A multi-biometric iris recognition system based on a deep learning approach
Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability t...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 21; no. 3; pp. 783 - 802 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.08.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called
IrisConvNet
whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of
N
classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris-V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person. |
---|---|
AbstractList | Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris-V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person. Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris-V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person. |
Author | Qahwaji, Rami Al-Fahdawi, Shumoos Nagem, Tarek A. M. Ipson, Stanley Al-Waisy, Alaa S. |
Author_xml | – sequence: 1 givenname: Alaa S. surname: Al-Waisy fullname: Al-Waisy, Alaa S. email: king_alaa87@yahoo.com organization: School of Electrical Engineering and Computer Science, University of Bradford – sequence: 2 givenname: Rami surname: Qahwaji fullname: Qahwaji, Rami organization: School of Electrical Engineering and Computer Science, University of Bradford – sequence: 3 givenname: Stanley surname: Ipson fullname: Ipson, Stanley organization: School of Electrical Engineering and Computer Science, University of Bradford – sequence: 4 givenname: Shumoos surname: Al-Fahdawi fullname: Al-Fahdawi, Shumoos organization: School of Electrical Engineering and Computer Science, University of Bradford – sequence: 5 givenname: Tarek A. M. surname: Nagem fullname: Nagem, Tarek A. M. organization: School of Electrical Engineering and Computer Science, University of Bradford |
BookMark | eNp9kMtKxDAUhoOM4MzoA7gLuK7m1qZdDoM3HHCj4C5k0pMxQ5vWJLOYt7eloiDo5lzg_87lX6CZ7zwgdEnJNSVE3sQhCpERKjNS5EVGT9CcCs4zmedvs-9a0DO0iHFPCOeclXP0tMLtoUku27quhRScwS64iAOYbuddcp3H8RgTtHirI9R46DWuAXrcgA7e-R3WfR86bd7P0anVTYSLr7xEr3e3L-uHbPN8_7hebTLD8yplRhSCWy54DUZLLbe6EBbykrJSFzWjglArCw2EVQUrLbGmqipp6zoHKnnN-BJdTXOHtR8HiEntu0Pww0rFiKRMCMpGlZxUJnQxBrDKuKTHh1LQrlGUqNE5NTmnBufU6JyiA0l_kX1wrQ7Hfxk2MXHQ-h2En5v-hj4B096B1g |
CitedBy_id | crossref_primary_10_1007_s00371_022_02429_x crossref_primary_10_1007_s41315_021_00174_3 crossref_primary_10_1109_ACCESS_2018_2886573 crossref_primary_10_1016_j_jisa_2020_102707 crossref_primary_10_1088_2631_8695_ad8722 crossref_primary_10_1016_j_neucom_2022_10_064 crossref_primary_10_3390_app12042023 crossref_primary_10_3390_math10193530 crossref_primary_10_21833_ijaas_2024_06_010 crossref_primary_10_1109_IOTM_001_2100214 crossref_primary_10_1016_j_patrec_2023_08_006 crossref_primary_10_1007_s11042_024_20415_4 crossref_primary_10_1007_s11042_020_09286_7 crossref_primary_10_3390_electronics12234858 crossref_primary_10_1007_s11042_024_18500_9 crossref_primary_10_61186_seai_2410_1012 crossref_primary_10_3233_KES_210052 crossref_primary_10_1109_ACCESS_2025_3539502 crossref_primary_10_1007_s00500_020_05424_3 crossref_primary_10_1109_ACCESS_2024_3504858 crossref_primary_10_1007_s12530_022_09477_7 crossref_primary_10_1109_ACCESS_2024_3395417 crossref_primary_10_1134_S105466182004015X crossref_primary_10_1016_j_cmpbup_2022_100084 crossref_primary_10_1007_s11042_021_11482_y crossref_primary_10_1016_j_eswa_2024_124160 crossref_primary_10_1002_int_22649 crossref_primary_10_1007_s10462_019_09776_7 crossref_primary_10_1007_s12652_019_01414_y crossref_primary_10_1016_j_optlastec_2019_105701 crossref_primary_10_21303_2461_4262_2022_002341 crossref_primary_10_1007_s11042_022_12517_8 crossref_primary_10_31642_JoKMC_2018_110209 crossref_primary_10_1016_j_engappai_2023_107569 crossref_primary_10_1134_S1054661821010119 crossref_primary_10_36548_jiip_2021_2_005 crossref_primary_10_1049_iet_bmt_2019_0169 crossref_primary_10_1007_s42452_019_0777_9 crossref_primary_10_7717_peerj_cs_381 crossref_primary_10_1007_s12652_021_02952_0 crossref_primary_10_2478_jsiot_2024_0007 crossref_primary_10_3390_s20072085 crossref_primary_10_1007_s10586_023_04180_x crossref_primary_10_1049_ipr2_12493 crossref_primary_10_1155_2021_6641247 crossref_primary_10_1149_2754_2726_ad1b3a crossref_primary_10_1515_bmt_2019_0241 crossref_primary_10_1016_j_eswa_2021_116288 crossref_primary_10_1007_s00500_024_10316_x crossref_primary_10_1109_TIM_2022_3232162 crossref_primary_10_32604_csse_2023_034849 crossref_primary_10_3390_s20195523 crossref_primary_10_1016_j_imavis_2020_104024 crossref_primary_10_1109_ACCESS_2021_3076756 crossref_primary_10_32604_cmc_2022_030399 crossref_primary_10_1109_JIOT_2023_3299465 crossref_primary_10_1007_s10044_020_00899_0 crossref_primary_10_1007_s12652_020_02691_8 crossref_primary_10_1007_s11082_023_05131_x crossref_primary_10_1080_01969722_2022_2122012 crossref_primary_10_1016_j_future_2020_01_056 crossref_primary_10_3390_s22166039 crossref_primary_10_1007_s11227_019_03007_0 crossref_primary_10_1088_1742_6596_1530_1_012125 crossref_primary_10_1109_TAI_2021_3064003 crossref_primary_10_3390_electronics8101109 crossref_primary_10_1007_s11227_022_04611_3 crossref_primary_10_1007_s00521_025_11109_5 crossref_primary_10_1007_s11042_023_17337_y crossref_primary_10_1007_s12008_022_01035_4 crossref_primary_10_1007_s10462_021_10028_w crossref_primary_10_1117_1_JEI_28_3_033008 crossref_primary_10_3233_KES_220003 crossref_primary_10_35940_ijies_L1096_12020225 crossref_primary_10_1109_ACCESS_2021_3050788 crossref_primary_10_1049_iet_bmt_2019_0116 crossref_primary_10_1016_j_compeleceng_2024_109894 crossref_primary_10_1109_ACCESS_2024_3361287 crossref_primary_10_3390_s18082601 crossref_primary_10_1016_j_cose_2018_11_003 crossref_primary_10_1007_s00500_019_04610_2 crossref_primary_10_1016_j_ins_2023_03_029 crossref_primary_10_1007_s10489_020_01681_9 crossref_primary_10_1007_s11042_022_12204_8 crossref_primary_10_1016_j_advengsoft_2022_103352 crossref_primary_10_1109_ACCESS_2019_2917153 crossref_primary_10_22630_MGV_2024_33_3_5 crossref_primary_10_3390_computers10020021 crossref_primary_10_3390_a15040118 crossref_primary_10_1007_s11042_021_10932_x crossref_primary_10_1007_s13042_024_02232_1 crossref_primary_10_1016_j_compeleceng_2024_109485 crossref_primary_10_4018_IJOCI_305210 crossref_primary_10_5187_jast_2023_e51 crossref_primary_10_1016_j_asr_2021_01_042 crossref_primary_10_1007_s11042_024_18350_5 crossref_primary_10_1007_s00530_021_00768_8 |
Cites_doi | 10.1007/s10044-015-0482-2 10.1109/5.628669 10.1109/TPAMI.2008.240 10.1016/j.neunet.2012.02.023 10.1007/s11760-011-0226-8 10.1186/s40064-015-0971-1 10.1007/s00371-014-1023-5 10.1109/34.244676 10.1016/j.dsp.2012.06.001 10.1561/2200000006 10.1016/j.ijar.2008.11.006 10.1016/j.patcog.2009.08.016 10.1016/j.mcm.2012.06.034 10.1016/j.procs.2015.03.135 10.1049/ip-vis:20050213 10.1007/s10462-011-9225-y 10.1109/TIFS.2015.2398817 10.1016/j.compbiomed.2007.07.007 10.7763/IJCCE.2012.V1.73 10.1007/s10044-011-0229-7 10.4218/etrij.01.0101.0203 10.1109/TSMCB.2008.922059 10.1016/j.patcog.2013.06.004 10.1109/TSMCB.2012.2186125 10.1049/el.2014.2526 10.1016/j.medengphy.2013.08.009 10.1109/78.668573 10.1109/ICB.2012.6199821 10.1007/978-3-319-00930-8_18 10.1109/CIT/IUCC/DASC/PICOM.2015.156 10.1109/IJCNN.2015.7280558 10.1109/ICCSE.2013.6554063 10.1007/978-3-642-25449-9_33 10.1109/BTAS.2009.5339081 10.1007/s00138-017-0870-2 10.1109/DSP-SPE.2015.7369524 10.1145/1390156.1390177 10.1109/SIBGRAPI.2015.16 10.1109/ICSESS.2012.6269422 10.1109/WACV.2016.7477593 10.1109/CVPR.2014.222 10.21437/Interspeech.2015-191 10.1109/CIT/IUCC/DASC/PICOM.2015.78 10.1109/ICIP.2011.6116350 10.4108/icst.mobicase.2014.257786 10.1109/ICIINFS.2014.7036572 10.1109/CVPR.2014.244 10.1109/ICM.2011.6177389 10.1109/ICCICT.2012.6398164 10.1109/ICSPS.2010.5555246 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Springer Science & Business Media 2018 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10044-017-0656-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 802 |
ExternalDocumentID | 10_1007_s10044_017_0656_1 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c359t-c4643f343deca7a7ba64fe58128a6d21401f76ae029628f0fc9997fdd5e173d23 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Mon Jul 14 09:38:56 EDT 2025 Thu Apr 24 22:52:21 EDT 2025 Tue Jul 01 01:15:16 EDT 2025 Fri Feb 21 02:29:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep learning Softmax classifier Convolutional Neural Network AdaGrad method Multimodal biometric systems Iris recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-c4643f343deca7a7ba64fe58128a6d21401f76ae029628f0fc9997fdd5e173d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s10044-017-0656-1 |
PQID | 2071244122 |
PQPubID | 2043691 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2071244122 crossref_citationtrail_10_1007_s10044_017_0656_1 crossref_primary_10_1007_s10044_017_0656_1 springer_journals_10_1007_s10044_017_0656_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2018 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR13) 2014; 15 Abiyev, Kilic (CR4) 2011 Bengio (CR37) 2009; 2 Abibullaev, An, Jin, Lee, Il Moon (CR36) 2013; 35 CR39 Dhage, Hegde, Manikantan, Ramachandran (CR75) 2015; 45 Kumar, Passi (CR51) 2010; 43 CR33 Salakhutdinov, Hinton (CR34) 2009; 50 Jan, Usman, Agha (CR52) 2012; 22 CR76 CR31 CR30 CR74 CR71 Wildes (CR21) 1997; 85 Ding, Zhu, Jia, Su (CR25) 2011; 37 Ross, Nandakumar, Anil (CR9) 2006; 53 Hentati, Hentati, Abid (CR5) 2012; 1 Daugman (CR17) 1993; 15 Das, Parekh (CR6) 2012; 3 Lim, Lee, Byeon, Kim (CR23) 2001; 23 Mehrotra, Sa, Majhi (CR61) 2013; 58 CR2 El Khiyari, Wechsler (CR32) 2016; 7 Ren, Peng, Zeng, Peng, Zhang, Wu, Zeng (CR18) 2008; 38 Kerim, Mohammed (CR65) 2014; 3 CR49 Li, Zhou, Yuan (CR70) 2015; 31 CR47 CR46 CR45 CR44 Hajari (CR1) 2015; 4 CR43 CR41 Nalla, Chalavadi (CR72) 2015; 4 Pawar, Student, Jhajjav (CR60) 2012; 47 Mahlouji, Noruzi (CR54) 2012; 9 Proenc, Alexandre (CR19) 2006; 153 CR16 CR59 CR14 Boles, Boashash (CR22) 1998; 46 Zeng, Wu, Shao, Senhadji, Shu, Zeng, Wu, Shao, Senhadji, Shu (CR38) 2015; 50 CR58 CR12 CR56 CR55 CR10 CR53 Da Costa, Gonzaga (CR66) 2012; 42 CR50 Monwar, Gavrilova (CR48) 2013; 7 Masek (CR24) 2003 Umer, Dhara, Chanda (CR57) 2016; 19 Duda, Hart, Stork (CR40) 2012 Deng, Yu (CR11) 2013; 28 Elgamal, Al-Biqami (CR73) 2013; 2 Ciresan, Meier, Masci, Schmidhuber (CR35) 2012; 32 Menotti, Chiachia, Pinto, Schwartz, Pedrini, Falcão, Rocha (CR15) 2015; 10 CR28 Syafeeza, Liew, Bakhteri (CR29) 2014; 6 CR27 CR26 CR68 CR67 Gad, EL-SAYED, Zorkany, El-fishawy (CR8) 2015; 6 Duchi, Hazan, Singer (CR42) 2011; 12 Roy, Bhattacharya, Suen (CR69) 2011; 14 CR63 CR62 AlMahafzah, Zaid AlRwashdeh (CR7) 2012; 43 Vatsa, Singh, Noore (CR64) 2008; 38 Tan, Sun (CR3) 2009; 31 Sahmoud, Abuhaiba (CR20) 2013; 46 PR Nalla (656_CR72) 2015; 4 X Ren (656_CR18) 2008; 38 R Duda (656_CR40) 2012 T Tan (656_CR3) 2009; 31 A Kumar (656_CR51) 2010; 43 F Jan (656_CR52) 2012; 22 656_CR12 656_CR56 656_CR59 656_CR14 656_CR58 656_CR16 WW Boles (656_CR22) 1998; 46 656_CR50 N Srivastava (656_CR13) 2014; 15 656_CR53 656_CR2 656_CR55 656_CR10 L Masek (656_CR24) 2003 S Ding (656_CR25) 2011; 37 H AlMahafzah (656_CR7) 2012; 43 R Zeng (656_CR38) 2015; 50 K Roy (656_CR69) 2011; 14 MM Monwar (656_CR48) 2013; 7 S Umer (656_CR57) 2016; 19 656_CR46 656_CR45 RP Wildes (656_CR21) 1997; 85 656_CR47 M Vatsa (656_CR64) 2008; 38 656_CR49 RH Abiyev (656_CR4) 2011 A Ross (656_CR9) 2006; 53 AA Kerim (656_CR65) 2014; 3 DC Ciresan (656_CR35) 2012; 32 656_CR41 D Menotti (656_CR15) 2015; 10 656_CR44 656_CR43 RM Costa Da (656_CR66) 2012; 42 H Proenc (656_CR19) 2006; 153 B Abibullaev (656_CR36) 2013; 35 656_CR39 MK Pawar (656_CR60) 2012; 47 656_CR71 656_CR31 C Li (656_CR70) 2015; 31 656_CR30 656_CR74 656_CR33 656_CR76 L Deng (656_CR11) 2013; 28 M Mahlouji (656_CR54) 2012; 9 S Lim (656_CR23) 2001; 23 R Gad (656_CR8) 2015; 6 R Hentati (656_CR5) 2012; 1 JG Daugman (656_CR17) 1993; 15 A Das (656_CR6) 2012; 3 AR Syafeeza (656_CR29) 2014; 6 SS Dhage (656_CR75) 2015; 45 Y Bengio (656_CR37) 2009; 2 M Elgamal (656_CR73) 2013; 2 K Hajari (656_CR1) 2015; 4 J Duchi (656_CR42) 2011; 12 656_CR68 656_CR67 656_CR26 656_CR28 SA Sahmoud (656_CR20) 2013; 46 656_CR27 656_CR62 H Khiyari El (656_CR32) 2016; 7 R Salakhutdinov (656_CR34) 2009; 50 656_CR63 H Mehrotra (656_CR61) 2013; 58 |
References_xml | – ident: CR45 – volume: 53 start-page: 1689 issue: 9 year: 2006 end-page: 1699 ident: CR9 article-title: Handbook of multibiometrics publication-title: J Chem Inf Model – volume: 19 start-page: 283 issue: 1 year: 2016 end-page: 295 ident: CR57 article-title: Texture code matrix-based multi-instance iris recognition publication-title: Pattern Anal Appl doi: 10.1007/s10044-015-0482-2 – volume: 28 start-page: 198 issue: 3 year: 2013 end-page: 387 ident: CR11 article-title: Deep learning methods and applications publication-title: Signal Process – ident: CR49 – ident: CR68 – ident: CR74 – volume: 85 start-page: 1348 issue: 9 year: 1997 end-page: 1363 ident: CR21 article-title: Iris recognition: an emerging biometric technology publication-title: Proc IEEE doi: 10.1109/5.628669 – ident: CR39 – ident: CR16 – volume: 31 start-page: 2211 issue: 12 year: 2009 end-page: 2226 ident: CR3 article-title: Ordinal measures for iris recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.240 – ident: CR12 – volume: 32 start-page: 333 year: 2012 end-page: 338 ident: CR35 article-title: Multi-column deep neural network for traffic sign classification publication-title: Neural Netw doi: 10.1016/j.neunet.2012.02.023 – year: 2003 ident: CR24 publication-title: Recognition of human iris patterns for biometric identification – volume: 7 start-page: 137 issue: 1 year: 2013 end-page: 149 ident: CR48 article-title: Markov chain model for multimodal biometric rank fusion publication-title: Signal Image Video Process doi: 10.1007/s11760-011-0226-8 – volume: 4 start-page: 1 issue: 1 year: 2015 end-page: 10 ident: CR72 article-title: Iris classification based on sparse representations using on-line dictionary learning for large-scale de-duplication applications publication-title: Springerplus doi: 10.1186/s40064-015-0971-1 – ident: CR58 – volume: 31 start-page: 1419 issue: 10 year: 2015 end-page: 1429 ident: CR70 article-title: Iris recognition based on a novel variation of local binary pattern publication-title: Vis. Comput. doi: 10.1007/s00371-014-1023-5 – volume: 2 start-page: 521 issue: 3 year: 2013 end-page: 527 ident: CR73 article-title: An efficient feature extraction method for iris recognition based on wavelet transformation publication-title: Int J Comput Inf Technol – ident: CR46 – ident: CR71 – volume: 6 start-page: 128 issue: 6 year: 2015 end-page: 138 ident: CR8 article-title: Multi-biometric systems: a state of the art survey and research directions publication-title: Int J Adv Comput Sci Appl – volume: 3 start-page: 226 issue: 5 year: 2014 end-page: 231 ident: CR65 article-title: New iris feature extraction and pattern matching based on statistical measurement publication-title: Int J Emerg Trends Technol Comput Sci – ident: CR67 – volume: 15 start-page: 1148 issue: 11 year: 1993 end-page: 1161 ident: CR17 article-title: High confidence visual recognition of persons by a test of statistical independence publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.244676 – ident: CR50 – volume: 22 start-page: 971 issue: 6 year: 2012 end-page: 986 ident: CR52 article-title: Iris localization in frontal eye images for less constrained iris recognition systems publication-title: Digit Signal Process A Rev J doi: 10.1016/j.dsp.2012.06.001 – volume: 4 start-page: 108 issue: 4 year: 2015 end-page: 112 ident: CR1 article-title: Improving iris recognition performance using local binary pattern and combined RBFNN publication-title: Int J Eng Adv Technol – volume: 2 start-page: 1 issue: 1 year: 2009 end-page: 127 ident: CR37 article-title: Learning deep architectures for AI”, Found. Trends publication-title: Mach Learn doi: 10.1561/2200000006 – volume: 47 start-page: 40 issue: 16 year: 2012 end-page: 47 ident: CR60 article-title: Iris segmentation using geodesic active contour for improved texture extraction in recognition publication-title: Int J – volume: 50 start-page: 969 issue: 7 year: 2009 end-page: 978 ident: CR34 article-title: Semantic hashing publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2008.11.006 – volume: 43 start-page: 1016 issue: 3 year: 2010 end-page: 1026 ident: CR51 article-title: Comparison and combination of iris matchers for reliable personal authentication publication-title: Pattern Recognit doi: 10.1016/j.patcog.2009.08.016 – ident: CR26 – volume: 6 start-page: 44 issue: 1 year: 2014 end-page: 57 ident: CR29 article-title: Convolutional neural network for face recognition with pose and illumination variation publication-title: Int J Eng Technol – volume: 58 start-page: 132 issue: 1–2 year: 2013 end-page: 146 ident: CR61 article-title: Fast segmentation and adaptive SURF descriptor for iris recognition publication-title: Math Comput Model doi: 10.1016/j.mcm.2012.06.034 – volume: 45 start-page: 256 issue: 2015 year: 2015 end-page: 265 ident: CR75 article-title: DWT-based feature extraction and radon transform based contrast enhancement for improved iris recognition publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.03.135 – volume: 153 start-page: 199 issue: 2 year: 2006 end-page: 205 ident: CR19 article-title: Iris segmentation methodology for non-cooperative recognition publication-title: IEE Proce Vis Image Signal Process doi: 10.1049/ip-vis:20050213 – ident: CR43 – volume: 37 start-page: 169 issue: 3 year: 2011 end-page: 180 ident: CR25 article-title: A survey on feature extraction for pattern recognition publication-title: Artif Intell Rev doi: 10.1007/s10462-011-9225-y – ident: CR47 – ident: CR14 – ident: CR2 – volume: 10 start-page: 864 issue: 4 year: 2015 end-page: 879 ident: CR15 article-title: Deep representations for iris, face, and fingerprint spoofing detection publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2398817 – ident: CR53 – year: 2011 ident: CR4 publication-title: Robust feature extraction and iris recognition for biometric personal identification – ident: CR30 – ident: CR10 – volume: 38 start-page: 111 issue: 1 year: 2008 end-page: 115 ident: CR18 article-title: An improved method for Daugman’s iris localization algorithm publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2007.07.007 – ident: CR33 – volume: 1 start-page: 283 issue: 3 year: 2012 end-page: 286 ident: CR5 article-title: Development a new algorithm for iris biometric recognition publication-title: Int J Comput Commun Eng doi: 10.7763/IJCCE.2012.V1.73 – volume: 14 start-page: 329 issue: 4 year: 2011 end-page: 348 ident: CR69 article-title: Iris recognition using shape-guided approach and game theory publication-title: Pattern Anal Appl doi: 10.1007/s10044-011-0229-7 – ident: CR56 – volume: 23 start-page: 61 issue: 2 year: 2001 end-page: 70 ident: CR23 article-title: Efficient iris recognition through improvement of feature vector and classifier publication-title: ETRI J doi: 10.4218/etrij.01.0101.0203 – ident: CR63 – ident: CR27 – volume: 38 start-page: 1021 issue: 4 year: 2008 end-page: 1035 ident: CR64 article-title: Improving iris recognition performance using segmentation, quality enhancement, match score fusion, and indexing publication-title: IEEE Trans Syst Man Cybern Part B Cybern doi: 10.1109/TSMCB.2008.922059 – volume: 46 start-page: 3174 issue: 12 year: 2013 end-page: 3185 ident: CR20 article-title: Efficient iris segmentation method in unconstrained environments publication-title: Pattern Recognit doi: 10.1016/j.patcog.2013.06.004 – volume: 43 start-page: 36 issue: 15 year: 2012 end-page: 43 ident: CR7 article-title: A survey of multibiometric systems publication-title: Int J Comput Appl – ident: CR44 – year: 2012 ident: CR40 publication-title: Patterns classification – volume: 7 start-page: 141 issue: 3 year: 2016 end-page: 151 ident: CR32 article-title: Face recognition across time lapse using convolutional neural networks publication-title: J Inf Secur – volume: 42 start-page: 1072 issue: 4 year: 2012 end-page: 1082 ident: CR66 article-title: Dynamic features for iris recognition publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2012.2186125 – volume: 50 start-page: 1929 issue: 25 year: 2015 end-page: 1930 ident: CR38 article-title: Quaternion softmax classifier publication-title: Electron Lett IET doi: 10.1049/el.2014.2526 – ident: CR31 – volume: 12 start-page: 2121 year: 2011 end-page: 2159 ident: CR42 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – volume: 35 start-page: 1811 issue: 12 year: 2013 end-page: 1818 ident: CR36 article-title: Deep machine learning—a new frontier in artificial intelligence research publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2013.08.009 – volume: 3 start-page: 3 issue: 5 year: 2012 end-page: 8 ident: CR6 article-title: Iris recognition using a scalar based template in eigen-space publication-title: Int J Comput Sci Telecommun – ident: CR55 – volume: 46 start-page: 1185 issue: 4 year: 1998 end-page: 1188 ident: CR22 article-title: A human identification technique using images of the iris and wavelet transform publication-title: IEEE Trans Signal Process doi: 10.1109/78.668573 – ident: CR59 – ident: CR76 – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: CR13 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: CR28 – ident: CR41 – ident: CR62 – volume: 9 start-page: 149 issue: 1 year: 2012 end-page: 155 ident: CR54 article-title: Human iris segmentation for iris recognition in unconstrained environments publication-title: Int J Comput Sci Issues – ident: 656_CR10 – volume: 12 start-page: 2121 year: 2011 ident: 656_CR42 publication-title: J Mach Learn Res – ident: 656_CR14 – ident: 656_CR33 – volume: 14 start-page: 329 issue: 4 year: 2011 ident: 656_CR69 publication-title: Pattern Anal Appl doi: 10.1007/s10044-011-0229-7 – ident: 656_CR43 – ident: 656_CR55 doi: 10.1109/ICB.2012.6199821 – volume: 38 start-page: 111 issue: 1 year: 2008 ident: 656_CR18 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2007.07.007 – ident: 656_CR27 doi: 10.1007/978-3-319-00930-8_18 – ident: 656_CR39 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.156 – volume: 7 start-page: 141 issue: 3 year: 2016 ident: 656_CR32 publication-title: J Inf Secur – volume: 31 start-page: 1419 issue: 10 year: 2015 ident: 656_CR70 publication-title: Vis. Comput. doi: 10.1007/s00371-014-1023-5 – volume: 35 start-page: 1811 issue: 12 year: 2013 ident: 656_CR36 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2013.08.009 – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 656_CR37 publication-title: Mach Learn doi: 10.1561/2200000006 – ident: 656_CR31 doi: 10.1109/IJCNN.2015.7280558 – volume: 32 start-page: 333 year: 2012 ident: 656_CR35 publication-title: Neural Netw doi: 10.1016/j.neunet.2012.02.023 – ident: 656_CR46 – volume: 42 start-page: 1072 issue: 4 year: 2012 ident: 656_CR66 publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2012.2186125 – volume: 22 start-page: 971 issue: 6 year: 2012 ident: 656_CR52 publication-title: Digit Signal Process A Rev J doi: 10.1016/j.dsp.2012.06.001 – volume: 6 start-page: 44 issue: 1 year: 2014 ident: 656_CR29 publication-title: Int J Eng Technol – volume: 3 start-page: 226 issue: 5 year: 2014 ident: 656_CR65 publication-title: Int J Emerg Trends Technol Comput Sci – volume: 43 start-page: 1016 issue: 3 year: 2010 ident: 656_CR51 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2009.08.016 – ident: 656_CR56 – ident: 656_CR26 doi: 10.1109/ICCSE.2013.6554063 – ident: 656_CR49 doi: 10.1007/978-3-642-25449-9_33 – ident: 656_CR47 doi: 10.1109/BTAS.2009.5339081 – ident: 656_CR63 – volume: 50 start-page: 1929 issue: 25 year: 2015 ident: 656_CR38 publication-title: Electron Lett IET doi: 10.1049/el.2014.2526 – volume-title: Recognition of human iris patterns for biometric identification year: 2003 ident: 656_CR24 – volume: 46 start-page: 1185 issue: 4 year: 1998 ident: 656_CR22 publication-title: IEEE Trans Signal Process doi: 10.1109/78.668573 – volume: 15 start-page: 1148 issue: 11 year: 1993 ident: 656_CR17 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.244676 – ident: 656_CR45 doi: 10.1007/s00138-017-0870-2 – volume: 15 start-page: 1929 year: 2014 ident: 656_CR13 publication-title: J Mach Learn Res – ident: 656_CR74 doi: 10.1109/DSP-SPE.2015.7369524 – volume: 47 start-page: 40 issue: 16 year: 2012 ident: 656_CR60 publication-title: Int J – volume: 2 start-page: 521 issue: 3 year: 2013 ident: 656_CR73 publication-title: Int J Comput Inf Technol – volume: 1 start-page: 283 issue: 3 year: 2012 ident: 656_CR5 publication-title: Int J Comput Commun Eng doi: 10.7763/IJCCE.2012.V1.73 – volume: 58 start-page: 132 issue: 1–2 year: 2013 ident: 656_CR61 publication-title: Math Comput Model doi: 10.1016/j.mcm.2012.06.034 – ident: 656_CR30 doi: 10.1145/1390156.1390177 – volume: 28 start-page: 198 issue: 3 year: 2013 ident: 656_CR11 publication-title: Signal Process – ident: 656_CR16 doi: 10.1109/SIBGRAPI.2015.16 – volume: 153 start-page: 199 issue: 2 year: 2006 ident: 656_CR19 publication-title: IEE Proce Vis Image Signal Process doi: 10.1049/ip-vis:20050213 – volume: 37 start-page: 169 issue: 3 year: 2011 ident: 656_CR25 publication-title: Artif Intell Rev doi: 10.1007/s10462-011-9225-y – volume: 38 start-page: 1021 issue: 4 year: 2008 ident: 656_CR64 publication-title: IEEE Trans Syst Man Cybern Part B Cybern doi: 10.1109/TSMCB.2008.922059 – volume: 4 start-page: 1 issue: 1 year: 2015 ident: 656_CR72 publication-title: Springerplus doi: 10.1186/s40064-015-0971-1 – volume: 3 start-page: 3 issue: 5 year: 2012 ident: 656_CR6 publication-title: Int J Comput Sci Telecommun – volume: 23 start-page: 61 issue: 2 year: 2001 ident: 656_CR23 publication-title: ETRI J doi: 10.4218/etrij.01.0101.0203 – volume: 9 start-page: 149 issue: 1 year: 2012 ident: 656_CR54 publication-title: Int J Comput Sci Issues – volume: 46 start-page: 3174 issue: 12 year: 2013 ident: 656_CR20 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2013.06.004 – volume-title: Robust feature extraction and iris recognition for biometric personal identification year: 2011 ident: 656_CR4 – volume: 6 start-page: 128 issue: 6 year: 2015 ident: 656_CR8 publication-title: Int J Adv Comput Sci Appl – ident: 656_CR68 doi: 10.1109/ICSESS.2012.6269422 – volume: 85 start-page: 1348 issue: 9 year: 1997 ident: 656_CR21 publication-title: Proc IEEE doi: 10.1109/5.628669 – ident: 656_CR62 doi: 10.1109/WACV.2016.7477593 – ident: 656_CR50 – ident: 656_CR44 doi: 10.1109/CVPR.2014.222 – volume: 43 start-page: 36 issue: 15 year: 2012 ident: 656_CR7 publication-title: Int J Comput Appl – ident: 656_CR12 doi: 10.21437/Interspeech.2015-191 – volume: 4 start-page: 108 issue: 4 year: 2015 ident: 656_CR1 publication-title: Int J Eng Adv Technol – ident: 656_CR2 doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.78 – volume: 7 start-page: 137 issue: 1 year: 2013 ident: 656_CR48 publication-title: Signal Image Video Process doi: 10.1007/s11760-011-0226-8 – ident: 656_CR53 doi: 10.1109/ICIP.2011.6116350 – volume: 50 start-page: 969 issue: 7 year: 2009 ident: 656_CR34 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2008.11.006 – ident: 656_CR58 – ident: 656_CR28 doi: 10.4108/icst.mobicase.2014.257786 – volume: 45 start-page: 256 issue: 2015 year: 2015 ident: 656_CR75 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2015.03.135 – ident: 656_CR71 doi: 10.1109/ICIINFS.2014.7036572 – ident: 656_CR41 doi: 10.1109/CVPR.2014.244 – ident: 656_CR59 doi: 10.1109/ICM.2011.6177389 – volume: 19 start-page: 283 issue: 1 year: 2016 ident: 656_CR57 publication-title: Pattern Anal Appl doi: 10.1007/s10044-015-0482-2 – ident: 656_CR76 doi: 10.1109/ICCICT.2012.6398164 – volume: 10 start-page: 864 issue: 4 year: 2015 ident: 656_CR15 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2015.2398817 – volume-title: Patterns classification year: 2012 ident: 656_CR40 – volume: 53 start-page: 1689 issue: 9 year: 2006 ident: 656_CR9 publication-title: J Chem Inf Model – volume: 31 start-page: 2211 issue: 12 year: 2009 ident: 656_CR3 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.240 – ident: 656_CR67 doi: 10.1109/ICSPS.2010.5555246 |
SSID | ssj0033328 |
Score | 2.5345485 |
Snippet | Multimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 783 |
SubjectTerms | Artificial neural networks Back propagation Biometric recognition systems Biometrics Computer Science Deep learning Feature extraction Image classification Neural networks Noise sensitivity Pattern Recognition Short Paper Spoofing Training Wavelet transforms |
Title | A multi-biometric iris recognition system based on a deep learning approach |
URI | https://link.springer.com/article/10.1007/s10044-017-0656-1 https://www.proquest.com/docview/2071244122 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5se_HiW6zWkoMnZSGbZF_HpbQWi54s1NOS3SQiSFts_f9OsptWRQWPO5vkMMlkviQz3wBcZTI1EcKIQMSlTcmJTYACHdBSCJWYLOHuwu3-IR5Pxd0smjV53Csf7e6fJN1O_SnZjQobMWHDtSx5Xgs6kT264yKestxvv5xzV1AVcQAPkkiE_inzpyG-OqMtwvz2KOp8zegA9hqQSPJ6Vg9hR8-PYL8BjKQxxxWKfE0GLzuGSU5cjGDg8uot_T55QTsmm0ChxZzU7M3EOjBF8FsSpfWSNAUknonnGT-B6Wj4OBgHTcGEoOJRtg4qgfjCcMGVrmQik1LGwugIfXgqY8XsWcoksdSUZTFLDTUVwsPEKBXpMOGK8VNozxdzfQYkSx185CWtlBC0LClTUnCBfUWFsKwL1GuuqBo2cVvU4rXY8iBbZReo7MIquwi7cL3psqypNP5q3PPTUTRWtSoY4iGEIyFjXbjxU7T9_etg5_9qfQG7iIrSOsqvB-3127u-ROSxLvvQyW-fJsM-tAbxoO_W3QcdF883 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRhQKeGACWXJsx07GqqIq9DG1UrcoiW2EhNqKlv_PObFbUQESYxzbw50v9zl39x1C92me2BhgBBGycCU50hIYMIQWQmhlU8WrH27DkexNxMs0nnqyaFcLsxW_dyVuVLg8CZek5SjzdtGegIuyy97ryE746HLOqzaq4P05UbGIQgDzpy2-u6ANrtwKhVYepnuMDj00xO1alydox8xO0ZGHidgb4RKGQieGMHaG-m1cZQaSqpreke7jN7BevE4Pms9wzdmMndvSGJ5zrI1ZYN824hUHdvFzNOk-jTs94tskkJLH6YqUAlCF5YJrU-YqV0UuhTUxeO4kl5q5G5RVMjeUpZIlltoSQKGyWscmUlwzfoEas_nMXCKcJhVo5AUttRC0KCjTueAC1ooSwFgT0SC5rPQc4q6VxXu2YT92ws5A2JkTdhY10cN6yaIm0PhrciuoI_O2tMwYoCAAIRFjTfQYVLR5_etmV_-afYf2e-PhIBs8j_rX6ABwUVLn-bVQY_XxaW4Ae6yK2-rUfQExisuY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI1gSIgL34jBgBw4gSraJE3a4zSYBoOJA5N2q9ImQUiom1j5_zhtsgECJI5NkxzsuH6p7WeEzlOZmBhgRMB4bktyuAlgQAdhzpgSJhW0_uH2MOKDMbubxBPX53Tus919SLKpabAsTWV1NVPm6lPhW8hs9oRN3bJEeqtoDS4qdZy2x3v-U0wprZurAiaggYhZ5MOaP23x1TEt0ea3AGntd_rbaNMBRtxtNLyDVnS5i7YceMTONOcw5Psz-LE9NOziOl8wqGvsLRU_fgGbxoukoWmJGyZnbJ2ZwvAssdJ6hl0ziWfsOcf30bh_89QbBK55QlDQOK2CggHWMJRRpQsppMglZ0bH4M8TyRWx9yojuNQhSTlJTGgKgIrCKBXrSFBF6AFqldNSHyKcJjWUpHlYKMbCPA-JkowyWMsKgGhtFHrJZYVjFrcNLl6zJSeyFXYGws6ssLOojS4WS2YNrcZfkzteHZmzsHlGABsBNIkIaaNLr6Ll6183O_rX7DO0_njdz-5vR8NjtAFgKWmS_zqoVb296xMAJFV-Wh-6D-B7098 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-biometric+iris+recognition+system+based+on+a+deep+learning+approach&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Al-Waisy%2C+Alaa+S&rft.au=Qahwaji%2C+Rami&rft.au=Ipson%2C+Stanley&rft.au=Al-Fahdawi%2C+Shumoos&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=21&rft.issue=3&rft.spage=783&rft.epage=802&rft_id=info:doi/10.1007%2Fs10044-017-0656-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |