Aberrant patterns of spontaneous brain activity in schizophrenia: A resting-state fMRI study and classification analysis

Schizophrenia is a prevalent mental disorder, leading to severe disability. Currently, the absence of objective biomarkers hinders effective diagnosis. This study was conducted to explore the aberrant spontaneous brain activity and investigate the potential of abnormal brain indices as diagnostic bi...

Full description

Saved in:
Bibliographic Details
Published inProgress in neuro-psychopharmacology & biological psychiatry Vol. 134; p. 111066
Main Authors Zhang, Rong, Ren, Juanjuan, Lei, Xiaoxia, Wang, Yewei, Chen, Xiaochang, Fu, Lirong, Li, Qingyi, Guo, Chaoyue, Teng, Xinyue, Wu, Zenan, Yu, Lingfang, Wang, Dandan, Chen, Yan, Zhang, Chen
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 30.08.2024
Subjects
Online AccessGet full text
ISSN0278-5846
1878-4216
1878-4216
DOI10.1016/j.pnpbp.2024.111066

Cover

Loading…
Abstract Schizophrenia is a prevalent mental disorder, leading to severe disability. Currently, the absence of objective biomarkers hinders effective diagnosis. This study was conducted to explore the aberrant spontaneous brain activity and investigate the potential of abnormal brain indices as diagnostic biomarkers employing machine learning methods. A total of sixty-one schizophrenia patients and seventy demographically matched healthy controls were enrolled in this study. The static indices of resting-state functional magnetic resonance imaging (rs-fMRI) including amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated to evaluate spontaneous brain activity. Subsequently, a sliding-window method was then used to conduct temporal dynamic analysis. The comparison of static and dynamic rs-fMRI indices between the patient and control groups was conducted using a two-sample t-test. Finally, the machine learning analysis was applied to estimate the diagnostic value of abnormal indices of brain activity. Schizophrenia patients exhibited a significant increase ALFF value in inferior frontal gyrus, alongside significant decreases in fALFF values observed in left postcentral gyrus and right cerebellum posterior lobe. Pervasive aberrations in ReHo indices were observed among schizophrenia patients, particularly in frontal lobe and cerebellum. A noteworthy reduction in voxel-wise concordance of dynamic indices was observed across gray matter regions encompassing the bilateral frontal, parietal, occipital, temporal, and insular cortices. The classification analysis achieved the highest values for area under curve at 0.87 and accuracy at 81.28% when applying linear support vector machine and leveraging a combination of abnormal static and dynamic indices in the specified brain regions as features. The static and dynamic indices of brain activity exhibited as potential neuroimaging biomarkers for the diagnosis of schizophrenia. •Schizophrenia patients showed abnormal rs-fMRI indices in gray matter.•Schizophrenia patients exhibited decreased concordance level of rs-fMRI indices.•Linear SVM models showed the best performance for discriminating schizophrenia.
AbstractList Schizophrenia is a prevalent mental disorder, leading to severe disability. Currently, the absence of objective biomarkers hinders effective diagnosis. This study was conducted to explore the aberrant spontaneous brain activity and investigate the potential of abnormal brain indices as diagnostic biomarkers employing machine learning methods.BACKGROUNDSchizophrenia is a prevalent mental disorder, leading to severe disability. Currently, the absence of objective biomarkers hinders effective diagnosis. This study was conducted to explore the aberrant spontaneous brain activity and investigate the potential of abnormal brain indices as diagnostic biomarkers employing machine learning methods.A total of sixty-one schizophrenia patients and seventy demographically matched healthy controls were enrolled in this study. The static indices of resting-state functional magnetic resonance imaging (rs-fMRI) including amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated to evaluate spontaneous brain activity. Subsequently, a sliding-window method was then used to conduct temporal dynamic analysis. The comparison of static and dynamic rs-fMRI indices between the patient and control groups was conducted using a two-sample t-test. Finally, the machine learning analysis was applied to estimate the diagnostic value of abnormal indices of brain activity.METHODSA total of sixty-one schizophrenia patients and seventy demographically matched healthy controls were enrolled in this study. The static indices of resting-state functional magnetic resonance imaging (rs-fMRI) including amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated to evaluate spontaneous brain activity. Subsequently, a sliding-window method was then used to conduct temporal dynamic analysis. The comparison of static and dynamic rs-fMRI indices between the patient and control groups was conducted using a two-sample t-test. Finally, the machine learning analysis was applied to estimate the diagnostic value of abnormal indices of brain activity.Schizophrenia patients exhibited a significant increase ALFF value in inferior frontal gyrus, alongside significant decreases in fALFF values observed in left postcentral gyrus and right cerebellum posterior lobe. Pervasive aberrations in ReHo indices were observed among schizophrenia patients, particularly in frontal lobe and cerebellum. A noteworthy reduction in voxel-wise concordance of dynamic indices was observed across gray matter regions encompassing the bilateral frontal, parietal, occipital, temporal, and insular cortices. The classification analysis achieved the highest values for area under curve at 0.87 and accuracy at 81.28% when applying linear support vector machine and leveraging a combination of abnormal static and dynamic indices in the specified brain regions as features.RESULTSSchizophrenia patients exhibited a significant increase ALFF value in inferior frontal gyrus, alongside significant decreases in fALFF values observed in left postcentral gyrus and right cerebellum posterior lobe. Pervasive aberrations in ReHo indices were observed among schizophrenia patients, particularly in frontal lobe and cerebellum. A noteworthy reduction in voxel-wise concordance of dynamic indices was observed across gray matter regions encompassing the bilateral frontal, parietal, occipital, temporal, and insular cortices. The classification analysis achieved the highest values for area under curve at 0.87 and accuracy at 81.28% when applying linear support vector machine and leveraging a combination of abnormal static and dynamic indices in the specified brain regions as features.The static and dynamic indices of brain activity exhibited as potential neuroimaging biomarkers for the diagnosis of schizophrenia.CONCLUSIONSThe static and dynamic indices of brain activity exhibited as potential neuroimaging biomarkers for the diagnosis of schizophrenia.
Schizophrenia is a prevalent mental disorder, leading to severe disability. Currently, the absence of objective biomarkers hinders effective diagnosis. This study was conducted to explore the aberrant spontaneous brain activity and investigate the potential of abnormal brain indices as diagnostic biomarkers employing machine learning methods. A total of sixty-one schizophrenia patients and seventy demographically matched healthy controls were enrolled in this study. The static indices of resting-state functional magnetic resonance imaging (rs-fMRI) including amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated to evaluate spontaneous brain activity. Subsequently, a sliding-window method was then used to conduct temporal dynamic analysis. The comparison of static and dynamic rs-fMRI indices between the patient and control groups was conducted using a two-sample t-test. Finally, the machine learning analysis was applied to estimate the diagnostic value of abnormal indices of brain activity. Schizophrenia patients exhibited a significant increase ALFF value in inferior frontal gyrus, alongside significant decreases in fALFF values observed in left postcentral gyrus and right cerebellum posterior lobe. Pervasive aberrations in ReHo indices were observed among schizophrenia patients, particularly in frontal lobe and cerebellum. A noteworthy reduction in voxel-wise concordance of dynamic indices was observed across gray matter regions encompassing the bilateral frontal, parietal, occipital, temporal, and insular cortices. The classification analysis achieved the highest values for area under curve at 0.87 and accuracy at 81.28% when applying linear support vector machine and leveraging a combination of abnormal static and dynamic indices in the specified brain regions as features. The static and dynamic indices of brain activity exhibited as potential neuroimaging biomarkers for the diagnosis of schizophrenia.
Schizophrenia is a prevalent mental disorder, leading to severe disability. Currently, the absence of objective biomarkers hinders effective diagnosis. This study was conducted to explore the aberrant spontaneous brain activity and investigate the potential of abnormal brain indices as diagnostic biomarkers employing machine learning methods. A total of sixty-one schizophrenia patients and seventy demographically matched healthy controls were enrolled in this study. The static indices of resting-state functional magnetic resonance imaging (rs-fMRI) including amplitude of low frequency fluctuations (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo), and degree centrality (DC) were calculated to evaluate spontaneous brain activity. Subsequently, a sliding-window method was then used to conduct temporal dynamic analysis. The comparison of static and dynamic rs-fMRI indices between the patient and control groups was conducted using a two-sample t-test. Finally, the machine learning analysis was applied to estimate the diagnostic value of abnormal indices of brain activity. Schizophrenia patients exhibited a significant increase ALFF value in inferior frontal gyrus, alongside significant decreases in fALFF values observed in left postcentral gyrus and right cerebellum posterior lobe. Pervasive aberrations in ReHo indices were observed among schizophrenia patients, particularly in frontal lobe and cerebellum. A noteworthy reduction in voxel-wise concordance of dynamic indices was observed across gray matter regions encompassing the bilateral frontal, parietal, occipital, temporal, and insular cortices. The classification analysis achieved the highest values for area under curve at 0.87 and accuracy at 81.28% when applying linear support vector machine and leveraging a combination of abnormal static and dynamic indices in the specified brain regions as features. The static and dynamic indices of brain activity exhibited as potential neuroimaging biomarkers for the diagnosis of schizophrenia. •Schizophrenia patients showed abnormal rs-fMRI indices in gray matter.•Schizophrenia patients exhibited decreased concordance level of rs-fMRI indices.•Linear SVM models showed the best performance for discriminating schizophrenia.
ArticleNumber 111066
Author Chen, Xiaochang
Wu, Zenan
Wang, Yewei
Zhang, Chen
Ren, Juanjuan
Chen, Yan
Lei, Xiaoxia
Guo, Chaoyue
Fu, Lirong
Teng, Xinyue
Yu, Lingfang
Wang, Dandan
Zhang, Rong
Li, Qingyi
Author_xml – sequence: 1
  givenname: Rong
  surname: Zhang
  fullname: Zhang, Rong
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 2
  givenname: Juanjuan
  surname: Ren
  fullname: Ren, Juanjuan
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 3
  givenname: Xiaoxia
  surname: Lei
  fullname: Lei, Xiaoxia
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 4
  givenname: Yewei
  surname: Wang
  fullname: Wang, Yewei
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 5
  givenname: Xiaochang
  surname: Chen
  fullname: Chen, Xiaochang
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 6
  givenname: Lirong
  surname: Fu
  fullname: Fu, Lirong
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 7
  givenname: Qingyi
  surname: Li
  fullname: Li, Qingyi
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 8
  givenname: Chaoyue
  surname: Guo
  fullname: Guo, Chaoyue
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 9
  givenname: Xinyue
  surname: Teng
  fullname: Teng, Xinyue
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 10
  givenname: Zenan
  surname: Wu
  fullname: Wu, Zenan
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 11
  givenname: Lingfang
  surname: Yu
  fullname: Yu, Lingfang
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 12
  givenname: Dandan
  surname: Wang
  fullname: Wang, Dandan
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 13
  givenname: Yan
  surname: Chen
  fullname: Chen, Yan
  email: zhangchen645@gmail.com
  organization: Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
– sequence: 14
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
  organization: Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38901758$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAUhK2KqizQX1Cp8rGXbO04dpJKPawQLUhUlRB36-XFLl5l7dT2om5_PYbAhQMnv8N8I8_MCTnywRtCPnG25oyrr9v17OdhXtesbtacc6bUO7LiXdtVTc3VEVmxutyya9QxOUlpyxjjgokP5Fh0PeOt7Fbk32YwMYLPdIacTfSJBkvTHHwGb8I-0SGC8xQwu3uXD7TcCe_c_zDfReMdfKMbGk3Kzv-pUoZsqP11c0VT3o8HCn6kOEFKzjqE7EIx8jAdkktn5L2FKZmPz-8puf1xcXt-WV3__nl1vrmuUMg-V6g4yraWdQ84CGyGRkoGrOlNj3y01nLLDZesFVgSAbfYgByaAUBZrlCcki-L7RzD3335p965hGaalnRasJZ1olWMFennZ-l-2JlRz9HtIB70S1lF0C8CjCGlaKxGl59S5dLRpDnTj8PorX4aRj8Oo5dhCitesS_2b1PfF8qUhu6diTqhMx7N6KLBrMfg3uQfADfoqos
CitedBy_id crossref_primary_10_1038_s41537_025_00587_0
crossref_primary_10_1038_s41598_025_89359_5
crossref_primary_10_31083_j_jin2309179
Cites_doi 10.1155/2020/6405930
10.1016/j.neuroimage.2011.10.018
10.1007/s12021-016-9299-4
10.1006/nimg.2002.1132
10.1038/s41398-020-00965-5
10.1016/j.pnpbp.2017.12.017
10.1016/j.ajp.2022.103055
10.1038/s41598-017-12027-w
10.1093/schbul/sbad042
10.1016/j.jneumeth.2008.04.012
10.1038/s41588-019-0364-4
10.1016/j.scib.2017.09.015
10.1007/s12652-023-04536-6
10.1002/mrm.1910350312
10.1371/journal.pone.0265300
10.1093/schbul/sbv062
10.1186/s12888-023-04728-6
10.1192/bjp.bp.109.067314
10.1093/schbul/sbac121
10.1038/s42003-021-02592-2
10.1002/hbm.23843
10.1016/j.jpsychires.2021.12.043
10.1002/jmri.27541
10.1093/schbul/sby058
10.2147/NDT.S305117
10.1016/j.jpsychires.2018.09.015
10.1503/jpn.180245
10.1089/brain.2011.0018
10.1016/j.pscychresns.2014.05.007
10.1176/appi.ajp.2020.20020147
10.1016/j.jad.2022.03.079
10.1093/cercor/bhr269
10.1016/j.braindev.2006.07.002
10.1038/s41398-019-0531-5
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier Inc.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier Inc.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.pnpbp.2024.111066
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1878-4216
ExternalDocumentID 38901758
10_1016_j_pnpbp_2024_111066
S0278584624001349
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
ABCQJ
ABFRF
ABIVO
ABJNI
ABMAC
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
L7B
M2V
M34
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SSN
SSP
SSZ
T5K
TEORI
~G-
.GJ
29P
53G
5VS
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HMT
HVGLF
HZ~
R2-
SNS
SPT
SSH
WUQ
ZGI
NPM
7X8
EFKBS
EFLBG
ID FETCH-LOGICAL-c359t-c61c572529acb3c4b4550a049e9c1dfff1f1e15073c017a1fc4a5b4baa6f16c3
IEDL.DBID AIKHN
ISSN 0278-5846
1878-4216
IngestDate Thu Sep 04 18:25:00 EDT 2025
Wed Feb 19 02:09:51 EST 2025
Thu Apr 24 23:07:14 EDT 2025
Tue Jul 01 01:50:31 EDT 2025
Sat Aug 10 15:31:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Regional homogeneity (ReHo)
Logistic regression
Amplitude of low frequency fluctuations (ALFF)
Temporal dynamic analysis
Support vector machine
Language English
License Copyright © 2024. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c61c572529acb3c4b4550a049e9c1dfff1f1e15073c017a1fc4a5b4baa6f16c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 38901758
PQID 3070837600
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3070837600
pubmed_primary_38901758
crossref_citationtrail_10_1016_j_pnpbp_2024_111066
crossref_primary_10_1016_j_pnpbp_2024_111066
elsevier_sciencedirect_doi_10_1016_j_pnpbp_2024_111066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-30
PublicationDateYYYYMMDD 2024-08-30
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Progress in neuro-psychopharmacology & biological psychiatry
PublicationTitleAlternate Prog Neuropsychopharmacol Biol Psychiatry
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Backasch, Sommer, Klöhn-Saghatolislam, Müller, Kircher, Leube (bb0010) 2014; 223
Chong, Teoh, Wu, Kotirum, Chiou, Chaiyakunapruk (bb0055) 2016; 12
Zou, Zhu, Yang, Zuo, Long, Cao, Wang, Zang (bb0195) 2008; 172
Jenkinson, Bannister, Brady, Smith (bb0100) 2002; 17
Cao, Wei, Zhang, Xiao, Zeng, Sweeney, Gong, Lui (bb0025) 2023; 49
Zang, He, Zhu, Cao, Sui, Liang, Tian, Jiang, Wang (bb0165) 2007; 29
Wu, Chen, Liu, Chao, Biswal, Lin (bb0145) 2011; 1
Steardo, Carbone, de Filippis, Pisanu, Segura-Garcia, Squassina, De Fazio, Steardo (bb0125) 2020; 11
Zhu, Zhu, Qian, Li, Yu (bb0190) 2018; 106
Charlson, Ferrari, Santomauro, Diminic, Stockings, Scott, McGrath, Whiteford (bb0035) 2018; 44
Chen, Lu, Yan (bb0040) 2018; 39
Harms, Wang, Campanella, Aldridge, Moffitt, Kuelper, Ratnanather, Miller, Barch, Csernansky (bb0085) 2010; 196
Gong, Wang, Luo, Chen, Huang, Huang, Huang, Wang (bb0070) 2020; 45
Huang, Wang, Hei, Yang, Long, Wang, Xiao, Xu, Song, Gao (bb0090) 2022; 71
Algumaei, Algunaid, Rushdi, Yassine (bb0005) 2022; 17
Power, Barnes, Snyder, Schlaggar, Petersen (bb0120) 2012; 59
Syaifullah, Shiino, Kitahara, Ito, Ishida, Tanigaki (bb0130) 2020; 11
Kang, Jiao, Qin, Wang, Wang, Jin, Feng, Wang, Tang, Gong (bb0110) 2022; 147
Zhao, Zhu, Liu, Pu, Lai, Chen, Yu, Hong (bb0185) 2018; 83
Cao, Ingvar, Hultman, Cannon (bb0020) 2019; 9
Yassin, Nakatani, Zhu, Kojima, Owada, Kuwabara, Gonoi, Aoki, Takao, Natsubori (bb0160) 2020; 10
Guo, Ye, Li, Li, Huang, Yang, Xie, Xu, Li, Liang (bb0080) 2023; 23
Yan, Yang, Colcombe, Zuo, Milham (bb0155) 2017; 62
Zuo, Ehmke, Mennes, Imperati, Castellanos, Sporns, Milham (bb0200) 2012; 22
Chen, Bi, Zhao, Lai, Yan, Xie, Gao, Xie, Zeng, Li (bb0050) 2022; 308
Wang, Jiang, Su, Xu, Wei, Tang, Zhang, Tang, Hu, Cui (bb0140) 2021; 17
Verma, Goel, Tanveer, Ding, Sharma, Murugan (bb0135) 2023; 14
Friston, Williams, Howard, Frackowiak, Turner (bb0065) 1996; 35
Zhang, Guo, Tian (bb0175) 2019; 10
Zhang, Niu, Sun, An, Li, Wei, Yan, Xiang, Wang (bb0180) 2021; 54
Bohaterewicz, Sobczak, Podolak, Wójcik, Mȩtel, Chrobak, Fa Frowicz, Siwek, Dudek, Marek (bb0015) 2020; 14
Huckins, Dobbyn, Ruderfer, Hoffman, Wang, Pardiñas, Rajagopal, Als, Tn, Girdhar (bb0095) 2019; 51
Guo, Liu, Zhang, Liu, Liu, Yu, Xiao, Zhao (bb0075) 2015; 41
Kahn (bb0105) 2020; 177
Chao-Gan, Yu-Feng (bb0030) 2010; 4
Yan, Wang, Zuo, Zang (bb0150) 2016; 14
Du, Fu, Xing, Lin, Pearlson, Kochunov, Hong, Qi, Salman, Abrol (bb0060) 2021; 4
Luo, Li, Wang, He, Wang, You, Zhang, Long, Chen, Zhao (bb0115) 2023; 49
Zhang, Han, Tan, De Yang, Tan, Jiang, Zhang, Huang (bb0170) 2017; 7
Chen, Yan, Wang, Jiang, Tang, Yu, Zhang, Liu (bb0045) 2020; 2020
Zhang (10.1016/j.pnpbp.2024.111066_bb0170) 2017; 7
Du (10.1016/j.pnpbp.2024.111066_bb0060) 2021; 4
Bohaterewicz (10.1016/j.pnpbp.2024.111066_bb0015) 2020; 14
Friston (10.1016/j.pnpbp.2024.111066_bb0065) 1996; 35
Power (10.1016/j.pnpbp.2024.111066_bb0120) 2012; 59
Steardo (10.1016/j.pnpbp.2024.111066_bb0125) 2020; 11
Guo (10.1016/j.pnpbp.2024.111066_bb0075) 2015; 41
Chen (10.1016/j.pnpbp.2024.111066_bb0045) 2020; 2020
Gong (10.1016/j.pnpbp.2024.111066_bb0070) 2020; 45
Zhao (10.1016/j.pnpbp.2024.111066_bb0185) 2018; 83
Zhu (10.1016/j.pnpbp.2024.111066_bb0190) 2018; 106
Yan (10.1016/j.pnpbp.2024.111066_bb0155) 2017; 62
Yan (10.1016/j.pnpbp.2024.111066_bb0150) 2016; 14
Chen (10.1016/j.pnpbp.2024.111066_bb0050) 2022; 308
Kang (10.1016/j.pnpbp.2024.111066_bb0110) 2022; 147
Zou (10.1016/j.pnpbp.2024.111066_bb0195) 2008; 172
Algumaei (10.1016/j.pnpbp.2024.111066_bb0005) 2022; 17
Luo (10.1016/j.pnpbp.2024.111066_bb0115) 2023; 49
Yassin (10.1016/j.pnpbp.2024.111066_bb0160) 2020; 10
Guo (10.1016/j.pnpbp.2024.111066_bb0080) 2023; 23
Syaifullah (10.1016/j.pnpbp.2024.111066_bb0130) 2020; 11
Verma (10.1016/j.pnpbp.2024.111066_bb0135) 2023; 14
Zhang (10.1016/j.pnpbp.2024.111066_bb0175) 2019; 10
Wang (10.1016/j.pnpbp.2024.111066_bb0140) 2021; 17
Chong (10.1016/j.pnpbp.2024.111066_bb0055) 2016; 12
Harms (10.1016/j.pnpbp.2024.111066_bb0085) 2010; 196
Huang (10.1016/j.pnpbp.2024.111066_bb0090) 2022; 71
Wu (10.1016/j.pnpbp.2024.111066_bb0145) 2011; 1
Zhang (10.1016/j.pnpbp.2024.111066_bb0180) 2021; 54
Zuo (10.1016/j.pnpbp.2024.111066_bb0200) 2012; 22
Cao (10.1016/j.pnpbp.2024.111066_bb0025) 2023; 49
Kahn (10.1016/j.pnpbp.2024.111066_bb0105) 2020; 177
Zang (10.1016/j.pnpbp.2024.111066_bb0165) 2007; 29
Jenkinson (10.1016/j.pnpbp.2024.111066_bb0100) 2002; 17
Charlson (10.1016/j.pnpbp.2024.111066_bb0035) 2018; 44
Huckins (10.1016/j.pnpbp.2024.111066_bb0095) 2019; 51
Backasch (10.1016/j.pnpbp.2024.111066_bb0010) 2014; 223
Chen (10.1016/j.pnpbp.2024.111066_bb0040) 2018; 39
Cao (10.1016/j.pnpbp.2024.111066_bb0020) 2019; 9
Chao-Gan (10.1016/j.pnpbp.2024.111066_bb0030) 2010; 4
References_xml – volume: 11
  start-page: 588
  year: 2020
  ident: bb0125
  article-title: Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: a systematic review
  publication-title: Front. Psychol.
– volume: 39
  start-page: 300
  year: 2018
  end-page: 318
  ident: bb0040
  article-title: Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes
  publication-title: Hum. Brain Mapp.
– volume: 44
  start-page: 1195
  year: 2018
  end-page: 1203
  ident: bb0035
  article-title: Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016
  publication-title: Schizophr. Bull.
– volume: 12
  start-page: 357
  year: 2016
  end-page: 373
  ident: bb0055
  article-title: Global economic burden of schizophrenia: a systematic review
  publication-title: Neuropsychiatr. Dis. Treat.
– volume: 83
  start-page: 27
  year: 2018
  end-page: 32
  ident: bb0185
  article-title: Structural and functional brain abnormalities in schizophrenia: a cross-sectional study at different stages of the disease
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
– volume: 17
  year: 2022
  ident: bb0005
  article-title: Feature and decision-level fusion for schizophrenia detection based on resting-state fMRI data
  publication-title: PLoS One
– volume: 9
  start-page: 192
  year: 2019
  ident: bb0020
  article-title: Evidence for cerebello-thalamo-cortical hyperconnectivity as a heritable trait for schizophrenia
  publication-title: Transl. Psychiatry
– volume: 4
  start-page: 13
  year: 2010
  ident: bb0030
  article-title: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI
  publication-title: Front. Syst. Neurosci.
– volume: 51
  start-page: 659
  year: 2019
  end-page: 674
  ident: bb0095
  article-title: Gene expression imputation across multiple brain regions provides insights into schizophrenia risk
  publication-title: Nat. Genet.
– volume: 10
  start-page: 278
  year: 2020
  ident: bb0160
  article-title: Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis
  publication-title: Transl. Psychiatry
– volume: 106
  start-page: 91
  year: 2018
  end-page: 98
  ident: bb0190
  article-title: Altered spatial and temporal concordance among intrinsic brain activity measures in schizophrenia
  publication-title: J. Psychiatr. Res.
– volume: 308
  start-page: 1
  year: 2022
  end-page: 9
  ident: bb0050
  article-title: Regional amplitude abnormities in the major depressive disorder: a resting-state fMRI study and support vector machine analysis
  publication-title: J. Affect. Disord.
– volume: 172
  start-page: 137
  year: 2008
  end-page: 141
  ident: bb0195
  article-title: An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF
  publication-title: J. Neurosci. Methods
– volume: 35
  start-page: 346
  year: 1996
  end-page: 355
  ident: bb0065
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
– volume: 223
  start-page: 202
  year: 2014
  end-page: 209
  ident: bb0010
  article-title: Dysconnectivity of the inferior frontal gyrus: implications for an impaired self-other distinction in patients with schizophrenia
  publication-title: Psychiatry Res.
– volume: 17
  start-page: 825
  year: 2002
  end-page: 841
  ident: bb0100
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
– volume: 14
  start-page: 4795
  year: 2023
  end-page: 4807
  ident: bb0135
  article-title: Machine learning techniques for the schizophrenia diagnosis: a comprehensive review and future research directions
  publication-title: J. Ambient. Intell. Humaniz. Comput.
– volume: 54
  start-page: 586
  year: 2021
  end-page: 595
  ident: bb0180
  article-title: Altered complexity of spontaneous brain activity in schizophrenia and bipolar disorder patients
  publication-title: J. Magn. Reson. Imaging
– volume: 2020
  start-page: 6405930
  year: 2020
  ident: bb0045
  article-title: Detecting abnormal brain regions in schizophrenia using structural MRI via machine learning
  publication-title: Comput. Intell. Neurosci.
– volume: 4
  start-page: 1073
  year: 2021
  ident: bb0060
  article-title: Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
  publication-title: Commun. Biol.
– volume: 17
  start-page: 1505
  year: 2021
  end-page: 1516
  ident: bb0140
  article-title: Temporal dynamics in degree centrality of brain functional connectome in first-episode schizophrenia with different short-term treatment responses: a longitudinal study
  publication-title: Neuropsychiatr. Dis. Treat.
– volume: 1
  start-page: 401
  year: 2011
  end-page: 410
  ident: bb0145
  article-title: Empirical evaluations of slice-timing, smoothing, and normalization effects in seed-based, resting-state functional magnetic resonance imaging analyses
  publication-title: Brain Connect.
– volume: 14
  start-page: 339
  year: 2016
  end-page: 351
  ident: bb0150
  article-title: DPABI: Data Processing & Analysis for (resting-state) brain imaging
  publication-title: Neuroinformatics
– volume: 49
  start-page: 417
  year: 2023
  end-page: 427
  ident: bb0025
  article-title: Cerebellar functional Dysconnectivity in drug-Naïve patients with first-episode schizophrenia
  publication-title: Schizophr. Bull.
– volume: 45
  start-page: 55
  year: 2020
  end-page: 68
  ident: bb0070
  article-title: Abnormalities of intrinsic regional brain activity in first-episode and chronic schizophrenia: a meta-analysis of resting-state functional MRI
  publication-title: J. Psychiatry Neurosci.
– volume: 71
  year: 2022
  ident: bb0090
  article-title: Altered regional homogeneity and cognitive impairments in first-episode schizophrenia: a resting-state fMRI study
  publication-title: Asian J. Psychiatr.
– volume: 11
  year: 2020
  ident: bb0130
  article-title: Machine learning for diagnosis of AD and prediction of MCI progression from brain MRI using brain anatomical analysis using diffeomorphic deformation
  publication-title: Front. Neurol.
– volume: 41
  start-page: 1317
  year: 2015
  end-page: 1325
  ident: bb0075
  article-title: Increased cerebellar functional connectivity with the default-mode network in unaffected siblings of schizophrenia patients at rest
  publication-title: Schizophr. Bull.
– volume: 177
  start-page: 291
  year: 2020
  end-page: 297
  ident: bb0105
  article-title: On the origins of schizophrenia
  publication-title: Am. J. Psychiatry
– volume: 7
  start-page: 11821
  year: 2017
  ident: bb0170
  article-title: Gender differences measured by the MATRICS consensus cognitive battery in chronic schizophrenia patients
  publication-title: Sci. Rep.
– volume: 10
  start-page: 484
  year: 2019
  ident: bb0175
  article-title: Increased temporal dynamics of intrinsic brain activity in sensory and perceptual network of schizophrenia
  publication-title: Front. Psychol.
– volume: 23
  start-page: 231
  year: 2023
  ident: bb0080
  article-title: Amygdala signal abnormality and cognitive impairment in drug-naïve schizophrenia
  publication-title: BMC Psychiatr.
– volume: 62
  start-page: 1572
  year: 2017
  end-page: 1584
  ident: bb0155
  article-title: Concordance among indices of intrinsic brain function: insights from inter-individual variation and temporal dynamics
  publication-title: Sci. Bull. (Beijing)
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bb0120
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 147
  start-page: 4
  year: 2022
  end-page: 12
  ident: bb0110
  article-title: Associations between polygenic risk scores and amplitude of low-frequency fluctuation of inferior frontal gyrus in schizophrenia
  publication-title: J. Psychiatr. Res.
– volume: 22
  start-page: 1862
  year: 2012
  end-page: 1875
  ident: bb0200
  article-title: Network centrality in the human functional connectome
  publication-title: Cereb. Cortex
– volume: 196
  start-page: 150
  year: 2010
  end-page: 157
  ident: bb0085
  article-title: Structural abnormalities in gyri of the prefrontal cortex in individuals with schizophrenia and their unaffected siblings
  publication-title: Br. J. Psychiatry
– volume: 29
  start-page: 83
  year: 2007
  end-page: 91
  ident: bb0165
  article-title: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI
  publication-title: Brain and Development
– volume: 49
  start-page: 1387
  year: 2023
  end-page: 1398
  ident: bb0115
  article-title: Shared and disorder-specific alterations of brain temporal dynamics in obsessive-compulsive disorder and schizophrenia
  publication-title: Schizophr. Bull.
– volume: 14
  year: 2020
  ident: bb0015
  article-title: Machine learning-based identification of suicidal risk in patients with schizophrenia using multi-level resting-state fMRI features
  publication-title: Front. Neurosci.
– volume: 2020
  start-page: 6405930
  year: 2020
  ident: 10.1016/j.pnpbp.2024.111066_bb0045
  article-title: Detecting abnormal brain regions in schizophrenia using structural MRI via machine learning
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2020/6405930
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  ident: 10.1016/j.pnpbp.2024.111066_bb0120
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 14
  start-page: 339
  issue: 3
  year: 2016
  ident: 10.1016/j.pnpbp.2024.111066_bb0150
  article-title: DPABI: Data Processing & Analysis for (resting-state) brain imaging
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-016-9299-4
– volume: 17
  start-page: 825
  issue: 2
  year: 2002
  ident: 10.1016/j.pnpbp.2024.111066_bb0100
  article-title: Improved optimization for the robust and accurate linear registration and motion correction of brain images
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1132
– volume: 10
  start-page: 278
  issue: 1
  year: 2020
  ident: 10.1016/j.pnpbp.2024.111066_bb0160
  article-title: Machine-learning classification using neuroimaging data in schizophrenia, autism, ultra-high risk and first-episode psychosis
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-020-00965-5
– volume: 83
  start-page: 27
  year: 2018
  ident: 10.1016/j.pnpbp.2024.111066_bb0185
  article-title: Structural and functional brain abnormalities in schizophrenia: a cross-sectional study at different stages of the disease
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2017.12.017
– volume: 14
  year: 2020
  ident: 10.1016/j.pnpbp.2024.111066_bb0015
  article-title: Machine learning-based identification of suicidal risk in patients with schizophrenia using multi-level resting-state fMRI features
  publication-title: Front. Neurosci.
– volume: 71
  year: 2022
  ident: 10.1016/j.pnpbp.2024.111066_bb0090
  article-title: Altered regional homogeneity and cognitive impairments in first-episode schizophrenia: a resting-state fMRI study
  publication-title: Asian J. Psychiatr.
  doi: 10.1016/j.ajp.2022.103055
– volume: 7
  start-page: 11821
  issue: 1
  year: 2017
  ident: 10.1016/j.pnpbp.2024.111066_bb0170
  article-title: Gender differences measured by the MATRICS consensus cognitive battery in chronic schizophrenia patients
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12027-w
– volume: 49
  start-page: 1387
  issue: 5
  year: 2023
  ident: 10.1016/j.pnpbp.2024.111066_bb0115
  article-title: Shared and disorder-specific alterations of brain temporal dynamics in obsessive-compulsive disorder and schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbad042
– volume: 10
  start-page: 484
  year: 2019
  ident: 10.1016/j.pnpbp.2024.111066_bb0175
  article-title: Increased temporal dynamics of intrinsic brain activity in sensory and perceptual network of schizophrenia
  publication-title: Front. Psychol.
– volume: 172
  start-page: 137
  issue: 1
  year: 2008
  ident: 10.1016/j.pnpbp.2024.111066_bb0195
  article-title: An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.04.012
– volume: 51
  start-page: 659
  issue: 4
  year: 2019
  ident: 10.1016/j.pnpbp.2024.111066_bb0095
  article-title: Gene expression imputation across multiple brain regions provides insights into schizophrenia risk
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0364-4
– volume: 62
  start-page: 1572
  issue: 23
  year: 2017
  ident: 10.1016/j.pnpbp.2024.111066_bb0155
  article-title: Concordance among indices of intrinsic brain function: insights from inter-individual variation and temporal dynamics
  publication-title: Sci. Bull. (Beijing)
  doi: 10.1016/j.scib.2017.09.015
– volume: 14
  start-page: 4795
  issue: 5
  year: 2023
  ident: 10.1016/j.pnpbp.2024.111066_bb0135
  article-title: Machine learning techniques for the schizophrenia diagnosis: a comprehensive review and future research directions
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-023-04536-6
– volume: 35
  start-page: 346
  issue: 3
  year: 1996
  ident: 10.1016/j.pnpbp.2024.111066_bb0065
  article-title: Movement-related effects in fMRI time-series
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.1910350312
– volume: 17
  issue: 5
  year: 2022
  ident: 10.1016/j.pnpbp.2024.111066_bb0005
  article-title: Feature and decision-level fusion for schizophrenia detection based on resting-state fMRI data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0265300
– volume: 41
  start-page: 1317
  issue: 6
  year: 2015
  ident: 10.1016/j.pnpbp.2024.111066_bb0075
  article-title: Increased cerebellar functional connectivity with the default-mode network in unaffected siblings of schizophrenia patients at rest
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbv062
– volume: 23
  start-page: 231
  issue: 1
  year: 2023
  ident: 10.1016/j.pnpbp.2024.111066_bb0080
  article-title: Amygdala signal abnormality and cognitive impairment in drug-naïve schizophrenia
  publication-title: BMC Psychiatr.
  doi: 10.1186/s12888-023-04728-6
– volume: 11
  year: 2020
  ident: 10.1016/j.pnpbp.2024.111066_bb0130
  article-title: Machine learning for diagnosis of AD and prediction of MCI progression from brain MRI using brain anatomical analysis using diffeomorphic deformation
  publication-title: Front. Neurol.
– volume: 196
  start-page: 150
  issue: 2
  year: 2010
  ident: 10.1016/j.pnpbp.2024.111066_bb0085
  article-title: Structural abnormalities in gyri of the prefrontal cortex in individuals with schizophrenia and their unaffected siblings
  publication-title: Br. J. Psychiatry
  doi: 10.1192/bjp.bp.109.067314
– volume: 11
  start-page: 588
  year: 2020
  ident: 10.1016/j.pnpbp.2024.111066_bb0125
  article-title: Application of support vector machine on fMRI data as biomarkers in schizophrenia diagnosis: a systematic review
  publication-title: Front. Psychol.
– volume: 49
  start-page: 417
  issue: 2
  year: 2023
  ident: 10.1016/j.pnpbp.2024.111066_bb0025
  article-title: Cerebellar functional Dysconnectivity in drug-Naïve patients with first-episode schizophrenia
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbac121
– volume: 4
  start-page: 13
  year: 2010
  ident: 10.1016/j.pnpbp.2024.111066_bb0030
  article-title: DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI
  publication-title: Front. Syst. Neurosci.
– volume: 4
  start-page: 1073
  issue: 1
  year: 2021
  ident: 10.1016/j.pnpbp.2024.111066_bb0060
  article-title: Evidence of shared and distinct functional and structural brain signatures in schizophrenia and autism spectrum disorder
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02592-2
– volume: 39
  start-page: 300
  issue: 1
  year: 2018
  ident: 10.1016/j.pnpbp.2024.111066_bb0040
  article-title: Reproducibility of R-fMRI metrics on the impact of different strategies for multiple comparison correction and sample sizes
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23843
– volume: 147
  start-page: 4
  year: 2022
  ident: 10.1016/j.pnpbp.2024.111066_bb0110
  article-title: Associations between polygenic risk scores and amplitude of low-frequency fluctuation of inferior frontal gyrus in schizophrenia
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2021.12.043
– volume: 54
  start-page: 586
  issue: 2
  year: 2021
  ident: 10.1016/j.pnpbp.2024.111066_bb0180
  article-title: Altered complexity of spontaneous brain activity in schizophrenia and bipolar disorder patients
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.27541
– volume: 44
  start-page: 1195
  issue: 6
  year: 2018
  ident: 10.1016/j.pnpbp.2024.111066_bb0035
  article-title: Global epidemiology and burden of schizophrenia: findings from the global burden of disease study 2016
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sby058
– volume: 17
  start-page: 1505
  year: 2021
  ident: 10.1016/j.pnpbp.2024.111066_bb0140
  article-title: Temporal dynamics in degree centrality of brain functional connectome in first-episode schizophrenia with different short-term treatment responses: a longitudinal study
  publication-title: Neuropsychiatr. Dis. Treat.
  doi: 10.2147/NDT.S305117
– volume: 106
  start-page: 91
  year: 2018
  ident: 10.1016/j.pnpbp.2024.111066_bb0190
  article-title: Altered spatial and temporal concordance among intrinsic brain activity measures in schizophrenia
  publication-title: J. Psychiatr. Res.
  doi: 10.1016/j.jpsychires.2018.09.015
– volume: 45
  start-page: 55
  issue: 1
  year: 2020
  ident: 10.1016/j.pnpbp.2024.111066_bb0070
  article-title: Abnormalities of intrinsic regional brain activity in first-episode and chronic schizophrenia: a meta-analysis of resting-state functional MRI
  publication-title: J. Psychiatry Neurosci.
  doi: 10.1503/jpn.180245
– volume: 12
  start-page: 357
  year: 2016
  ident: 10.1016/j.pnpbp.2024.111066_bb0055
  article-title: Global economic burden of schizophrenia: a systematic review
  publication-title: Neuropsychiatr. Dis. Treat.
– volume: 1
  start-page: 401
  issue: 5
  year: 2011
  ident: 10.1016/j.pnpbp.2024.111066_bb0145
  article-title: Empirical evaluations of slice-timing, smoothing, and normalization effects in seed-based, resting-state functional magnetic resonance imaging analyses
  publication-title: Brain Connect.
  doi: 10.1089/brain.2011.0018
– volume: 223
  start-page: 202
  issue: 3
  year: 2014
  ident: 10.1016/j.pnpbp.2024.111066_bb0010
  article-title: Dysconnectivity of the inferior frontal gyrus: implications for an impaired self-other distinction in patients with schizophrenia
  publication-title: Psychiatry Res.
  doi: 10.1016/j.pscychresns.2014.05.007
– volume: 177
  start-page: 291
  issue: 4
  year: 2020
  ident: 10.1016/j.pnpbp.2024.111066_bb0105
  article-title: On the origins of schizophrenia
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.2020.20020147
– volume: 308
  start-page: 1
  year: 2022
  ident: 10.1016/j.pnpbp.2024.111066_bb0050
  article-title: Regional amplitude abnormities in the major depressive disorder: a resting-state fMRI study and support vector machine analysis
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2022.03.079
– volume: 22
  start-page: 1862
  issue: 8
  year: 2012
  ident: 10.1016/j.pnpbp.2024.111066_bb0200
  article-title: Network centrality in the human functional connectome
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhr269
– volume: 29
  start-page: 83
  issue: 2
  year: 2007
  ident: 10.1016/j.pnpbp.2024.111066_bb0165
  article-title: Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI
  publication-title: Brain and Development
  doi: 10.1016/j.braindev.2006.07.002
– volume: 9
  start-page: 192
  issue: 1
  year: 2019
  ident: 10.1016/j.pnpbp.2024.111066_bb0020
  article-title: Evidence for cerebello-thalamo-cortical hyperconnectivity as a heritable trait for schizophrenia
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-019-0531-5
SSID ssj0001303
Score 2.4592323
Snippet Schizophrenia is a prevalent mental disorder, leading to severe disability. Currently, the absence of objective biomarkers hinders effective diagnosis. This...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 111066
SubjectTerms Amplitude of low frequency fluctuations (ALFF)
Logistic regression
Regional homogeneity (ReHo)
Support vector machine
Temporal dynamic analysis
Title Aberrant patterns of spontaneous brain activity in schizophrenia: A resting-state fMRI study and classification analysis
URI https://dx.doi.org/10.1016/j.pnpbp.2024.111066
https://www.ncbi.nlm.nih.gov/pubmed/38901758
https://www.proquest.com/docview/3070837600
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3BcumlotCPhYIGqeK06ebDdhJuK1S0UIFQu0jcLNuxJaoqG7GLBJf-9nqcZGkl4MAtieLE8thvJvGbNwBfTCoKboWKKq11xLg2kRYujrxnrhLHeMVzykY-vxDTK3Z2za_X4LjPhSFaZYf9LaYHtO6ujLvRHDc3N-OftGdG7pNYkCSytw4baVYKPoCNyen36cUKkAmmw6-WnJKMmOjFhwLNq6kbTbqVKSP0iINa4pMO6rkANDiik01420WQOGk7-Q7WbL0Fh5etBPXDCGePGVWLER7i5aM49cM23E-0vfX-aYlNUNasFzh3SDxZHyXa-d0CNRWNQMp3oLIS6I8X_xLzjnCCVM_Du7woZCOhO_9xikGmFlVdoaF4nAhIweb-Uqt68h5mJ99mx9Ooq74QmYyXy8iIxPA85WmpjM4M05T_rPwHhS1NUjnnEpdYCicz41e1SpxhimumlRIuESb7AIN6XttPgEVcacGthzKdslz5L6xS5aXNXFY4_3Q2hLQfcWk6ZXIqkPFb9hS0XzKYSZKZZGumIYxWjZpWmOPl20VvSvnf_JLedbzc8KA3vPQrj7ZTWnNIQsuCOEXxED62M2LVEx8G-kHhxc5rX7sLb-gs_L2OP8NgeXtn93z4s9T7sP71T7LfTfK_SwIGqw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RemgvVYG2bFtgKiFOm24-bCfhtkKgpWURarcSN8t2bAmEshG7SOXS316Pk7BUajn0Fjl2YnnsmbH95g3AvklFwa1QUaW1jhjXJtLCxZG3zFXiGK94TtHI03Mx-cG-XPLLNTjqY2EIVtnp_lanB23dlYy60Rw1V1ej73RnRuaTUJBEsvcMnjOe5YTr-_xrhfMgJR0OWnIKMWKipx4KIK-mbjSxVqaMdEccuBL_ap7-5X4GM3TyGl51_iOO2y5uwJqtN-HgoiWgvh_ibBVPtRjiAV6sqKnvt-DnWNtbb52W2ARezXqBc4eEkvU-op3fLVBTygikaAdKKoH-efEYlneIY6RsHt7gRSEWCd302ykGklpUdYWGvHGCHwWJ-6KW8-QNzE6OZ0eTqMu9EJmMl8vIiMTwPOVpqYzODNMU_az8dsKWJqmcc4lLLDmTmfFrWiXOMMU100oJlwiTvYX1el7bbcAirrTg1isynbJc-f1VqfLSZi4rnP86G0Daj7g0HS85pce4kT0A7VoGMUkSk2zFNIDhQ6OmpeV4urroRSn_mF3SG46nG37qBS_9uqPLlFYcknRlQYiieADv2hnx0BPvBPpB4cX7__3tHryYzKZn8uz0_OsHeElvwjl2_BHWl7d3dsc7Qku9Gyb6b4iyB3Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aberrant+patterns+of+spontaneous+brain+activity+in+schizophrenia%3A+A+resting-state+fMRI+study+and+classification+analysis&rft.jtitle=Progress+in+neuro-psychopharmacology+%26+biological+psychiatry&rft.au=Zhang%2C+Rong&rft.au=Ren%2C+Juanjuan&rft.au=Lei%2C+Xiaoxia&rft.au=Wang%2C+Yewei&rft.date=2024-08-30&rft.eissn=1878-4216&rft.volume=134&rft.spage=111066&rft_id=info:doi/10.1016%2Fj.pnpbp.2024.111066&rft_id=info%3Apmid%2F38901758&rft.externalDocID=38901758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-5846&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-5846&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-5846&client=summon