A multi-biometric iris recognition system based on a deep learning approach

Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability t...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 21; no. 3; pp. 783 - 802
Main Authors Al-Waisy, Alaa S., Qahwaji, Rami, Ipson, Stanley, Al-Fahdawi, Shumoos, Nagem, Tarek A. M.
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris-V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person.
AbstractList Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris-V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person.
Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris-V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person.
Author Qahwaji, Rami
Al-Fahdawi, Shumoos
Nagem, Tarek A. M.
Ipson, Stanley
Al-Waisy, Alaa S.
Author_xml – sequence: 1
  givenname: Alaa S.
  surname: Al-Waisy
  fullname: Al-Waisy, Alaa S.
  email: king_alaa87@yahoo.com
  organization: School of Electrical Engineering and Computer Science, University of Bradford
– sequence: 2
  givenname: Rami
  surname: Qahwaji
  fullname: Qahwaji, Rami
  organization: School of Electrical Engineering and Computer Science, University of Bradford
– sequence: 3
  givenname: Stanley
  surname: Ipson
  fullname: Ipson, Stanley
  organization: School of Electrical Engineering and Computer Science, University of Bradford
– sequence: 4
  givenname: Shumoos
  surname: Al-Fahdawi
  fullname: Al-Fahdawi, Shumoos
  organization: School of Electrical Engineering and Computer Science, University of Bradford
– sequence: 5
  givenname: Tarek A. M.
  surname: Nagem
  fullname: Nagem, Tarek A. M.
  organization: School of Electrical Engineering and Computer Science, University of Bradford
BookMark eNp9kMtKxDAUhoOM4MzoA7gLuK7m1qZdDoM3HHCj4C5k0pMxQ5vWJLOYt7eloiDo5lzg_87lX6CZ7zwgdEnJNSVE3sQhCpERKjNS5EVGT9CcCs4zmedvs-9a0DO0iHFPCOeclXP0tMLtoUku27quhRScwS64iAOYbuddcp3H8RgTtHirI9R46DWuAXrcgA7e-R3WfR86bd7P0anVTYSLr7xEr3e3L-uHbPN8_7hebTLD8yplRhSCWy54DUZLLbe6EBbykrJSFzWjglArCw2EVQUrLbGmqipp6zoHKnnN-BJdTXOHtR8HiEntu0Pww0rFiKRMCMpGlZxUJnQxBrDKuKTHh1LQrlGUqNE5NTmnBufU6JyiA0l_kX1wrQ7Hfxk2MXHQ-h2En5v-hj4B096B1g
CitedBy_id crossref_primary_10_1007_s00371_022_02429_x
crossref_primary_10_1007_s41315_021_00174_3
crossref_primary_10_1109_ACCESS_2018_2886573
crossref_primary_10_1016_j_jisa_2020_102707
crossref_primary_10_1088_2631_8695_ad8722
crossref_primary_10_1016_j_neucom_2022_10_064
crossref_primary_10_3390_app12042023
crossref_primary_10_3390_math10193530
crossref_primary_10_21833_ijaas_2024_06_010
crossref_primary_10_1109_IOTM_001_2100214
crossref_primary_10_1016_j_patrec_2023_08_006
crossref_primary_10_1007_s11042_024_20415_4
crossref_primary_10_1007_s11042_020_09286_7
crossref_primary_10_3390_electronics12234858
crossref_primary_10_1007_s11042_024_18500_9
crossref_primary_10_61186_seai_2410_1012
crossref_primary_10_3233_KES_210052
crossref_primary_10_1109_ACCESS_2025_3539502
crossref_primary_10_1007_s00500_020_05424_3
crossref_primary_10_1109_ACCESS_2024_3504858
crossref_primary_10_1007_s12530_022_09477_7
crossref_primary_10_1109_ACCESS_2024_3395417
crossref_primary_10_1134_S105466182004015X
crossref_primary_10_1016_j_cmpbup_2022_100084
crossref_primary_10_1007_s11042_021_11482_y
crossref_primary_10_1016_j_eswa_2024_124160
crossref_primary_10_1002_int_22649
crossref_primary_10_1007_s10462_019_09776_7
crossref_primary_10_1007_s12652_019_01414_y
crossref_primary_10_1016_j_optlastec_2019_105701
crossref_primary_10_21303_2461_4262_2022_002341
crossref_primary_10_1007_s11042_022_12517_8
crossref_primary_10_31642_JoKMC_2018_110209
crossref_primary_10_1016_j_engappai_2023_107569
crossref_primary_10_1134_S1054661821010119
crossref_primary_10_36548_jiip_2021_2_005
crossref_primary_10_1049_iet_bmt_2019_0169
crossref_primary_10_1007_s42452_019_0777_9
crossref_primary_10_7717_peerj_cs_381
crossref_primary_10_1007_s12652_021_02952_0
crossref_primary_10_2478_jsiot_2024_0007
crossref_primary_10_3390_s20072085
crossref_primary_10_1007_s10586_023_04180_x
crossref_primary_10_1049_ipr2_12493
crossref_primary_10_1155_2021_6641247
crossref_primary_10_1149_2754_2726_ad1b3a
crossref_primary_10_1515_bmt_2019_0241
crossref_primary_10_1016_j_eswa_2021_116288
crossref_primary_10_1007_s00500_024_10316_x
crossref_primary_10_1109_TIM_2022_3232162
crossref_primary_10_32604_csse_2023_034849
crossref_primary_10_3390_s20195523
crossref_primary_10_1016_j_imavis_2020_104024
crossref_primary_10_1109_ACCESS_2021_3076756
crossref_primary_10_32604_cmc_2022_030399
crossref_primary_10_1109_JIOT_2023_3299465
crossref_primary_10_1007_s10044_020_00899_0
crossref_primary_10_1007_s12652_020_02691_8
crossref_primary_10_1007_s11082_023_05131_x
crossref_primary_10_1080_01969722_2022_2122012
crossref_primary_10_1016_j_future_2020_01_056
crossref_primary_10_3390_s22166039
crossref_primary_10_1007_s11227_019_03007_0
crossref_primary_10_1088_1742_6596_1530_1_012125
crossref_primary_10_1109_TAI_2021_3064003
crossref_primary_10_3390_electronics8101109
crossref_primary_10_1007_s11227_022_04611_3
crossref_primary_10_1007_s00521_025_11109_5
crossref_primary_10_1007_s11042_023_17337_y
crossref_primary_10_1007_s12008_022_01035_4
crossref_primary_10_1007_s10462_021_10028_w
crossref_primary_10_1117_1_JEI_28_3_033008
crossref_primary_10_3233_KES_220003
crossref_primary_10_35940_ijies_L1096_12020225
crossref_primary_10_1109_ACCESS_2021_3050788
crossref_primary_10_1049_iet_bmt_2019_0116
crossref_primary_10_1016_j_compeleceng_2024_109894
crossref_primary_10_1109_ACCESS_2024_3361287
crossref_primary_10_3390_s18082601
crossref_primary_10_1016_j_cose_2018_11_003
crossref_primary_10_1007_s00500_019_04610_2
crossref_primary_10_1016_j_ins_2023_03_029
crossref_primary_10_1007_s10489_020_01681_9
crossref_primary_10_1007_s11042_022_12204_8
crossref_primary_10_1016_j_advengsoft_2022_103352
crossref_primary_10_1109_ACCESS_2019_2917153
crossref_primary_10_22630_MGV_2024_33_3_5
crossref_primary_10_3390_computers10020021
crossref_primary_10_3390_a15040118
crossref_primary_10_1007_s11042_021_10932_x
crossref_primary_10_1007_s13042_024_02232_1
crossref_primary_10_1016_j_compeleceng_2024_109485
crossref_primary_10_4018_IJOCI_305210
crossref_primary_10_5187_jast_2023_e51
crossref_primary_10_1016_j_asr_2021_01_042
crossref_primary_10_1007_s11042_024_18350_5
crossref_primary_10_1007_s00530_021_00768_8
Cites_doi 10.1007/s10044-015-0482-2
10.1109/5.628669
10.1109/TPAMI.2008.240
10.1016/j.neunet.2012.02.023
10.1007/s11760-011-0226-8
10.1186/s40064-015-0971-1
10.1007/s00371-014-1023-5
10.1109/34.244676
10.1016/j.dsp.2012.06.001
10.1561/2200000006
10.1016/j.ijar.2008.11.006
10.1016/j.patcog.2009.08.016
10.1016/j.mcm.2012.06.034
10.1016/j.procs.2015.03.135
10.1049/ip-vis:20050213
10.1007/s10462-011-9225-y
10.1109/TIFS.2015.2398817
10.1016/j.compbiomed.2007.07.007
10.7763/IJCCE.2012.V1.73
10.1007/s10044-011-0229-7
10.4218/etrij.01.0101.0203
10.1109/TSMCB.2008.922059
10.1016/j.patcog.2013.06.004
10.1109/TSMCB.2012.2186125
10.1049/el.2014.2526
10.1016/j.medengphy.2013.08.009
10.1109/78.668573
10.1109/ICB.2012.6199821
10.1007/978-3-319-00930-8_18
10.1109/CIT/IUCC/DASC/PICOM.2015.156
10.1109/IJCNN.2015.7280558
10.1109/ICCSE.2013.6554063
10.1007/978-3-642-25449-9_33
10.1109/BTAS.2009.5339081
10.1007/s00138-017-0870-2
10.1109/DSP-SPE.2015.7369524
10.1145/1390156.1390177
10.1109/SIBGRAPI.2015.16
10.1109/ICSESS.2012.6269422
10.1109/WACV.2016.7477593
10.1109/CVPR.2014.222
10.21437/Interspeech.2015-191
10.1109/CIT/IUCC/DASC/PICOM.2015.78
10.1109/ICIP.2011.6116350
10.4108/icst.mobicase.2014.257786
10.1109/ICIINFS.2014.7036572
10.1109/CVPR.2014.244
10.1109/ICM.2011.6177389
10.1109/ICCICT.2012.6398164
10.1109/ICSPS.2010.5555246
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Springer Science & Business Media 2018
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10044-017-0656-1
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 802
ExternalDocumentID 10_1007_s10044_017_0656_1
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c359t-c4643f343deca7a7ba64fe58128a6d21401f76ae029628f0fc9997fdd5e173d23
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Mon Jul 14 09:38:56 EDT 2025
Thu Apr 24 22:52:21 EDT 2025
Tue Jul 01 01:15:16 EDT 2025
Fri Feb 21 02:29:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Softmax classifier
Convolutional Neural Network
AdaGrad method
Multimodal biometric systems
Iris recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c4643f343deca7a7ba64fe58128a6d21401f76ae029628f0fc9997fdd5e173d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s10044-017-0656-1
PQID 2071244122
PQPubID 2043691
PageCount 20
ParticipantIDs proquest_journals_2071244122
crossref_citationtrail_10_1007_s10044_017_0656_1
crossref_primary_10_1007_s10044_017_0656_1
springer_journals_10_1007_s10044_017_0656_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2018
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR13) 2014; 15
Abiyev, Kilic (CR4) 2011
Bengio (CR37) 2009; 2
Abibullaev, An, Jin, Lee, Il Moon (CR36) 2013; 35
CR39
Dhage, Hegde, Manikantan, Ramachandran (CR75) 2015; 45
Kumar, Passi (CR51) 2010; 43
CR33
Salakhutdinov, Hinton (CR34) 2009; 50
Jan, Usman, Agha (CR52) 2012; 22
CR76
CR31
CR30
CR74
CR71
Wildes (CR21) 1997; 85
Ding, Zhu, Jia, Su (CR25) 2011; 37
Ross, Nandakumar, Anil (CR9) 2006; 53
Hentati, Hentati, Abid (CR5) 2012; 1
Daugman (CR17) 1993; 15
Das, Parekh (CR6) 2012; 3
Lim, Lee, Byeon, Kim (CR23) 2001; 23
Mehrotra, Sa, Majhi (CR61) 2013; 58
CR2
El Khiyari, Wechsler (CR32) 2016; 7
Ren, Peng, Zeng, Peng, Zhang, Wu, Zeng (CR18) 2008; 38
Kerim, Mohammed (CR65) 2014; 3
CR49
Li, Zhou, Yuan (CR70) 2015; 31
CR47
CR46
CR45
CR44
Hajari (CR1) 2015; 4
CR43
CR41
Nalla, Chalavadi (CR72) 2015; 4
Pawar, Student, Jhajjav (CR60) 2012; 47
Mahlouji, Noruzi (CR54) 2012; 9
Proenc, Alexandre (CR19) 2006; 153
CR16
CR59
CR14
Boles, Boashash (CR22) 1998; 46
Zeng, Wu, Shao, Senhadji, Shu, Zeng, Wu, Shao, Senhadji, Shu (CR38) 2015; 50
CR58
CR12
CR56
CR55
CR10
CR53
Da Costa, Gonzaga (CR66) 2012; 42
CR50
Monwar, Gavrilova (CR48) 2013; 7
Masek (CR24) 2003
Umer, Dhara, Chanda (CR57) 2016; 19
Duda, Hart, Stork (CR40) 2012
Deng, Yu (CR11) 2013; 28
Elgamal, Al-Biqami (CR73) 2013; 2
Ciresan, Meier, Masci, Schmidhuber (CR35) 2012; 32
Menotti, Chiachia, Pinto, Schwartz, Pedrini, Falcão, Rocha (CR15) 2015; 10
CR28
Syafeeza, Liew, Bakhteri (CR29) 2014; 6
CR27
CR26
CR68
CR67
Gad, EL-SAYED, Zorkany, El-fishawy (CR8) 2015; 6
Duchi, Hazan, Singer (CR42) 2011; 12
Roy, Bhattacharya, Suen (CR69) 2011; 14
CR63
CR62
AlMahafzah, Zaid AlRwashdeh (CR7) 2012; 43
Vatsa, Singh, Noore (CR64) 2008; 38
Tan, Sun (CR3) 2009; 31
Sahmoud, Abuhaiba (CR20) 2013; 46
PR Nalla (656_CR72) 2015; 4
X Ren (656_CR18) 2008; 38
R Duda (656_CR40) 2012
T Tan (656_CR3) 2009; 31
A Kumar (656_CR51) 2010; 43
F Jan (656_CR52) 2012; 22
656_CR12
656_CR56
656_CR59
656_CR14
656_CR58
656_CR16
WW Boles (656_CR22) 1998; 46
656_CR50
N Srivastava (656_CR13) 2014; 15
656_CR53
656_CR2
656_CR55
656_CR10
L Masek (656_CR24) 2003
S Ding (656_CR25) 2011; 37
H AlMahafzah (656_CR7) 2012; 43
R Zeng (656_CR38) 2015; 50
K Roy (656_CR69) 2011; 14
MM Monwar (656_CR48) 2013; 7
S Umer (656_CR57) 2016; 19
656_CR46
656_CR45
RP Wildes (656_CR21) 1997; 85
656_CR47
M Vatsa (656_CR64) 2008; 38
656_CR49
RH Abiyev (656_CR4) 2011
A Ross (656_CR9) 2006; 53
AA Kerim (656_CR65) 2014; 3
DC Ciresan (656_CR35) 2012; 32
656_CR41
D Menotti (656_CR15) 2015; 10
656_CR44
656_CR43
RM Costa Da (656_CR66) 2012; 42
H Proenc (656_CR19) 2006; 153
B Abibullaev (656_CR36) 2013; 35
656_CR39
MK Pawar (656_CR60) 2012; 47
656_CR71
656_CR31
C Li (656_CR70) 2015; 31
656_CR30
656_CR74
656_CR33
656_CR76
L Deng (656_CR11) 2013; 28
M Mahlouji (656_CR54) 2012; 9
S Lim (656_CR23) 2001; 23
R Gad (656_CR8) 2015; 6
R Hentati (656_CR5) 2012; 1
JG Daugman (656_CR17) 1993; 15
A Das (656_CR6) 2012; 3
AR Syafeeza (656_CR29) 2014; 6
SS Dhage (656_CR75) 2015; 45
Y Bengio (656_CR37) 2009; 2
M Elgamal (656_CR73) 2013; 2
K Hajari (656_CR1) 2015; 4
J Duchi (656_CR42) 2011; 12
656_CR68
656_CR67
656_CR26
656_CR28
SA Sahmoud (656_CR20) 2013; 46
656_CR27
656_CR62
H Khiyari El (656_CR32) 2016; 7
R Salakhutdinov (656_CR34) 2009; 50
656_CR63
H Mehrotra (656_CR61) 2013; 58
References_xml – ident: CR45
– volume: 53
  start-page: 1689
  issue: 9
  year: 2006
  end-page: 1699
  ident: CR9
  article-title: Handbook of multibiometrics
  publication-title: J Chem Inf Model
– volume: 19
  start-page: 283
  issue: 1
  year: 2016
  end-page: 295
  ident: CR57
  article-title: Texture code matrix-based multi-instance iris recognition
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-015-0482-2
– volume: 28
  start-page: 198
  issue: 3
  year: 2013
  end-page: 387
  ident: CR11
  article-title: Deep learning methods and applications
  publication-title: Signal Process
– ident: CR49
– ident: CR68
– ident: CR74
– volume: 85
  start-page: 1348
  issue: 9
  year: 1997
  end-page: 1363
  ident: CR21
  article-title: Iris recognition: an emerging biometric technology
  publication-title: Proc IEEE
  doi: 10.1109/5.628669
– ident: CR39
– ident: CR16
– volume: 31
  start-page: 2211
  issue: 12
  year: 2009
  end-page: 2226
  ident: CR3
  article-title: Ordinal measures for iris recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.240
– ident: CR12
– volume: 32
  start-page: 333
  year: 2012
  end-page: 338
  ident: CR35
  article-title: Multi-column deep neural network for traffic sign classification
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2012.02.023
– year: 2003
  ident: CR24
  publication-title: Recognition of human iris patterns for biometric identification
– volume: 7
  start-page: 137
  issue: 1
  year: 2013
  end-page: 149
  ident: CR48
  article-title: Markov chain model for multimodal biometric rank fusion
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-011-0226-8
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  end-page: 10
  ident: CR72
  article-title: Iris classification based on sparse representations using on-line dictionary learning for large-scale de-duplication applications
  publication-title: Springerplus
  doi: 10.1186/s40064-015-0971-1
– ident: CR58
– volume: 31
  start-page: 1419
  issue: 10
  year: 2015
  end-page: 1429
  ident: CR70
  article-title: Iris recognition based on a novel variation of local binary pattern
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-014-1023-5
– volume: 2
  start-page: 521
  issue: 3
  year: 2013
  end-page: 527
  ident: CR73
  article-title: An efficient feature extraction method for iris recognition based on wavelet transformation
  publication-title: Int J Comput Inf Technol
– ident: CR46
– ident: CR71
– volume: 6
  start-page: 128
  issue: 6
  year: 2015
  end-page: 138
  ident: CR8
  article-title: Multi-biometric systems: a state of the art survey and research directions
  publication-title: Int J Adv Comput Sci Appl
– volume: 3
  start-page: 226
  issue: 5
  year: 2014
  end-page: 231
  ident: CR65
  article-title: New iris feature extraction and pattern matching based on statistical measurement
  publication-title: Int J Emerg Trends Technol Comput Sci
– ident: CR67
– volume: 15
  start-page: 1148
  issue: 11
  year: 1993
  end-page: 1161
  ident: CR17
  article-title: High confidence visual recognition of persons by a test of statistical independence
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.244676
– ident: CR50
– volume: 22
  start-page: 971
  issue: 6
  year: 2012
  end-page: 986
  ident: CR52
  article-title: Iris localization in frontal eye images for less constrained iris recognition systems
  publication-title: Digit Signal Process A Rev J
  doi: 10.1016/j.dsp.2012.06.001
– volume: 4
  start-page: 108
  issue: 4
  year: 2015
  end-page: 112
  ident: CR1
  article-title: Improving iris recognition performance using local binary pattern and combined RBFNN
  publication-title: Int J Eng Adv Technol
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  end-page: 127
  ident: CR37
  article-title: Learning deep architectures for AI”, Found. Trends
  publication-title: Mach Learn
  doi: 10.1561/2200000006
– volume: 47
  start-page: 40
  issue: 16
  year: 2012
  end-page: 47
  ident: CR60
  article-title: Iris segmentation using geodesic active contour for improved texture extraction in recognition
  publication-title: Int J
– volume: 50
  start-page: 969
  issue: 7
  year: 2009
  end-page: 978
  ident: CR34
  article-title: Semantic hashing
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2008.11.006
– volume: 43
  start-page: 1016
  issue: 3
  year: 2010
  end-page: 1026
  ident: CR51
  article-title: Comparison and combination of iris matchers for reliable personal authentication
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2009.08.016
– ident: CR26
– volume: 6
  start-page: 44
  issue: 1
  year: 2014
  end-page: 57
  ident: CR29
  article-title: Convolutional neural network for face recognition with pose and illumination variation
  publication-title: Int J Eng Technol
– volume: 58
  start-page: 132
  issue: 1–2
  year: 2013
  end-page: 146
  ident: CR61
  article-title: Fast segmentation and adaptive SURF descriptor for iris recognition
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2012.06.034
– volume: 45
  start-page: 256
  issue: 2015
  year: 2015
  end-page: 265
  ident: CR75
  article-title: DWT-based feature extraction and radon transform based contrast enhancement for improved iris recognition
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.03.135
– volume: 153
  start-page: 199
  issue: 2
  year: 2006
  end-page: 205
  ident: CR19
  article-title: Iris segmentation methodology for non-cooperative recognition
  publication-title: IEE Proce Vis Image Signal Process
  doi: 10.1049/ip-vis:20050213
– ident: CR43
– volume: 37
  start-page: 169
  issue: 3
  year: 2011
  end-page: 180
  ident: CR25
  article-title: A survey on feature extraction for pattern recognition
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9225-y
– ident: CR47
– ident: CR14
– ident: CR2
– volume: 10
  start-page: 864
  issue: 4
  year: 2015
  end-page: 879
  ident: CR15
  article-title: Deep representations for iris, face, and fingerprint spoofing detection
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2398817
– ident: CR53
– year: 2011
  ident: CR4
  publication-title: Robust feature extraction and iris recognition for biometric personal identification
– ident: CR30
– ident: CR10
– volume: 38
  start-page: 111
  issue: 1
  year: 2008
  end-page: 115
  ident: CR18
  article-title: An improved method for Daugman’s iris localization algorithm
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2007.07.007
– ident: CR33
– volume: 1
  start-page: 283
  issue: 3
  year: 2012
  end-page: 286
  ident: CR5
  article-title: Development a new algorithm for iris biometric recognition
  publication-title: Int J Comput Commun Eng
  doi: 10.7763/IJCCE.2012.V1.73
– volume: 14
  start-page: 329
  issue: 4
  year: 2011
  end-page: 348
  ident: CR69
  article-title: Iris recognition using shape-guided approach and game theory
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-011-0229-7
– ident: CR56
– volume: 23
  start-page: 61
  issue: 2
  year: 2001
  end-page: 70
  ident: CR23
  article-title: Efficient iris recognition through improvement of feature vector and classifier
  publication-title: ETRI J
  doi: 10.4218/etrij.01.0101.0203
– ident: CR63
– ident: CR27
– volume: 38
  start-page: 1021
  issue: 4
  year: 2008
  end-page: 1035
  ident: CR64
  article-title: Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2008.922059
– volume: 46
  start-page: 3174
  issue: 12
  year: 2013
  end-page: 3185
  ident: CR20
  article-title: Efficient iris segmentation method in unconstrained environments
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2013.06.004
– volume: 43
  start-page: 36
  issue: 15
  year: 2012
  end-page: 43
  ident: CR7
  article-title: A survey of multibiometric systems
  publication-title: Int J Comput Appl
– ident: CR44
– year: 2012
  ident: CR40
  publication-title: Patterns classification
– volume: 7
  start-page: 141
  issue: 3
  year: 2016
  end-page: 151
  ident: CR32
  article-title: Face recognition across time lapse using convolutional neural networks
  publication-title: J Inf Secur
– volume: 42
  start-page: 1072
  issue: 4
  year: 2012
  end-page: 1082
  ident: CR66
  article-title: Dynamic features for iris recognition
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2012.2186125
– volume: 50
  start-page: 1929
  issue: 25
  year: 2015
  end-page: 1930
  ident: CR38
  article-title: Quaternion softmax classifier
  publication-title: Electron Lett IET
  doi: 10.1049/el.2014.2526
– ident: CR31
– volume: 12
  start-page: 2121
  year: 2011
  end-page: 2159
  ident: CR42
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J Mach Learn Res
– volume: 35
  start-page: 1811
  issue: 12
  year: 2013
  end-page: 1818
  ident: CR36
  article-title: Deep machine learning—a new frontier in artificial intelligence research
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2013.08.009
– volume: 3
  start-page: 3
  issue: 5
  year: 2012
  end-page: 8
  ident: CR6
  article-title: Iris recognition using a scalar based template in eigen-space
  publication-title: Int J Comput Sci Telecommun
– ident: CR55
– volume: 46
  start-page: 1185
  issue: 4
  year: 1998
  end-page: 1188
  ident: CR22
  article-title: A human identification technique using images of the iris and wavelet transform
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.668573
– ident: CR59
– ident: CR76
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: CR13
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: CR28
– ident: CR41
– ident: CR62
– volume: 9
  start-page: 149
  issue: 1
  year: 2012
  end-page: 155
  ident: CR54
  article-title: Human iris segmentation for iris recognition in unconstrained environments
  publication-title: Int J Comput Sci Issues
– ident: 656_CR10
– volume: 12
  start-page: 2121
  year: 2011
  ident: 656_CR42
  publication-title: J Mach Learn Res
– ident: 656_CR14
– ident: 656_CR33
– volume: 14
  start-page: 329
  issue: 4
  year: 2011
  ident: 656_CR69
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-011-0229-7
– ident: 656_CR43
– ident: 656_CR55
  doi: 10.1109/ICB.2012.6199821
– volume: 38
  start-page: 111
  issue: 1
  year: 2008
  ident: 656_CR18
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2007.07.007
– ident: 656_CR27
  doi: 10.1007/978-3-319-00930-8_18
– ident: 656_CR39
  doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.156
– volume: 7
  start-page: 141
  issue: 3
  year: 2016
  ident: 656_CR32
  publication-title: J Inf Secur
– volume: 31
  start-page: 1419
  issue: 10
  year: 2015
  ident: 656_CR70
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-014-1023-5
– volume: 35
  start-page: 1811
  issue: 12
  year: 2013
  ident: 656_CR36
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2013.08.009
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 656_CR37
  publication-title: Mach Learn
  doi: 10.1561/2200000006
– ident: 656_CR31
  doi: 10.1109/IJCNN.2015.7280558
– volume: 32
  start-page: 333
  year: 2012
  ident: 656_CR35
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2012.02.023
– ident: 656_CR46
– volume: 42
  start-page: 1072
  issue: 4
  year: 2012
  ident: 656_CR66
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2012.2186125
– volume: 22
  start-page: 971
  issue: 6
  year: 2012
  ident: 656_CR52
  publication-title: Digit Signal Process A Rev J
  doi: 10.1016/j.dsp.2012.06.001
– volume: 6
  start-page: 44
  issue: 1
  year: 2014
  ident: 656_CR29
  publication-title: Int J Eng Technol
– volume: 3
  start-page: 226
  issue: 5
  year: 2014
  ident: 656_CR65
  publication-title: Int J Emerg Trends Technol Comput Sci
– volume: 43
  start-page: 1016
  issue: 3
  year: 2010
  ident: 656_CR51
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2009.08.016
– ident: 656_CR56
– ident: 656_CR26
  doi: 10.1109/ICCSE.2013.6554063
– ident: 656_CR49
  doi: 10.1007/978-3-642-25449-9_33
– ident: 656_CR47
  doi: 10.1109/BTAS.2009.5339081
– ident: 656_CR63
– volume: 50
  start-page: 1929
  issue: 25
  year: 2015
  ident: 656_CR38
  publication-title: Electron Lett IET
  doi: 10.1049/el.2014.2526
– volume-title: Recognition of human iris patterns for biometric identification
  year: 2003
  ident: 656_CR24
– volume: 46
  start-page: 1185
  issue: 4
  year: 1998
  ident: 656_CR22
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.668573
– volume: 15
  start-page: 1148
  issue: 11
  year: 1993
  ident: 656_CR17
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.244676
– ident: 656_CR45
  doi: 10.1007/s00138-017-0870-2
– volume: 15
  start-page: 1929
  year: 2014
  ident: 656_CR13
  publication-title: J Mach Learn Res
– ident: 656_CR74
  doi: 10.1109/DSP-SPE.2015.7369524
– volume: 47
  start-page: 40
  issue: 16
  year: 2012
  ident: 656_CR60
  publication-title: Int J
– volume: 2
  start-page: 521
  issue: 3
  year: 2013
  ident: 656_CR73
  publication-title: Int J Comput Inf Technol
– volume: 1
  start-page: 283
  issue: 3
  year: 2012
  ident: 656_CR5
  publication-title: Int J Comput Commun Eng
  doi: 10.7763/IJCCE.2012.V1.73
– volume: 58
  start-page: 132
  issue: 1–2
  year: 2013
  ident: 656_CR61
  publication-title: Math Comput Model
  doi: 10.1016/j.mcm.2012.06.034
– ident: 656_CR30
  doi: 10.1145/1390156.1390177
– volume: 28
  start-page: 198
  issue: 3
  year: 2013
  ident: 656_CR11
  publication-title: Signal Process
– ident: 656_CR16
  doi: 10.1109/SIBGRAPI.2015.16
– volume: 153
  start-page: 199
  issue: 2
  year: 2006
  ident: 656_CR19
  publication-title: IEE Proce Vis Image Signal Process
  doi: 10.1049/ip-vis:20050213
– volume: 37
  start-page: 169
  issue: 3
  year: 2011
  ident: 656_CR25
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-011-9225-y
– volume: 38
  start-page: 1021
  issue: 4
  year: 2008
  ident: 656_CR64
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern
  doi: 10.1109/TSMCB.2008.922059
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  ident: 656_CR72
  publication-title: Springerplus
  doi: 10.1186/s40064-015-0971-1
– volume: 3
  start-page: 3
  issue: 5
  year: 2012
  ident: 656_CR6
  publication-title: Int J Comput Sci Telecommun
– volume: 23
  start-page: 61
  issue: 2
  year: 2001
  ident: 656_CR23
  publication-title: ETRI J
  doi: 10.4218/etrij.01.0101.0203
– volume: 9
  start-page: 149
  issue: 1
  year: 2012
  ident: 656_CR54
  publication-title: Int J Comput Sci Issues
– volume: 46
  start-page: 3174
  issue: 12
  year: 2013
  ident: 656_CR20
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2013.06.004
– volume-title: Robust feature extraction and iris recognition for biometric personal identification
  year: 2011
  ident: 656_CR4
– volume: 6
  start-page: 128
  issue: 6
  year: 2015
  ident: 656_CR8
  publication-title: Int J Adv Comput Sci Appl
– ident: 656_CR68
  doi: 10.1109/ICSESS.2012.6269422
– volume: 85
  start-page: 1348
  issue: 9
  year: 1997
  ident: 656_CR21
  publication-title: Proc IEEE
  doi: 10.1109/5.628669
– ident: 656_CR62
  doi: 10.1109/WACV.2016.7477593
– ident: 656_CR50
– ident: 656_CR44
  doi: 10.1109/CVPR.2014.222
– volume: 43
  start-page: 36
  issue: 15
  year: 2012
  ident: 656_CR7
  publication-title: Int J Comput Appl
– ident: 656_CR12
  doi: 10.21437/Interspeech.2015-191
– volume: 4
  start-page: 108
  issue: 4
  year: 2015
  ident: 656_CR1
  publication-title: Int J Eng Adv Technol
– ident: 656_CR2
  doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.78
– volume: 7
  start-page: 137
  issue: 1
  year: 2013
  ident: 656_CR48
  publication-title: Signal Image Video Process
  doi: 10.1007/s11760-011-0226-8
– ident: 656_CR53
  doi: 10.1109/ICIP.2011.6116350
– volume: 50
  start-page: 969
  issue: 7
  year: 2009
  ident: 656_CR34
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2008.11.006
– ident: 656_CR58
– ident: 656_CR28
  doi: 10.4108/icst.mobicase.2014.257786
– volume: 45
  start-page: 256
  issue: 2015
  year: 2015
  ident: 656_CR75
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2015.03.135
– ident: 656_CR71
  doi: 10.1109/ICIINFS.2014.7036572
– ident: 656_CR41
  doi: 10.1109/CVPR.2014.244
– ident: 656_CR59
  doi: 10.1109/ICM.2011.6177389
– volume: 19
  start-page: 283
  issue: 1
  year: 2016
  ident: 656_CR57
  publication-title: Pattern Anal Appl
  doi: 10.1007/s10044-015-0482-2
– ident: 656_CR76
  doi: 10.1109/ICCICT.2012.6398164
– volume: 10
  start-page: 864
  issue: 4
  year: 2015
  ident: 656_CR15
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2398817
– volume-title: Patterns classification
  year: 2012
  ident: 656_CR40
– volume: 53
  start-page: 1689
  issue: 9
  year: 2006
  ident: 656_CR9
  publication-title: J Chem Inf Model
– volume: 31
  start-page: 2211
  issue: 12
  year: 2009
  ident: 656_CR3
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.240
– ident: 656_CR67
  doi: 10.1109/ICSPS.2010.5555246
SSID ssj0033328
Score 2.5345485
Snippet Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 783
SubjectTerms Artificial neural networks
Back propagation
Biometric recognition systems
Biometrics
Computer Science
Deep learning
Feature extraction
Image classification
Neural networks
Noise sensitivity
Pattern Recognition
Short Paper
Spoofing
Training
Wavelet transforms
Title A multi-biometric iris recognition system based on a deep learning approach
URI https://link.springer.com/article/10.1007/s10044-017-0656-1
https://www.proquest.com/docview/2071244122
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5se_HiW6zWkoMnZSGbZF_HpbQWi54s1NOS3SQiSFts_f9OsptWRQWPO5vkMMlkviQz3wBcZTI1EcKIQMSlTcmJTYACHdBSCJWYLOHuwu3-IR5Pxd0smjV53Csf7e6fJN1O_SnZjQobMWHDtSx5Xgs6kT264yKestxvv5xzV1AVcQAPkkiE_inzpyG-OqMtwvz2KOp8zegA9hqQSPJ6Vg9hR8-PYL8BjKQxxxWKfE0GLzuGSU5cjGDg8uot_T55QTsmm0ChxZzU7M3EOjBF8FsSpfWSNAUknonnGT-B6Wj4OBgHTcGEoOJRtg4qgfjCcMGVrmQik1LGwugIfXgqY8XsWcoksdSUZTFLDTUVwsPEKBXpMOGK8VNozxdzfQYkSx185CWtlBC0LClTUnCBfUWFsKwL1GuuqBo2cVvU4rXY8iBbZReo7MIquwi7cL3psqypNP5q3PPTUTRWtSoY4iGEIyFjXbjxU7T9_etg5_9qfQG7iIrSOsqvB-3127u-ROSxLvvQyW-fJsM-tAbxoO_W3QcdF883
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGACWXJsx07GqqIq9DG1UrcoiW2EhNqKlv_PObFbUQESYxzbw50v9zl39x1C92me2BhgBBGycCU50hIYMIQWQmhlU8WrH27DkexNxMs0nnqyaFcLsxW_dyVuVLg8CZek5SjzdtGegIuyy97ryE746HLOqzaq4P05UbGIQgDzpy2-u6ANrtwKhVYepnuMDj00xO1alydox8xO0ZGHidgb4RKGQieGMHaG-m1cZQaSqpreke7jN7BevE4Pms9wzdmMndvSGJ5zrI1ZYN824hUHdvFzNOk-jTs94tskkJLH6YqUAlCF5YJrU-YqV0UuhTUxeO4kl5q5G5RVMjeUpZIlltoSQKGyWscmUlwzfoEas_nMXCKcJhVo5AUttRC0KCjTueAC1ooSwFgT0SC5rPQc4q6VxXu2YT92ws5A2JkTdhY10cN6yaIm0PhrciuoI_O2tMwYoCAAIRFjTfQYVLR5_etmV_-afYf2e-PhIBs8j_rX6ABwUVLn-bVQY_XxaW4Ae6yK2-rUfQExisuY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gSIgL34jBgBw4gSraJE3a4zSYBoOJA5N2q9ImQUiom1j5_zhtsgECJI5NkxzsuH6p7WeEzlOZmBhgRMB4bktyuAlgQAdhzpgSJhW0_uH2MOKDMbubxBPX53Tus919SLKpabAsTWV1NVPm6lPhW8hs9oRN3bJEeqtoDS4qdZy2x3v-U0wprZurAiaggYhZ5MOaP23x1TEt0ea3AGntd_rbaNMBRtxtNLyDVnS5i7YceMTONOcw5Psz-LE9NOziOl8wqGvsLRU_fgGbxoukoWmJGyZnbJ2ZwvAssdJ6hl0ziWfsOcf30bh_89QbBK55QlDQOK2CggHWMJRRpQsppMglZ0bH4M8TyRWx9yojuNQhSTlJTGgKgIrCKBXrSFBF6AFqldNSHyKcJjWUpHlYKMbCPA-JkowyWMsKgGhtFHrJZYVjFrcNLl6zJSeyFXYGws6ssLOojS4WS2YNrcZfkzteHZmzsHlGABsBNIkIaaNLr6Ll6183O_rX7DO0_njdz-5vR8NjtAFgKWmS_zqoVb296xMAJFV-Wh-6D-B7098
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-biometric+iris+recognition+system+based+on+a+deep+learning+approach&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Al-Waisy%2C+Alaa+S&rft.au=Qahwaji%2C+Rami&rft.au=Ipson%2C+Stanley&rft.au=Al-Fahdawi%2C+Shumoos&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=21&rft.issue=3&rft.spage=783&rft.epage=802&rft_id=info:doi/10.1007%2Fs10044-017-0656-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon