Diffusion properties of transfer RNAs in the yeast cytoplasm under normal and osmotic stress conditions
The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentratio...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1869; no. 6; p. 130798 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentration of macromolecules in the cytoplasm, reducing protein diffusion. The impact of macromolecular crowding on the translation machinery in eukaryotes remains uncharacterised. In this study Brownian dynamics simulation were used for the first time to study the effect of macromolecular crowding on the microsecond-time scale diffusion properties of tRNAs and their ternary complexes within a model yeast cytoplasmic environment. Under normal cell-like conditions, the diffusion of tRNAs and ternary complexes was predicted to be reduced by up to 8-fold (compared with dilute conditions), whilst diffusion under severe osmotic stress conditions decreased by up to a remarkable 80-fold. All molecules exhibited sub-diffusive behaviour, which was stronger under osmotic stress. These findings may be readily used to predict protein translation dynamics, including the crucial process of tRNA delivery to the ribosome, under a variety of conditions.
•Macromolecular crowding induces sub-diffusive dynamics in the microsecond-time scale.•Diffusion of tRNAs and their complexes are reduced 8-fold in the yeast cytoplasm.•Diffusion under severe osmotic stress decreases by 80-fold.•Macromolecular concentration, composition and size distribution affect diffusion. |
---|---|
AbstractList | The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentration of macromolecules in the cytoplasm, reducing protein diffusion. The impact of macromolecular crowding on the translation machinery in eukaryotes remains uncharacterised. In this study Brownian dynamics simulation were used for the first time to study the effect of macromolecular crowding on the microsecond-time scale diffusion properties of tRNAs and their ternary complexes within a model yeast cytoplasmic environment. Under normal cell-like conditions, the diffusion of tRNAs and ternary complexes was predicted to be reduced by up to 8-fold (compared with dilute conditions), whilst diffusion under severe osmotic stress conditions decreased by up to a remarkable 80-fold. All molecules exhibited sub-diffusive behaviour, which was stronger under osmotic stress. These findings may be readily used to predict protein translation dynamics, including the crucial process of tRNA delivery to the ribosome, under a variety of conditions.The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentration of macromolecules in the cytoplasm, reducing protein diffusion. The impact of macromolecular crowding on the translation machinery in eukaryotes remains uncharacterised. In this study Brownian dynamics simulation were used for the first time to study the effect of macromolecular crowding on the microsecond-time scale diffusion properties of tRNAs and their ternary complexes within a model yeast cytoplasmic environment. Under normal cell-like conditions, the diffusion of tRNAs and ternary complexes was predicted to be reduced by up to 8-fold (compared with dilute conditions), whilst diffusion under severe osmotic stress conditions decreased by up to a remarkable 80-fold. All molecules exhibited sub-diffusive behaviour, which was stronger under osmotic stress. These findings may be readily used to predict protein translation dynamics, including the crucial process of tRNA delivery to the ribosome, under a variety of conditions. The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentration of macromolecules in the cytoplasm, reducing protein diffusion. The impact of macromolecular crowding on the translation machinery in eukaryotes remains uncharacterised. In this study Brownian dynamics simulation were used for the first time to study the effect of macromolecular crowding on the microsecond-time scale diffusion properties of tRNAs and their ternary complexes within a model yeast cytoplasmic environment. Under normal cell-like conditions, the diffusion of tRNAs and ternary complexes was predicted to be reduced by up to 8-fold (compared with dilute conditions), whilst diffusion under severe osmotic stress conditions decreased by up to a remarkable 80-fold. All molecules exhibited sub-diffusive behaviour, which was stronger under osmotic stress. These findings may be readily used to predict protein translation dynamics, including the crucial process of tRNA delivery to the ribosome, under a variety of conditions. The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the cellular environment, which is inevitably impacted by macromolecular crowding. Osmotic stress leading to cell shrinkage increases the concentration of macromolecules in the cytoplasm, reducing protein diffusion. The impact of macromolecular crowding on the translation machinery in eukaryotes remains uncharacterised. In this study Brownian dynamics simulation were used for the first time to study the effect of macromolecular crowding on the microsecond-time scale diffusion properties of tRNAs and their ternary complexes within a model yeast cytoplasmic environment. Under normal cell-like conditions, the diffusion of tRNAs and ternary complexes was predicted to be reduced by up to 8-fold (compared with dilute conditions), whilst diffusion under severe osmotic stress conditions decreased by up to a remarkable 80-fold. All molecules exhibited sub-diffusive behaviour, which was stronger under osmotic stress. These findings may be readily used to predict protein translation dynamics, including the crucial process of tRNA delivery to the ribosome, under a variety of conditions. •Macromolecular crowding induces sub-diffusive dynamics in the microsecond-time scale.•Diffusion of tRNAs and their complexes are reduced 8-fold in the yeast cytoplasm.•Diffusion under severe osmotic stress decreases by 80-fold.•Macromolecular concentration, composition and size distribution affect diffusion. |
ArticleNumber | 130798 |
Author | Romano, Maria Carmen Mancera, Ricardo L. Stansfield, Ian Kompella, Vijay Phanindra Srikanth |
Author_xml | – sequence: 1 givenname: Vijay Phanindra Srikanth surname: Kompella fullname: Kompella, Vijay Phanindra Srikanth organization: Curtin Medical School, Curtin Medical Research Institute, Curtin University, Perth, WA, Australia – sequence: 2 givenname: Maria Carmen surname: Romano fullname: Romano, Maria Carmen organization: Department of Physics, Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, United Kingdom – sequence: 3 givenname: Ian surname: Stansfield fullname: Stansfield, Ian organization: Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom – sequence: 4 givenname: Ricardo L. surname: Mancera fullname: Mancera, Ricardo L. email: R.Mancera@curtin.edu.au organization: Curtin Medical School, Curtin Medical Research Institute, Curtin University, Perth, WA, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40154754$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU-LFDEQxYOsuLOr30AkRy89Jp2kO7kIy_oXFgXRc8ikK2uG7mRMpYX59mbp1aN1qUP93oNX74pcpJyAkJec7Tnjw5vj_nBw95D2PevVngs2Gv2E7Lge-04zNlyQHRNMdpIP6pJcIR5ZG2XUM3IpGVdyVHJH7t_FEFaMOdFTyScoNQLSHGgtLmGAQr99uUEaE60_gZ7BYaX-XPNpdrjQNU2NSLksbqYuTTTjkmv0FGsBROpzmmJt5vicPA1uRnjxuK_Jjw_vv99-6u6-fvx8e3PXeaFM7bwZwIiDC2b0YnBgtBajM9KwgQfDJBcq-OB76Sc_Oq3V5NvBC9MzAMmduCavN9-W5tcKWO0S0cM8uwR5RSu4FsOoNDcNffWIrocFJnsqcXHlbP8-pwFyA3zJiAXCP4Qz-9CBPdqtA_vQgd06aLK3mwxazt8RikUfIXmYYgFf7ZTj_w3-AMpakeA |
Cites_doi | 10.1021/ja211115q 10.1016/j.febslet.2009.10.069 10.1137/S003614450342061 10.1093/nar/gkm276 10.1002/jcc.540140114 10.1038/nprot.2010.5 10.1111/j.1365-2958.2010.07201.x 10.1186/1471-2105-9-40 10.1002/prot.24065 10.1021/acs.jpcb.0c04846 10.1038/nmeth.3213 10.1016/j.bpj.2009.05.014 10.1002/pro.3280 10.1021/acs.jpclett.9b00345 10.1074/jbc.M707245200 10.1093/nar/gkh381 10.1006/jmbi.1993.1626 10.1371/journal.pcbi.1002203 10.1002/elps.1150181505 10.1073/pnas.1310377110 10.1146/annurev-biophys-051013-022717 10.1002/prot.24179 10.1007/BF01869695 10.1007/s00709-004-0079-x 10.1002/jcc.23971 10.1073/pnas.1011354107 10.1016/j.bpj.2023.12.002 10.1016/j.bpj.2011.06.046 10.1128/JB.00536-08 10.1016/j.bpj.2013.02.041 10.1073/pnas.181342398 10.1093/nar/gkq808 10.1371/journal.pcbi.1000694 10.3389/fmolb.2019.00097 10.1021/acs.jpcb.7b03570 10.1021/cr400113m 10.1093/nar/gkw1132 10.1093/nar/gkx514 10.1093/nar/gkw787 10.1074/jbc.274.2.666 10.1098/rstb.2011.0138 10.1073/pnas.1215367110 10.1002/andp.19053220806 10.1002/jcc.23354 10.1021/jp209302e 10.1088/1751-8121/aba39c 10.1093/nar/gky427 10.1110/ps.9.9.1753 10.1002/jcc.24307 10.1529/biophysj.107.116053 10.1128/AEM.02313-15 10.1021/acs.biochem.6b00257 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2025 The Author(s) – notice: Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bbagen.2025.130798 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1872-8006 |
ExternalDocumentID | 40154754 10_1016_j_bbagen_2025_130798 S0304416525000431 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABEFU ABFNM ABGSF ABMAC ABUDA ABWVN ABXDB ACDAQ ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX AEBSH AEIPS AEKER AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K UQL WH7 WUQ XJT XPP ~G- AAYWO AAYXX ACIUM ACVFH ADCNI AEHWI AEUPX AFPUW AGRNS AIGII AIIUN AKBMS AKYEP CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c359t-c96e93baf97c36ae98837a949061f904135fcfc24cdc7a885dc61fc3920ee41a3 |
IEDL.DBID | .~1 |
ISSN | 0304-4165 1872-8006 |
IngestDate | Wed Jul 02 05:12:39 EDT 2025 Sat May 31 02:14:03 EDT 2025 Tue Jul 01 04:59:56 EDT 2025 Sat May 03 15:40:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Macromolecular crowding Brownian dynamics Yeast cytoplasm Subdiffusion Osmotic stress |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Author(s). Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-c96e93baf97c36ae98837a949061f904135fcfc24cdc7a885dc61fc3920ee41a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0304416525000431 |
PMID | 40154754 |
PQID | 3183675819 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3183675819 pubmed_primary_40154754 crossref_primary_10_1016_j_bbagen_2025_130798 elsevier_sciencedirect_doi_10_1016_j_bbagen_2025_130798 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Biochimica et biophysica acta. General subjects |
PublicationTitleAlternate | Biochim Biophys Acta Gen Subj |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Werner (bb0055) 2011; 39 Baker, Sept, Joseph, Holst, McCammon (bb0155) 2001; 98 Yang, Yan, Roy, Xu, Poisson, Zhang (bb0210) 2015; 12 Konopka, Sochacki, Bratton, Shkel, Record, Weisshaar (bb0085) 2009; 91 McGuffee, Elcock (bb0260) 2010; 6 Hohmann (bb0080) 2009; 583 Lawley (bb0275) 2020; 53 Holst, Saied (bb0145) 1993; 14 Waterhouse, Bertoni, Bienert, Studer, Tauriello, Gumienny, Heer, De Beer, Rempfer, Bordoli, Lepore, Schwede (bb0175) 2018; 46 Guex, Peitsch (bb0105) 1997; 18 Xu, Zhang (bb0220) 2012; 80 Dolinsky, Nielsen, McCammon, Baker (bb0125) 2004; 32 Jurrus, Engel, Star, Monson, Brandi, Felberg, Brookes, Wilson, Chen, Liles, Chun, Li, Gohara, Dolinsky, Konecny, Koes, Nielsen, Head-Gordon, Geng, Krasny (bb0140) 2018; 27 Xu, Zhang (bb0215) 2013; 81 Šali, Blundell (bb0190) 1993; 234 Feig, Yu, Wang, Nawrocki, Sugita (bb0015) 2017; 121 Gromadski, Schümmer, Strømgaard, Knudsen, Kinzy, Rodnina (bb0230) 2007; 282 Wilcox, LoConte, Slade (bb0035) 2016; 55 Kompella, Stansfield, Romano, Mancera (bb0090) 2019; 6 BIOVIA (bb0110) 2020 Dolinsky, Czodrowski, Li, Nielsen, Jensen, Klebe, Baker (bb0130) 2007; 35 Miermont, Waharte, Hu, McClean, Bottani, Léon, Hersen (bb0075) 2013; 110 Ridgway, Broderick, Lopez-Campistrous, Ru’Aini, Winter, Hamilton, Boulanger, Kovalenko, Ellison (bb0040) 2008; 94 Feig, Sugita (bb0060) 2012; 116 Fiser, Do, Šali (bb0195) 2000; 9 Zhang (bb0200) 2008; 9 Skóra, Vaghefikia, Fitter, Kondrat (bb0265) 2020; 124 Roy, Kucukural, Zhang (bb0205) 2010; 5 Nissen, Kjeldgaard, Thirup, Polekhina, Reshetnikova, Clark, Nyborg (bb0170) 1979; 270 Asami, Hanai, Koizumi (bb0030) 1976; 28 Cohen, Venkatachalam (bb0160) 2014; 43 Ben-Shem, De Loubresse, Melnikov, Jenner, Yusupova, Yusupov (bb0095) 1979; 334 Plochowietz, Farrell, Smilansky, Cooperman, Kapanidis (bb0050) 2017; 45 Dreher, Uhlenbeck, Browning (bb0185) 1999; 274 Xu, Vanommeslaeghe, Aleksandrov, MacKerell, Nilsson (bb0120) 2016; 37 Ortega, Amorós, García De La Torre (bb0165) 2011; 101 Wohlgemuth, Pohl, Mittelstaet, Konevega, Rodnina (bb0010) 2011; 366 Harada, Sugita, Feig (bb0025) 2012; 134 Kompella, Romano, Stansfield, Mancera (bb0100) 2024; 123 Evans, Clark, Zheng, Pan (bb0225) 2017; 45 Martinez, Bruce, Romanowska, Kokh, Ozboyaci, Yu, Öztürk, Richter, Wade (bb0245) 2015; 36 Klumpp, Scott, Pedersen, Hwa (bb0070) 2013; 110 Nakano, Miyoshi, Sugimoto (bb0020) 2014; 114 Huang, Mackerell (bb0115) 2013; 34 Einstein (bb0250) 1905; 17 Bienert, Waterhouse, De Beer, Tauriello, Studer, Bordoli, Schwede (bb0180) 2017; 45 Haugh (bb0280) 2009; 97 Grimaldo, Lopez, Beck, Roosen-Runge, Moulin, Devos, Laux, Härtlein, Da Vela, Schweins, Mariani, Zhang, Barrat, Oettel, Forsyth, Seydel, Schreiber (bb0240) 2019; 10 Fernández-Niño, Marquina, Swinnen, Rodríguez-Porrata, Nevoigt, Ariño (bb0135) 2015; 81 Liarzi, Epel (bb0255) 2005; 225 Ando, Skolnick (bb0045) 2010; 107 Balbo, Mereghetti, Herten, Wade (bb0065) 2013; 104 Mika, van den Bogaart, Veenhoff, Krasnikov, Poolman (bb0270) 2010; 77 Bank, Holst (bb0150) 2003; 45 Brackley, Romano, Thiel (bb0005) 2011; 7 Jorgensen, Nishikawa, Breitkreutz, Tyers (bb0235) 1979; 297 Huang (10.1016/j.bbagen.2025.130798_bb0115) 2013; 34 Hohmann (10.1016/j.bbagen.2025.130798_bb0080) 2009; 583 Xu (10.1016/j.bbagen.2025.130798_bb0220) 2012; 80 Liarzi (10.1016/j.bbagen.2025.130798_bb0255) 2005; 225 Mika (10.1016/j.bbagen.2025.130798_bb0270) 2010; 77 Fernández-Niño (10.1016/j.bbagen.2025.130798_bb0135) 2015; 81 Zhang (10.1016/j.bbagen.2025.130798_bb0200) 2008; 9 Nakano (10.1016/j.bbagen.2025.130798_bb0020) 2014; 114 Miermont (10.1016/j.bbagen.2025.130798_bb0075) 2013; 110 Xu (10.1016/j.bbagen.2025.130798_bb0215) 2013; 81 Kompella (10.1016/j.bbagen.2025.130798_bb0100) 2024; 123 Roy (10.1016/j.bbagen.2025.130798_bb0205) 2010; 5 Lawley (10.1016/j.bbagen.2025.130798_bb0275) 2020; 53 Ridgway (10.1016/j.bbagen.2025.130798_bb0040) 2008; 94 McGuffee (10.1016/j.bbagen.2025.130798_bb0260) 2010; 6 Asami (10.1016/j.bbagen.2025.130798_bb0030) 1976; 28 Wilcox (10.1016/j.bbagen.2025.130798_bb0035) 2016; 55 Werner (10.1016/j.bbagen.2025.130798_bb0055) 2011; 39 Dolinsky (10.1016/j.bbagen.2025.130798_bb0125) 2004; 32 Bank (10.1016/j.bbagen.2025.130798_bb0150) 2003; 45 Cohen (10.1016/j.bbagen.2025.130798_bb0160) 2014; 43 Brackley (10.1016/j.bbagen.2025.130798_bb0005) 2011; 7 Dolinsky (10.1016/j.bbagen.2025.130798_bb0130) 2007; 35 Waterhouse (10.1016/j.bbagen.2025.130798_bb0175) 2018; 46 Kompella (10.1016/j.bbagen.2025.130798_bb0090) 2019; 6 Grimaldo (10.1016/j.bbagen.2025.130798_bb0240) 2019; 10 Evans (10.1016/j.bbagen.2025.130798_bb0225) 2017; 45 Haugh (10.1016/j.bbagen.2025.130798_bb0280) 2009; 97 Baker (10.1016/j.bbagen.2025.130798_bb0155) 2001; 98 Ben-Shem (10.1016/j.bbagen.2025.130798_bb0095) 1979; 334 Guex (10.1016/j.bbagen.2025.130798_bb0105) 1997; 18 Dreher (10.1016/j.bbagen.2025.130798_bb0185) 1999; 274 Balbo (10.1016/j.bbagen.2025.130798_bb0065) 2013; 104 Skóra (10.1016/j.bbagen.2025.130798_bb0265) 2020; 124 Plochowietz (10.1016/j.bbagen.2025.130798_bb0050) 2017; 45 Harada (10.1016/j.bbagen.2025.130798_bb0025) 2012; 134 Feig (10.1016/j.bbagen.2025.130798_bb0060) 2012; 116 Xu (10.1016/j.bbagen.2025.130798_bb0120) 2016; 37 Ortega (10.1016/j.bbagen.2025.130798_bb0165) 2011; 101 Einstein (10.1016/j.bbagen.2025.130798_bb0250) 1905; 17 Yang (10.1016/j.bbagen.2025.130798_bb0210) 2015; 12 Gromadski (10.1016/j.bbagen.2025.130798_bb0230) 2007; 282 Klumpp (10.1016/j.bbagen.2025.130798_bb0070) 2013; 110 Martinez (10.1016/j.bbagen.2025.130798_bb0245) 2015; 36 Bienert (10.1016/j.bbagen.2025.130798_bb0180) 2017; 45 Feig (10.1016/j.bbagen.2025.130798_bb0015) 2017; 121 Konopka (10.1016/j.bbagen.2025.130798_bb0085) 2009; 91 Jurrus (10.1016/j.bbagen.2025.130798_bb0140) 2018; 27 Holst (10.1016/j.bbagen.2025.130798_bb0145) 1993; 14 Jorgensen (10.1016/j.bbagen.2025.130798_bb0235) 1979; 297 Fiser (10.1016/j.bbagen.2025.130798_bb0195) 2000; 9 Ando (10.1016/j.bbagen.2025.130798_bb0045) 2010; 107 Wohlgemuth (10.1016/j.bbagen.2025.130798_bb0010) 2011; 366 BIOVIA (10.1016/j.bbagen.2025.130798_bb0110) 2020 Nissen (10.1016/j.bbagen.2025.130798_bb0170) 1979; 270 Šali (10.1016/j.bbagen.2025.130798_bb0190) 1993; 234 |
References_xml | – volume: 270 start-page: 1464 year: 1979 end-page: 1472 ident: bb0170 article-title: Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog publication-title: Science – volume: 91 start-page: 231 year: 2009 end-page: 237 ident: bb0085 article-title: Cytoplasmic protein mobility in osmotically stressed publication-title: J. Bacteriol. – volume: 121 start-page: 8009 year: 2017 end-page: 8025 ident: bb0015 article-title: Crowding in cellular environments at an atomistic level from computer simulations publication-title: J. Phys. Chem. B – volume: 274 start-page: 666 year: 1999 end-page: 672 ident: bb0185 article-title: Quantitative assessment of EF-1α·GTP binding to aminoacyl-tRNAs, aminoacyl-viral RNA, and tRNA shows close correspondence to the RNA binding properties of EF-Tu * publication-title: J. Biol. Chem. – volume: 39 year: 2011 ident: bb0055 article-title: Predicting translational diffusion of evolutionary conserved RNA structures by the nucleotide number publication-title: Nucleic Acids Res. – volume: 45 year: 2017 ident: bb0225 article-title: Determination of tRNA aminoacylation levels by high-throughput sequencing publication-title: Nucleic Acids Res. – volume: 110 start-page: 5725 year: 2013 end-page: 5730 ident: bb0075 article-title: Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding publication-title: Proc. Natl. Acad. Sci. USA – volume: 43 start-page: 211 year: 2014 end-page: 232 ident: bb0160 article-title: Bringing bioelectricity to light publication-title: Annu. Rev. Biophys. – volume: 5 start-page: 725 year: 2010 end-page: 738 ident: bb0205 article-title: I-TASSER: a unified platform for automated protein structure and function prediction publication-title: Nat. Protoc. – volume: 134 start-page: 4842 year: 2012 end-page: 4849 ident: bb0025 article-title: Protein crowding affects hydration structure and dynamics publication-title: J. Am. Chem. Soc. – year: 2020 ident: bb0110 article-title: Dassault Systèmes, Discovery Studio Visualizer – volume: 116 start-page: 599 year: 2012 end-page: 605 ident: bb0060 article-title: Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding publication-title: J. Phys. Chem. B – volume: 81 start-page: 229 year: 2013 end-page: 239 ident: bb0215 article-title: Toward optimal fragment generations for ab initio protein structure assembly publication-title: Proteins – volume: 55 start-page: 3550 year: 2016 end-page: 3558 ident: bb0035 article-title: Effects of macromolecular crowding on alcohol dehydrogenase activity are substrate-dependent publication-title: Biochemistry – volume: 124 start-page: 7537 year: 2020 end-page: 7543 ident: bb0265 article-title: Macromolecular crowding: how shape and interactions affect diffusion publication-title: J. Phys. Chem. B – volume: 80 start-page: 1715 year: 2012 end-page: 1735 ident: bb0220 article-title: Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field publication-title: Proteins – volume: 36 start-page: 1631 year: 2015 end-page: 1645 ident: bb0245 article-title: SDA 7: a modular and parallel implementation of the simulation of diffusional association software publication-title: J. Comput. Chem. – volume: 46 start-page: W296 year: 2018 end-page: W303 ident: bb0175 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res. – volume: 27 start-page: 112 year: 2018 end-page: 128 ident: bb0140 article-title: Improvements to the APBS biomolecular solvation software suite publication-title: Protein Sci. – volume: 32 start-page: W655 year: 2004 end-page: W657 ident: bb0125 article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations publication-title: Nucleic Acids Res. – volume: 104 start-page: 1576 year: 2013 end-page: 1584 ident: bb0065 article-title: The shape of protein crowders is a major determinant of protein diffusion publication-title: Biophys. J. – volume: 366 start-page: 2979 year: 2011 end-page: 2986 ident: bb0010 article-title: Evolutionary optimization of speed and accuracy of decoding on the ribosome publication-title: Phil. Trans. Royal Soc. B Biol. Sci. – volume: 28 start-page: 169 year: 1976 end-page: 180 ident: bb0030 article-title: Dielectric properties of yeast cells publication-title: J. Membr. Biol. – volume: 17 start-page: 549 year: 1905 end-page: 560 ident: bb0250 article-title: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen publication-title: Ann. Phys. – volume: 81 start-page: 7813 year: 2015 end-page: 7821 ident: bb0135 article-title: The cytosolic pH of individual publication-title: Appl. Environ. Microbiol. – volume: 225 start-page: 67 year: 2005 end-page: 76 ident: bb0255 article-title: Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals publication-title: Protoplasma – volume: 37 start-page: 896 year: 2016 end-page: 912 ident: bb0120 article-title: Additive CHARMM force field for naturally occurring modified ribonucleotides publication-title: J. Comput. Chem. – volume: 6 year: 2019 ident: bb0090 article-title: Definition of the minimal contents for the molecular simulation of the yeast cytoplasm publication-title: Front. Mol. Biosci. – volume: 34 start-page: 2135 year: 2013 end-page: 2145 ident: bb0115 article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data publication-title: J. Comput. Chem. – volume: 6 year: 2010 ident: bb0260 article-title: Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm publication-title: PLoS Comput. Biol. – volume: 107 start-page: 18457 year: 2010 end-page: 18462 ident: bb0045 article-title: Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion publication-title: Proc. Natl. Acad. Sci. USA – volume: 94 start-page: 3748 year: 2008 end-page: 3759 ident: bb0040 article-title: Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm publication-title: Biophys. J. – volume: 334 start-page: 1524 year: 1979 end-page: 1529 ident: bb0095 article-title: The structure of the eukaryotic ribosome at 30 Å resolution publication-title: Science – volume: 282 start-page: 35629 year: 2007 end-page: 35637 ident: bb0230 article-title: Kinetics of the interactions between yeast elongation factors 1A and 1Bα, guanine nucleotides, and aminoacyl-tRNA publication-title: J. Biol. Chem. – volume: 18 start-page: 2714 year: 1997 end-page: 2723 ident: bb0105 article-title: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling publication-title: Electrophoresis – volume: 35 start-page: W522 year: 2007 end-page: W525 ident: bb0130 article-title: PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations publication-title: Nucleic Acids Res. – volume: 97 start-page: 435 year: 2009 end-page: 442 ident: bb0280 article-title: Analysis of reaction-diffusion systems with anomalous subdiffusion publication-title: Biophys. J. – volume: 110 start-page: 16754 year: 2013 end-page: 16759 ident: bb0070 article-title: Molecular crowding limits translation and cell growth publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 1753 year: 2000 end-page: 1773 ident: bb0195 article-title: Modeling of loops in protein structures publication-title: Protein Sci. – volume: 45 start-page: 926 year: 2017 end-page: 937 ident: bb0050 article-title: In vivo single-RNA tracking shows that most tRNA diffuses freely in live bacteria publication-title: Nucleic Acids Res. – volume: 14 start-page: 105 year: 1993 end-page: 113 ident: bb0145 article-title: Multigrid solution of the Poisson-Boltzmann equation publication-title: J. Comput. Chem. – volume: 234 start-page: 779 year: 1993 end-page: 815 ident: bb0190 article-title: Comparative protein modelling by satisfaction of spatial restraints publication-title: J. Mol. Biol. – volume: 77 start-page: 200 year: 2010 end-page: 207 ident: bb0270 article-title: Molecular sieving properties of the cytoplasm of publication-title: Mol. Microbiol. – volume: 583 start-page: 4025 year: 2009 end-page: 4029 ident: bb0080 article-title: Control of high osmolarity signalling in the yeast publication-title: FEBS Lett. – volume: 101 start-page: 892 year: 2011 end-page: 898 ident: bb0165 article-title: Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models publication-title: Biophys. J. – volume: 297 start-page: 395 year: 1979 end-page: 400 ident: bb0235 article-title: Systematic identification of pathways that couple cell growth and division in yeast publication-title: Science – volume: 7 year: 2011 ident: bb0005 article-title: The dynamics of supply and demand in mRNA translation publication-title: PLoS Comput. Biol. – volume: 123 start-page: 134 year: 2024 end-page: 146 ident: bb0100 article-title: What determines sub-diffusive behavior in crowded protein solutions? publication-title: Biophys. J. – volume: 53 year: 2020 ident: bb0275 article-title: Extreme statistics of anomalous subdiffusion following a fractional Fokker-Planck equation: subdiffusion is faster than normal diffusion publication-title: J. Phys. A Math. Theor. – volume: 45 start-page: D313 year: 2017 end-page: D319 ident: bb0180 article-title: The SWISS-MODEL repository-new features and functionality publication-title: Nucleic Acids Res. – volume: 9 start-page: 1 year: 2008 end-page: 8 ident: bb0200 article-title: I-TASSER server for protein 3D structure prediction publication-title: BMC Bioinform. – volume: 114 start-page: 2733 year: 2014 end-page: 2758 ident: bb0020 article-title: Effects of molecular crowding on the structures, interactions, and functions of nucleic acids publication-title: Chem. Rev. – volume: 10 start-page: 1709 year: 2019 end-page: 1715 ident: bb0240 article-title: Protein short-time diffusion in a naturally crowded environment publication-title: J. Phys. Chem. Lett. – volume: 45 start-page: 291 year: 2003 end-page: 323 ident: bb0150 article-title: A new paradigm for parallel adaptive meshing algorithms publication-title: SIAM Rev. – volume: 12 start-page: 7 year: 2015 end-page: 8 ident: bb0210 article-title: The I-TASSER suite: protein structure and function prediction publication-title: Nat. Methods – volume: 98 start-page: 10037 year: 2001 end-page: 10041 ident: bb0155 article-title: Electrostatics of nanosystems: application to microtubules and the ribosome publication-title: Proc. Natl. Acad. Sci. USA – volume: 134 start-page: 4842 year: 2012 ident: 10.1016/j.bbagen.2025.130798_bb0025 article-title: Protein crowding affects hydration structure and dynamics publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211115q – volume: 583 start-page: 4025 year: 2009 ident: 10.1016/j.bbagen.2025.130798_bb0080 article-title: Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae publication-title: FEBS Lett. doi: 10.1016/j.febslet.2009.10.069 – volume: 45 start-page: 291 year: 2003 ident: 10.1016/j.bbagen.2025.130798_bb0150 article-title: A new paradigm for parallel adaptive meshing algorithms publication-title: SIAM Rev. doi: 10.1137/S003614450342061 – volume: 35 start-page: W522 year: 2007 ident: 10.1016/j.bbagen.2025.130798_bb0130 article-title: PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm276 – volume: 14 start-page: 105 year: 1993 ident: 10.1016/j.bbagen.2025.130798_bb0145 article-title: Multigrid solution of the Poisson-Boltzmann equation publication-title: J. Comput. Chem. doi: 10.1002/jcc.540140114 – volume: 5 start-page: 725 year: 2010 ident: 10.1016/j.bbagen.2025.130798_bb0205 article-title: I-TASSER: a unified platform for automated protein structure and function prediction publication-title: Nat. Protoc. doi: 10.1038/nprot.2010.5 – volume: 77 start-page: 200 year: 2010 ident: 10.1016/j.bbagen.2025.130798_bb0270 article-title: Molecular sieving properties of the cytoplasm of Escherichia coli and consequences of osmotic stress publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2010.07201.x – volume: 9 start-page: 1 year: 2008 ident: 10.1016/j.bbagen.2025.130798_bb0200 article-title: I-TASSER server for protein 3D structure prediction publication-title: BMC Bioinform. doi: 10.1186/1471-2105-9-40 – volume: 80 start-page: 1715 year: 2012 ident: 10.1016/j.bbagen.2025.130798_bb0220 article-title: Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field publication-title: Proteins doi: 10.1002/prot.24065 – volume: 124 start-page: 7537 year: 2020 ident: 10.1016/j.bbagen.2025.130798_bb0265 article-title: Macromolecular crowding: how shape and interactions affect diffusion publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.0c04846 – volume: 12 start-page: 7 year: 2015 ident: 10.1016/j.bbagen.2025.130798_bb0210 article-title: The I-TASSER suite: protein structure and function prediction publication-title: Nat. Methods doi: 10.1038/nmeth.3213 – volume: 97 start-page: 435 year: 2009 ident: 10.1016/j.bbagen.2025.130798_bb0280 article-title: Analysis of reaction-diffusion systems with anomalous subdiffusion publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.05.014 – volume: 27 start-page: 112 year: 2018 ident: 10.1016/j.bbagen.2025.130798_bb0140 article-title: Improvements to the APBS biomolecular solvation software suite publication-title: Protein Sci. doi: 10.1002/pro.3280 – volume: 10 start-page: 1709 year: 2019 ident: 10.1016/j.bbagen.2025.130798_bb0240 article-title: Protein short-time diffusion in a naturally crowded environment publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00345 – volume: 334 start-page: 1524 issue: 2011 year: 1979 ident: 10.1016/j.bbagen.2025.130798_bb0095 article-title: The structure of the eukaryotic ribosome at 30 Å resolution publication-title: Science – volume: 282 start-page: 35629 year: 2007 ident: 10.1016/j.bbagen.2025.130798_bb0230 article-title: Kinetics of the interactions between yeast elongation factors 1A and 1Bα, guanine nucleotides, and aminoacyl-tRNA publication-title: J. Biol. Chem. doi: 10.1074/jbc.M707245200 – volume: 32 start-page: W655 year: 2004 ident: 10.1016/j.bbagen.2025.130798_bb0125 article-title: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh381 – volume: 234 start-page: 779 year: 1993 ident: 10.1016/j.bbagen.2025.130798_bb0190 article-title: Comparative protein modelling by satisfaction of spatial restraints publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1993.1626 – volume: 7 year: 2011 ident: 10.1016/j.bbagen.2025.130798_bb0005 article-title: The dynamics of supply and demand in mRNA translation publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1002203 – volume: 18 start-page: 2714 year: 1997 ident: 10.1016/j.bbagen.2025.130798_bb0105 article-title: SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling publication-title: Electrophoresis doi: 10.1002/elps.1150181505 – volume: 110 start-page: 16754 year: 2013 ident: 10.1016/j.bbagen.2025.130798_bb0070 article-title: Molecular crowding limits translation and cell growth publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1310377110 – volume: 43 start-page: 211 year: 2014 ident: 10.1016/j.bbagen.2025.130798_bb0160 article-title: Bringing bioelectricity to light publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-051013-022717 – volume: 81 start-page: 229 year: 2013 ident: 10.1016/j.bbagen.2025.130798_bb0215 article-title: Toward optimal fragment generations for ab initio protein structure assembly publication-title: Proteins doi: 10.1002/prot.24179 – volume: 28 start-page: 169 year: 1976 ident: 10.1016/j.bbagen.2025.130798_bb0030 article-title: Dielectric properties of yeast cells publication-title: J. Membr. Biol. doi: 10.1007/BF01869695 – volume: 225 start-page: 67 year: 2005 ident: 10.1016/j.bbagen.2025.130798_bb0255 article-title: Development of a quantitative tool for measuring changes in the coefficient of conductivity of plasmodesmata induced by developmental, biotic, and abiotic signals publication-title: Protoplasma doi: 10.1007/s00709-004-0079-x – volume: 36 start-page: 1631 year: 2015 ident: 10.1016/j.bbagen.2025.130798_bb0245 article-title: SDA 7: a modular and parallel implementation of the simulation of diffusional association software publication-title: J. Comput. Chem. doi: 10.1002/jcc.23971 – volume: 107 start-page: 18457 year: 2010 ident: 10.1016/j.bbagen.2025.130798_bb0045 article-title: Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1011354107 – volume: 123 start-page: 134 year: 2024 ident: 10.1016/j.bbagen.2025.130798_bb0100 article-title: What determines sub-diffusive behavior in crowded protein solutions? publication-title: Biophys. J. doi: 10.1016/j.bpj.2023.12.002 – volume: 101 start-page: 892 year: 2011 ident: 10.1016/j.bbagen.2025.130798_bb0165 article-title: Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models publication-title: Biophys. J. doi: 10.1016/j.bpj.2011.06.046 – volume: 91 start-page: 231 year: 2009 ident: 10.1016/j.bbagen.2025.130798_bb0085 article-title: Cytoplasmic protein mobility in osmotically stressed Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.00536-08 – volume: 104 start-page: 1576 year: 2013 ident: 10.1016/j.bbagen.2025.130798_bb0065 article-title: The shape of protein crowders is a major determinant of protein diffusion publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.02.041 – volume: 297 start-page: 395 issue: 2002 year: 1979 ident: 10.1016/j.bbagen.2025.130798_bb0235 article-title: Systematic identification of pathways that couple cell growth and division in yeast publication-title: Science – volume: 98 start-page: 10037 year: 2001 ident: 10.1016/j.bbagen.2025.130798_bb0155 article-title: Electrostatics of nanosystems: application to microtubules and the ribosome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.181342398 – volume: 39 year: 2011 ident: 10.1016/j.bbagen.2025.130798_bb0055 article-title: Predicting translational diffusion of evolutionary conserved RNA structures by the nucleotide number publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq808 – volume: 6 year: 2010 ident: 10.1016/j.bbagen.2025.130798_bb0260 article-title: Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000694 – volume: 6 year: 2019 ident: 10.1016/j.bbagen.2025.130798_bb0090 article-title: Definition of the minimal contents for the molecular simulation of the yeast cytoplasm publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2019.00097 – volume: 121 start-page: 8009 year: 2017 ident: 10.1016/j.bbagen.2025.130798_bb0015 article-title: Crowding in cellular environments at an atomistic level from computer simulations publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b03570 – volume: 114 start-page: 2733 year: 2014 ident: 10.1016/j.bbagen.2025.130798_bb0020 article-title: Effects of molecular crowding on the structures, interactions, and functions of nucleic acids publication-title: Chem. Rev. doi: 10.1021/cr400113m – volume: 45 start-page: D313 year: 2017 ident: 10.1016/j.bbagen.2025.130798_bb0180 article-title: The SWISS-MODEL repository-new features and functionality publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1132 – volume: 45 year: 2017 ident: 10.1016/j.bbagen.2025.130798_bb0225 article-title: Determination of tRNA aminoacylation levels by high-throughput sequencing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx514 – volume: 45 start-page: 926 year: 2017 ident: 10.1016/j.bbagen.2025.130798_bb0050 article-title: In vivo single-RNA tracking shows that most tRNA diffuses freely in live bacteria publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw787 – volume: 274 start-page: 666 year: 1999 ident: 10.1016/j.bbagen.2025.130798_bb0185 article-title: Quantitative assessment of EF-1α·GTP binding to aminoacyl-tRNAs, aminoacyl-viral RNA, and tRNA shows close correspondence to the RNA binding properties of EF-Tu * publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.2.666 – volume: 366 start-page: 2979 year: 2011 ident: 10.1016/j.bbagen.2025.130798_bb0010 article-title: Evolutionary optimization of speed and accuracy of decoding on the ribosome publication-title: Phil. Trans. Royal Soc. B Biol. Sci. doi: 10.1098/rstb.2011.0138 – volume: 110 start-page: 5725 year: 2013 ident: 10.1016/j.bbagen.2025.130798_bb0075 article-title: Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1215367110 – volume: 17 start-page: 549 year: 1905 ident: 10.1016/j.bbagen.2025.130798_bb0250 article-title: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen publication-title: Ann. Phys. doi: 10.1002/andp.19053220806 – volume: 34 start-page: 2135 year: 2013 ident: 10.1016/j.bbagen.2025.130798_bb0115 article-title: CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data publication-title: J. Comput. Chem. doi: 10.1002/jcc.23354 – volume: 116 start-page: 599 year: 2012 ident: 10.1016/j.bbagen.2025.130798_bb0060 article-title: Variable interactions between protein crowders and biomolecular solutes are important in understanding cellular crowding publication-title: J. Phys. Chem. B doi: 10.1021/jp209302e – volume: 270 start-page: 1464 issue: 1995 year: 1979 ident: 10.1016/j.bbagen.2025.130798_bb0170 article-title: Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog publication-title: Science – volume: 53 year: 2020 ident: 10.1016/j.bbagen.2025.130798_bb0275 article-title: Extreme statistics of anomalous subdiffusion following a fractional Fokker-Planck equation: subdiffusion is faster than normal diffusion publication-title: J. Phys. A Math. Theor. doi: 10.1088/1751-8121/aba39c – volume: 46 start-page: W296 year: 2018 ident: 10.1016/j.bbagen.2025.130798_bb0175 article-title: SWISS-MODEL: homology modelling of protein structures and complexes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky427 – volume: 9 start-page: 1753 year: 2000 ident: 10.1016/j.bbagen.2025.130798_bb0195 article-title: Modeling of loops in protein structures publication-title: Protein Sci. doi: 10.1110/ps.9.9.1753 – volume: 37 start-page: 896 year: 2016 ident: 10.1016/j.bbagen.2025.130798_bb0120 article-title: Additive CHARMM force field for naturally occurring modified ribonucleotides publication-title: J. Comput. Chem. doi: 10.1002/jcc.24307 – volume: 94 start-page: 3748 year: 2008 ident: 10.1016/j.bbagen.2025.130798_bb0040 article-title: Coarse-grained molecular simulation of diffusion and reaction kinetics in a crowded virtual cytoplasm publication-title: Biophys. J. doi: 10.1529/biophysj.107.116053 – volume: 81 start-page: 7813 year: 2015 ident: 10.1016/j.bbagen.2025.130798_bb0135 article-title: The cytosolic pH of individual saccharomyces cerevisiae cells is a key factor in acetic acid tolerance publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02313-15 – year: 2020 ident: 10.1016/j.bbagen.2025.130798_bb0110 – volume: 55 start-page: 3550 year: 2016 ident: 10.1016/j.bbagen.2025.130798_bb0035 article-title: Effects of macromolecular crowding on alcohol dehydrogenase activity are substrate-dependent publication-title: Biochemistry doi: 10.1021/acs.biochem.6b00257 |
SSID | ssj0000595 |
Score | 2.4590566 |
Snippet | The mechanism by which aminoacyl-tRNAs are supplied to translating ribosomes for protein synthesis is likely to involve a process of diffusion within the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 130798 |
SubjectTerms | Brownian dynamics Cytoplasm - metabolism Diffusion Macromolecular crowding Osmotic Pressure Osmotic stress Protein Biosynthesis Ribosomes - metabolism RNA, Transfer - chemistry RNA, Transfer - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Subdiffusion Yeast cytoplasm |
Title | Diffusion properties of transfer RNAs in the yeast cytoplasm under normal and osmotic stress conditions |
URI | https://dx.doi.org/10.1016/j.bbagen.2025.130798 https://www.ncbi.nlm.nih.gov/pubmed/40154754 https://www.proquest.com/docview/3183675819 |
Volume | 1869 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqEIIFQXmVR2Uk1tC0seN4rAqogOgAVOpmJY6NiiCp2nTowm_nLk5ADAiJMS_H-mzffee78xFykeiu9VOReGHia4_BcgI5GPa80FiTCu0DpcXc4YdROByzuwmfNMigzoXBsMpK9juZXkrr6k6nQrMzm047T-jUAzqBfjn0Z5UZ7EzgLL_8-A7zAPrAnSeBefh2nT5XxnglCSxaPAW1x7EsspDRb-rpN_pZqqGbHbJd8Ufad13cJQ2TNcmGqyi5apLNQV3AbY-8XE2tXeJuGJ3hlvscz06luaVFSVbNnD6O-gs6zSiQQLrCIj5Ur4p8BoT6nWJy2ZxmSGnfaJylNC8r_mjqskso2NGpC_faJ-Ob6-fB0KvqKng64LLwtAyNDJLYSqGDMDYyAis1lkyCbrfSB7XGrba6x3SqRRxFPNXwQAOT8o1h3Tg4IGtZnpkjQjkPUqBINggxJTVKpA4CbBwaTXuiK1vEq-FUM3d8hqrjyl6Vg18h_MrB3yKixlz9mAYKJPwfX57XQ6QAZ3R7xJnJlwuFUgvNIuzNoRu7r74wpJCCs-N___eEbOGVi4E8JWvFfGnOgKcUSbuciG2y3r-9H44-AXwJ5vg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6hIlQWBOX9NBJr1LSJk3isClWh0AFaic1KHBsVQVKVdOi_5y5OQAwIiTWOHzrbd9_5XgBXieoYNw0TJ0hc5fh4nZAPBl0n0EanoXIR0lLs8MM4GE79u2f-vAb9OhaG3Cor3m95esmtqy_tiprt-WzWfiKjHsIJssuRPQtVoHXKTsUbsN67HQ3H3wyZl8VX6H-HOtQRdKWbV5LgvaVEqF1OlZFDEf0moX5DoKUkGmzDVgUhWc-ucgfWdNaCDVtUctWCZr-u4bYLL9czY5b0IMbm9Oq-oPSpLDesKPGqXrDHce-DzTKGOJCtqI4PU6sinyOmfmcUX7ZgGaHaNxZnKcvLoj-K2QAThqp0aj2-9mA6uJn0h05VWsFRHheFo0SghZfERoTKC2ItIlRUY-ELFO9GuCjZuFFGdX2VqjCOIp4qbFAIplyt_U7s7UMjyzN9CIxzL0WUZLyAolKjRCjPo8Fx0LQbdsQRODU55dxm0JC1a9mrtOSXRH5pyX8EYU1z-eMkSGTyf_S8rLdIIp3J8hFnOl9-SGJcpBnRag7s3n2txScUGXL_-N_zXkBzOHm4l_e349EJbFKLdYk8hUaxWOozhC1Fcl4dy09t-Omp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusion+properties+of+transfer+RNAs+in+the+yeast+cytoplasm+under+normal+and+osmotic+stress+conditions&rft.jtitle=Biochimica+et+biophysica+acta.+General+subjects&rft.au=Kompella%2C+Vijay+Phanindra+Srikanth&rft.au=Romano%2C+Maria+Carmen&rft.au=Stansfield%2C+Ian&rft.au=Mancera%2C+Ricardo+L&rft.date=2025-05-01&rft.eissn=1872-8006&rft.volume=1869&rft.issue=6&rft.spage=130798&rft_id=info:doi/10.1016%2Fj.bbagen.2025.130798&rft_id=info%3Apmid%2F40154754&rft.externalDocID=40154754 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-4165&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-4165&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-4165&client=summon |