functions of nucleic acids
  publication-title: Chem. Rev.
– volume: 10
  start-page: 1709
  year: 2019
  end-page: 1715
  ident: bb0240
  article-title: Protein short-time diffusion in a naturally crowded environment
  publication-title: J. Phys. Chem. Lett.
– volume: 45
  start-page: 291
  year: 2003
  end-page: 323
  ident: bb0150
  article-title: A new paradigm for parallel adaptive meshing algorithms
  publication-title: SIAM Rev.
– volume: 12
  start-page: 7
  year: 2015
  end-page: 8
  ident: bb0210
  article-title: The I-TASSER suite: protein structure and function prediction
  publication-title: Nat. Methods
– volume: 98
  start-page: 10037
  year: 2001
  end-page: 10041
  ident: bb0155
  article-title: Electrostatics of nanosystems: application to microtubules and the ribosome
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 134
  start-page: 4842
  year: 2012
  ident: 10.1016/j.bbagen.2025.130798_bb0025
  article-title: Protein crowding affects hydration structure and dynamics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211115q
– volume: 583
  start-page: 4025
  year: 2009
  ident: 10.1016/j.bbagen.2025.130798_bb0080
  article-title: Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.10.069
– volume: 45
  start-page: 291
  year: 2003
  ident: 10.1016/j.bbagen.2025.130798_bb0150
  article-title: A new paradigm for parallel adaptive meshing algorithms
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450342061
– volume: 35
  start-page: W522
  year: 2007
  ident: 10.1016/j.bbagen.2025.130798_bb0130
  article-title: PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm276
– volume: 14
  start-page: 105
  year: 1993
  ident: 10.1016/j.bbagen.2025.130798_bb0145
  article-title: Multigrid solution of the Poisson-Boltzmann equation
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.540140114
– volume: 5
  start-page: 725
  year: 2010
  ident: 10.1016/j.bbagen.2025.130798_bb0205
  article-title: I-TASSER: a unified platform for automated protein structure and function prediction
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2010.5
– volume: 77
  start-page: 200
  year: 2010
  ident: 10.1016/j.bbagen.2025.130798_bb0270
  article-title: Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2010.07201.x
– volume: 9
  start-page: 1
  year: 2008
  ident: 10.1016/j.bbagen.2025.130798_bb0200
  article-title: I-TASSER server for protein 3D structure prediction
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-9-40
– volume: 80
  start-page: 1715
  year: 2012
  ident: 10.1016/j.bbagen.2025.130798_bb0220
  article-title: Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field
  publication-title: Proteins
  doi: 10.1002/prot.24065
– volume: 124
  start-page: 7537
  year: 2020
  ident: 10.1016/j.bbagen.2025.130798_bb0265
  article-title: Macromolecular crowding: how shape and interactions affect diffusion
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.0c04846
– volume: 12
  start-page: 7
  year: 2015
  ident: 10.1016/j.bbagen.2025.130798_bb0210
  article-title: The I-TASSER suite: protein structure and function prediction
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3213
– volume: 97
  start-page: 435
  year: 2009
  ident: 10.1016/j.bbagen.2025.130798_bb0280
  article-title: Analysis of reaction-diffusion systems with anomalous subdiffusion
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.05.014
– volume: 27
  start-page: 112
  year: 2018
  ident: 10.1016/j.bbagen.2025.130798_bb0140
  article-title: Improvements to the APBS biomolecular solvation software suite
  publication-title: Protein Sci.
  doi: 10.1002/pro.3280
– volume: 10
  start-page: 1709
  year: 2019
  ident: 10.1016/j.bbagen.2025.130798_bb0240
  article-title: Protein short-time diffusion in a naturally crowded environment
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00345
– volume: 334
  start-page: 1524
  issue: 2011
  year: 1979
  ident: 10.1016/j.bbagen.2025.130798_bb0095
  article-title: The structure of the eukaryotic ribosome at 30 Å resolution
  publication-title: Science
– volume: 282
  start-page: 35629
  year: 2007
  ident: 10.1016/j.bbagen.2025.130798_bb0230
  article-title: Kinetics of the interactions between yeast elongation factors 1A and 1Bα, guanine nucleotides, and aminoacyl-tRNA
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M707245200
– volume: 32
  start-page: W655
  year: 2004
  ident: 10.1016/j.bbagen.2025.130798_bb0125
  article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh381
– volume: 234
  start-page: 779
  year: 1993
  ident: 10.1016/j.bbagen.2025.130798_bb0190
  article-title: Comparative protein modelling by satisfaction of spatial restraints
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1626
– volume: 7
  year: 2011
  ident: 10.1016/j.bbagen.2025.130798_bb0005
  article-title: The dynamics of supply and demand in mRNA translation
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1002203
– volume: 18
  start-page: 2714
  year: 1997
  ident: 10.1016/j.bbagen.2025.130798_bb0105
  article-title: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150181505
– volume: 110
  start-page: 16754
  year: 2013
  ident: 10.1016/j.bbagen.2025.130798_bb0070
  article-title: Molecular crowding limits translation and cell growth
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1310377110
– volume: 43
  start-page: 211
  year: 2014
  ident: 10.1016/j.bbagen.2025.130798_bb0160
  article-title: Bringing bioelectricity to light
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-051013-022717
– volume: 81
  start-page: 229
  year: 2013
  ident: 10.1016/j.bbagen.2025.130798_bb0215
  article-title: Toward optimal fragment generations for ab initio protein structure assembly
  publication-title: Proteins
  doi: 10.1002/prot.24179
– volume: 28
  start-page: 169
  year: 1976
  ident: 10.1016/j.bbagen.2025.130798_bb0030
  article-title: Dielectric properties of yeast cells
  publication-title: J. Membr. Biol.
  doi: 10.1007/BF01869695
– volume: 225
  start-page: 67
  year: 2005
  ident: 10.1016/j.bbagen.2025.130798_bb0255
  article-title: Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals
  publication-title: Protoplasma
  doi: 10.1007/s00709-004-0079-x
– volume: 36
  start-page: 1631
  year: 2015
  ident: 10.1016/j.bbagen.2025.130798_bb0245
  article-title: SDA 7: a modular and parallel implementation of the simulation of diffusional association software
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23971
– volume: 107
  start-page: 18457
  year: 2010
  ident: 10.1016/j.bbagen.2025.130798_bb0045
  article-title: Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1011354107
– volume: 123
  start-page: 134
  year: 2024
  ident: 10.1016/j.bbagen.2025.130798_bb0100
  article-title: What determines sub-diffusive behavior in crowded protein solutions?
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2023.12.002
– volume: 101
  start-page: 892
  year: 2011
  ident: 10.1016/j.bbagen.2025.130798_bb0165
  article-title: Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2011.06.046
– volume: 91
  start-page: 231
  year: 2009
  ident: 10.1016/j.bbagen.2025.130798_bb0085
  article-title: Cytoplasmic protein mobility in osmotically stressed Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00536-08
– volume: 104
  start-page: 1576
  year: 2013
  ident: 10.1016/j.bbagen.2025.130798_bb0065
  article-title: The shape of protein crowders is a major determinant of protein diffusion
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.02.041
– volume: 297
  start-page: 395
  issue: 2002
  year: 1979
  ident: 10.1016/j.bbagen.2025.130798_bb0235
  article-title: Systematic identification of pathways that couple cell growth and division in yeast
  publication-title: Science
– volume: 98
  start-page: 10037
  year: 2001
  ident: 10.1016/j.bbagen.2025.130798_bb0155
  article-title: Electrostatics of nanosystems: application to microtubules and the ribosome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.181342398
– volume: 39
  year: 2011
  ident: 10.1016/j.bbagen.2025.130798_bb0055
  article-title: Predicting translational diffusion of evolutionary conserved RNA structures by the nucleotide number
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq808
– volume: 6
  year: 2010
  ident: 10.1016/j.bbagen.2025.130798_bb0260
  article-title: Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000694
– volume: 6
  year: 2019
  ident: 10.1016/j.bbagen.2025.130798_bb0090
  article-title: Definition of the minimal contents for the molecular simulation of the yeast cytoplasm
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2019.00097
– volume: 121
  start-page: 8009
  year: 2017
  ident: 10.1016/j.bbagen.2025.130798_bb0015
  article-title: Crowding in cellular environments at an atomistic level from computer simulations
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b03570
– volume: 114
  start-page: 2733
  year: 2014
  ident: 10.1016/j.bbagen.2025.130798_bb0020
  article-title: Effects of molecular crowding on the structures, interactions, and functions of nucleic acids
  publication-title: Chem. Rev.
  doi: 10.1021/cr400113m
– volume: 45
  start-page: D313
  year: 2017
  ident: 10.1016/j.bbagen.2025.130798_bb0180
  article-title: The SWISS-MODEL repository-new features and functionality
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw1132
– volume: 45
  year: 2017
  ident: 10.1016/j.bbagen.2025.130798_bb0225
  article-title: Determination of tRNA aminoacylation levels by high-throughput sequencing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx514
– volume: 45
  start-page: 926
  year: 2017
  ident: 10.1016/j.bbagen.2025.130798_bb0050
  article-title: In vivo single-RNA tracking shows that most tRNA diffuses freely in live bacteria
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw787
– volume: 274
  start-page: 666
  year: 1999
  ident: 10.1016/j.bbagen.2025.130798_bb0185
  article-title: Quantitative assessment of EF-1α·GTP binding to aminoacyl-tRNAs, aminoacyl-viral RNA, and tRNA shows close correspondence to the RNA binding properties of EF-Tu *
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.2.666
– volume: 366
  start-page: 2979
  year: 2011
  ident: 10.1016/j.bbagen.2025.130798_bb0010
  article-title: Evolutionary optimization of speed and accuracy of decoding on the ribosome
  publication-title: Phil. Trans. Royal Soc. B Biol. Sci.
  doi: 10.1098/rstb.2011.0138
– volume: 110
  start-page: 5725
  year: 2013
  ident: 10.1016/j.bbagen.2025.130798_bb0075
  article-title: Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1215367110
– volume: 17
  start-page: 549
  year: 1905
  ident: 10.1016/j.bbagen.2025.130798_bb0250
  article-title: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19053220806
– volume: 34
  start-page: 2135
  year: 2013
  ident: 10.1016/j.bbagen.2025.130798_bb0115
  article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23354
– volume: 116
  start-page: 599
  year: 2012
  ident: 10.1016/j.bbagen.2025.130798_bb0060
  article-title: Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp209302e
– volume: 270
  start-page: 1464
  issue: 1995
  year: 1979
  ident: 10.1016/j.bbagen.2025.130798_bb0170
  article-title: Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog
  publication-title: Science
– volume: 53
  year: 2020
  ident: 10.1016/j.bbagen.2025.130798_bb0275
  article-title: Extreme statistics of anomalous subdiffusion following a fractional Fokker-Planck equation: subdiffusion is faster than normal diffusion
  publication-title: J. Phys. A Math. Theor.
  doi: 10.1088/1751-8121/aba39c
– volume: 46
  start-page: W296
  year: 2018
  ident: 10.1016/j.bbagen.2025.130798_bb0175
  article-title: SWISS-MODEL: homology modelling of protein structures and complexes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky427
– volume: 9
  start-page: 1753
  year: 2000
  ident: 10.1016/j.bbagen.2025.130798_bb0195
  article-title: Modeling of loops in protein structures
  publication-title: Protein Sci.
  doi: 10.1110/ps.9.9.1753
– volume: 37
  start-page: 896
  year: 2016
  ident: 10.1016/j.bbagen.2025.130798_bb0120
  article-title: Additive CHARMM force field for naturally occurring modified ribonucleotides
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24307
– volume: 94
  start-page: 3748
  year: 2008
  ident: 10.1016/j.bbagen.2025.130798_bb0040
  article-title: Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.116053
– volume: 81
  start-page: 7813
  year: 2015
  ident: 10.1016/j.bbagen.2025.130798_bb0135
  article-title: The cytosolic pH of individual saccharomyces cerevisiae cells is a key factor in acetic acid tolerance
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02313-15
– year: 2020
  ident: 10.1016/j.bbagen.2025.130798_bb0110
– volume: 55
  start-page: 3550
  year: 2016
  ident: 10.1016/j.bbagen.2025.130798_bb0035
  article-title: Effects of macromolecular crowding on alcohol dehydrogenase activity are substrate-dependent
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b00257
SSID ssj0000595
Score 2.4590566
Snippet The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 130798
SubjectTerms Brownian dynamics
Cytoplasm - metabolism
Diffusion
Macromolecular crowding
Osmotic Pressure
Osmotic stress
Protein Biosynthesis
Ribosomes - metabolism
RNA, Transfer - chemistry
RNA, Transfer - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Subdiffusion
Yeast cytoplasm
Title Diffusion properties of transfer RNAs in the yeast cytoplasm under normal and osmotic stress conditions
URI https://dx.doi.org/10.1016/j.bbagen.2025.130798
https://www.ncbi.nlm.nih.gov/pubmed/40154754
https://www.proquest.com/docview/3183675819
Volume 1869
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqEIIFQXmVR2Uk1tC0seN4rAqogOgAVOpmJY6NiiCp2nTowm_nLk5ADAiJMS_H-mzffee78xFykeiu9VOReGHia4_BcgI5GPa80FiTCu0DpcXc4YdROByzuwmfNMigzoXBsMpK9juZXkrr6k6nQrMzm047T-jUAzqBfjn0Z5UZ7EzgLL_8-A7zAPrAnSeBefh2nT5XxnglCSxaPAW1x7EsspDRb-rpN_pZqqGbHbJd8Ufad13cJQ2TNcmGqyi5apLNQV3AbY-8XE2tXeJuGJ3hlvscz06luaVFSVbNnD6O-gs6zSiQQLrCIj5Ur4p8BoT6nWJy2ZxmSGnfaJylNC8r_mjqskso2NGpC_faJ-Ob6-fB0KvqKng64LLwtAyNDJLYSqGDMDYyAis1lkyCbrfSB7XGrba6x3SqRRxFPNXwQAOT8o1h3Tg4IGtZnpkjQjkPUqBINggxJTVKpA4CbBwaTXuiK1vEq-FUM3d8hqrjyl6Vg18h_MrB3yKixlz9mAYKJPwfX57XQ6QAZ3R7xJnJlwuFUgvNIuzNoRu7r74wpJCCs-N___eEbOGVi4E8JWvFfGnOgKcUSbuciG2y3r-9H44-AXwJ5vg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hIlQWBOX9NBJr1LSJk3isClWh0AFaic1KHBsVQVKVdOi_5y5OQAwIiTWOHzrbd9_5XgBXieoYNw0TJ0hc5fh4nZAPBl0n0EanoXIR0lLs8MM4GE79u2f-vAb9OhaG3Cor3m95esmtqy_tiprt-WzWfiKjHsIJssuRPQtVoHXKTsUbsN67HQ3H3wyZl8VX6H-HOtQRdKWbV5LgvaVEqF1OlZFDEf0moX5DoKUkGmzDVgUhWc-ucgfWdNaCDVtUctWCZr-u4bYLL9czY5b0IMbm9Oq-oPSpLDesKPGqXrDHce-DzTKGOJCtqI4PU6sinyOmfmcUX7ZgGaHaNxZnKcvLoj-K2QAThqp0aj2-9mA6uJn0h05VWsFRHheFo0SghZfERoTKC2ItIlRUY-ELFO9GuCjZuFFGdX2VqjCOIp4qbFAIplyt_U7s7UMjyzN9CIxzL0WUZLyAolKjRCjPo8Fx0LQbdsQRODU55dxm0JC1a9mrtOSXRH5pyX8EYU1z-eMkSGTyf_S8rLdIIp3J8hFnOl9-SGJcpBnRag7s3n2txScUGXL_-N_zXkBzOHm4l_e349EJbFKLdYk8hUaxWOozhC1Fcl4dy09t-Omp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion+properties+of+transfer+RNAs+in+the+yeast+cytoplasm+under+normal+and+osmotic+stress+conditions&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Kompella%2C+Vijay+Phanindra+Srikanth&rft.au=Romano%2C+Maria+Carmen&rft.au=Stansfield%2C+Ian&rft.au=Mancera%2C+Ricardo+L&rft.date=2025-05-01&rft.eissn=1872-8006&rft.volume=1869&rft.issue=6&rft.spage=130798&rft_id=info:doi/10.1016%2Fj.bbagen.2025.130798&rft_id=info%3Apmid%2F40154754&rft.externalDocID=40154754
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon