Mobility-Aware Multi-Hop Task Offloading for Autonomous Driving in Vehicular Edge Computing and Networks
Vehicular Edge Computing (VEC) has gained increasing interest due to its potential to provide low latency and reduce the load in backhaul networks. In order to meet drastically increasing computation demands from emerging ever-growing vehicular applications, e.g., autonomous driving, abundant comput...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 24; no. 2; pp. 2169 - 2182 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1524-9050 1558-0016 |
DOI | 10.1109/TITS.2022.3142566 |
Cover
Loading…
Abstract | Vehicular Edge Computing (VEC) has gained increasing interest due to its potential to provide low latency and reduce the load in backhaul networks. In order to meet drastically increasing computation demands from emerging ever-growing vehicular applications, e.g., autonomous driving, abundant computation resources of individual vehicles can play a crucial role in task execution in a VEC scenario, that can further contribute in considerably improving user experience. This is however an extremely challenging task due to high mobility of vehicles that can easily lead to intermittent connectivity, thereby disrupting on-going task processing. In this paper, we propose a task offloading scheme by exploiting multi-hop vehicle computation resources in VEC based on mobility analysis of vehicles. In addition to the vehicles within one hop from the task vehicle that generates computation tasks, certain multi-hop vehicles that meet the given requirements in terms of link connectivity and computation capacity, are also leveraged to carry out the tasks offloaded by the task vehicle. An optimization problem is formulated for the task vehicle to minimize the weighted sum of execution time and computation cost of all tasks. A semidefinite relaxation approach with an adaptive adjustment procedure is proposed to solve the formulated optimization problem for obtaining the corresponding offloading decisions. The simulation results show that our proposed offloading scheme can achieve significant improvement in terms of response delay by at least 34% compared with the other algorithms (e.g., local processing and random offloading). |
---|---|
AbstractList | Vehicular Edge Computing (VEC) has gained increasing interest due to its potential to provide low latency and reduce the load in backhaul networks. In order to meet drastically increasing computation demands from emerging ever-growing vehicular applications, e.g., autonomous driving, abundant computation resources of individual vehicles can play a crucial role in task execution in a VEC scenario, that can further contribute in considerably improving user experience. This is however an extremely challenging task due to high mobility of vehicles that can easily lead to intermittent connectivity, thereby disrupting on-going task processing. In this paper, we propose a task offloading scheme by exploiting multi-hop vehicle computation resources in VEC based on mobility analysis of vehicles. In addition to the vehicles within one hop from the task vehicle that generates computation tasks, certain multi-hop vehicles that meet the given requirements in terms of link connectivity and computation capacity, are also leveraged to carry out the tasks offloaded by the task vehicle. An optimization problem is formulated for the task vehicle to minimize the weighted sum of execution time and computation cost of all tasks. A semidefinite relaxation approach with an adaptive adjustment procedure is proposed to solve the formulated optimization problem for obtaining the corresponding offloading decisions. The simulation results show that our proposed offloading scheme can achieve significant improvement in terms of response delay by at least 34% compared with the other algorithms (e.g., local processing and random offloading). |
Author | Lan, Dapeng Zhao, Ming Yu, Miao Jan, Mian Ahmad Liu, Lei Taherkordi, Amirhosein |
Author_xml | – sequence: 1 givenname: Lei orcidid: 0000-0001-8173-0408 surname: Liu fullname: Liu, Lei email: tianjiaoliulei@163.com organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, China – sequence: 2 givenname: Ming orcidid: 0000-0001-5645-9417 surname: Zhao fullname: Zhao, Ming email: zm227926019@163.com organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, China – sequence: 3 givenname: Miao surname: Yu fullname: Yu, Miao email: yumiao@qdu.edu.cn organization: College of Textiles and Clothing, Qingdao University, Qingdao, China – sequence: 4 givenname: Mian Ahmad orcidid: 0000-0002-5298-1328 surname: Jan fullname: Jan, Mian Ahmad email: mianjan@awkum.edu.pk organization: Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan – sequence: 5 givenname: Dapeng orcidid: 0000-0003-1104-5039 surname: Lan fullname: Lan, Dapeng email: dapengl@ifi.uio.no organization: Department of Informatics, University of Oslo, Oslo, Norway – sequence: 6 givenname: Amirhosein orcidid: 0000-0003-1672-054X surname: Taherkordi fullname: Taherkordi, Amirhosein email: amirhost@ifi.uio.no organization: Department of Informatics, University of Oslo, Oslo, Norway |
BookMark | eNp9kF9PwjAUxRuDiYB-AONLE5-H_bN22yNBFBKQB6evS9d1UBgrtp2Eb-8WiA8--HRPzj3n3uQ3AL3a1AqAe4xGGKPkKZ2n7yOCCBlRHBLG-RXoY8biACHMe50mYZAghm7AwLlt64YM4z7YLE2uK-1PwfgorILLpvI6mJkDTIXbwVVZVkYUul7D0lg4brypzd40Dj5b_d3ZuoafaqNlUwkLp8VawYnZHxrf7URdwDflj8bu3C24LkXl1N1lDsHHyzSdzILF6nU-GS8CSVniAxkyIRhLSFTkES8l45RIlnMikhgVmCnMKFeSk1YSWQoUkVypJBc5z3mBIzoEj-e7B2u-GuV8tjWNrduXGYmikFIaI9qm8DklrXHOqjI7WL0X9pRhlHVAsw5o1gHNLkDbTvSnI7UXXpvaW6Grf5sP56ZWSv1-SnjMWYLpD2MuhfM |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1109_TVT_2024_3422179 crossref_primary_10_1109_TNSE_2024_3445890 crossref_primary_10_1109_JIOT_2024_3382723 crossref_primary_10_1145_3582556 crossref_primary_10_1109_TMLCN_2024_3433620 crossref_primary_10_1109_MCOM_001_2200252 crossref_primary_10_1109_TMC_2023_3332668 crossref_primary_10_1109_JIOT_2022_3181821 crossref_primary_10_1109_JIOT_2023_3338020 crossref_primary_10_1109_TMC_2023_3342102 crossref_primary_10_1109_TCE_2023_3280484 crossref_primary_10_1109_TSG_2024_3498945 crossref_primary_10_1109_TVT_2024_3389951 crossref_primary_10_1109_TVT_2024_3430507 crossref_primary_10_3390_s23020724 crossref_primary_10_1109_ACCESS_2023_3270279 crossref_primary_10_1109_JIOT_2023_3293164 crossref_primary_10_1109_ACCESS_2024_3388891 crossref_primary_10_1109_TII_2024_3495760 crossref_primary_10_1109_ACCESS_2024_3376607 crossref_primary_10_1109_JIOT_2024_3427834 crossref_primary_10_1109_JIOT_2024_3447036 crossref_primary_10_1109_TGCN_2022_3158953 crossref_primary_10_1186_s13638_022_02161_z crossref_primary_10_1109_TNSM_2023_3322881 crossref_primary_10_1155_2022_3792205 crossref_primary_10_1155_2022_3227712 crossref_primary_10_1109_TVT_2024_3495536 crossref_primary_10_1109_JIOT_2024_3443866 crossref_primary_10_1109_ACCESS_2025_3526627 crossref_primary_10_1109_JIOT_2024_3445642 crossref_primary_10_1007_s11390_024_4035_2 crossref_primary_10_1109_TMC_2023_3323524 crossref_primary_10_1109_JIOT_2022_3188631 crossref_primary_10_1109_TITS_2023_3292140 crossref_primary_10_1109_TWC_2024_3435871 crossref_primary_10_1109_JIOT_2024_3483275 crossref_primary_10_1109_TMC_2024_3451715 crossref_primary_10_1109_TGCN_2023_3349273 crossref_primary_10_1155_2022_4384954 crossref_primary_10_1155_2022_3091495 crossref_primary_10_1155_2022_8350006 crossref_primary_10_1109_TCOMM_2023_3314892 crossref_primary_10_1109_JSEN_2024_3440412 crossref_primary_10_1155_2022_6833535 crossref_primary_10_1109_OJCOMS_2024_3399015 crossref_primary_10_1109_TSC_2024_3495510 crossref_primary_10_1186_s13677_023_00411_z crossref_primary_10_1155_2022_2279362 crossref_primary_10_1109_TCOMM_2023_3324029 crossref_primary_10_1109_TPDS_2023_3332333 crossref_primary_10_1109_TVT_2022_3162044 crossref_primary_10_1109_JIOT_2022_3150042 crossref_primary_10_1145_3532093 crossref_primary_10_1109_TMC_2024_3449374 crossref_primary_10_1155_2022_8768928 crossref_primary_10_3389_fenrg_2022_1078938 crossref_primary_10_1109_TITS_2024_3394130 crossref_primary_10_3390_app122412522 crossref_primary_10_3934_mbe_2022338 crossref_primary_10_1109_JIOT_2022_3221966 crossref_primary_10_1109_LCOMM_2024_3481674 crossref_primary_10_1109_TITS_2024_3371096 crossref_primary_10_1155_2022_8482415 crossref_primary_10_1155_2023_4916127 crossref_primary_10_1109_TVT_2023_3318259 crossref_primary_10_1155_2022_6807257 crossref_primary_10_1109_TMC_2024_3356443 crossref_primary_10_1109_TMC_2024_3366928 crossref_primary_10_1002_spy2_277 crossref_primary_10_1109_TMC_2024_3462731 crossref_primary_10_1109_TITS_2024_3491168 crossref_primary_10_1186_s13677_023_00547_y crossref_primary_10_1155_2022_3940132 crossref_primary_10_1155_2022_7787866 crossref_primary_10_7717_peerj_cs_1986 crossref_primary_10_1109_TC_2024_3355767 crossref_primary_10_23919_ICN_2024_0012 crossref_primary_10_1109_TITS_2023_3242997 crossref_primary_10_1155_2022_9358531 crossref_primary_10_1109_TICPS_2024_3424425 crossref_primary_10_1109_TNET_2023_3323514 crossref_primary_10_1109_ACCESS_2024_3371488 crossref_primary_10_1109_JIOT_2023_3333679 crossref_primary_10_1109_TVT_2024_3364669 crossref_primary_10_1109_TMC_2023_3298643 crossref_primary_10_1109_TVT_2024_3444815 crossref_primary_10_1109_TVT_2024_3351224 crossref_primary_10_1155_2022_3222979 crossref_primary_10_3390_e24101464 crossref_primary_10_1109_TSMC_2023_3298513 crossref_primary_10_1109_JSAC_2022_3227027 crossref_primary_10_1109_TITS_2023_3336704 crossref_primary_10_1109_TWC_2022_3233035 crossref_primary_10_1109_TCCN_2024_3417609 crossref_primary_10_1155_2022_7099494 crossref_primary_10_1109_JIOT_2024_3492694 crossref_primary_10_1109_TSC_2024_3478841 crossref_primary_10_1155_2023_7400235 crossref_primary_10_1155_2023_8405990 crossref_primary_10_1109_TWC_2023_3335362 crossref_primary_10_1109_TITS_2024_3410896 crossref_primary_10_1155_2022_4542705 |
Cites_doi | 10.1109/JBHI.2021.3069629 10.1109/TVT.2018.2883156 10.1109/JIOT.2020.2972061 10.1109/JIOT.2018.2876298 10.1109/TWC.2020.3046275 10.1109/TCOMM.2017.2699660 10.1016/j.vehcom.2020.100236 10.1007/s11036-020-01624-1 10.1109/TVT.2019.2935450 10.1109/JIOT.2020.3048345 10.1016/j.knosys.2017.11.010 10.1109/JIOT.2019.2961707 10.1109/TVT.2021.3105270 10.1109/JIOT.2018.2872013 10.1109/TVT.2019.2895593 10.1109/TVT.2019.2927634 10.1109/MVT.2017.2668838 10.1109/LCOMM.2019.2956514 10.1109/ACCESS.2019.2900530 10.1016/j.adhoc.2018.05.014 10.1109/TVT.2014.2316645 10.1109/MCOM.2018.1700882 10.1016/j.vehcom.2020.100268 10.1109/GLOCOM.2018.8647367 10.1109/TITS.2019.2911860 10.1109/TII.2021.3088407 10.1109/JIOT.2020.3003449 10.1109/TVT.2020.3027568 10.1109/TCSS.2021.3074949 10.1109/TMC.2018.2815533 10.1109/JIOT.2018.2875520 10.1109/TVT.2013.2251374 10.1109/TITS.2020.3042504 10.1109/TVT.2019.2930601 10.1109/JIOT.2021.3083065 10.1109/JIOT.2019.2903191 10.1109/TITS.2020.2991376 10.1109/TVT.2017.2760281 10.1109/MCOM.2018.1701130 10.1109/TVT.2021.3096928 10.1109/TNSE.2020.3048137 10.1109/COMST.2020.3005361 10.1109/TITS.2021.3114199 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2022.3142566 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 2182 |
ExternalDocumentID | 10_1109_TITS_2022_3142566 9686591 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Hebei Province grantid: F2020501037 funderid: 10.13039/501100003787 – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2020A1515110496; 2020A1515110079 – fundername: National Key Research and Development Program of China grantid: 2019YFE0196600 funderid: 10.13039/501100012166 – fundername: China Postdoctoral Science Foundation grantid: 2021M692501 funderid: 10.13039/501100002858 – fundername: Fundamental Research Funds for the Central Universities grantid: XJS210105; XJS210107 funderid: 10.13039/501100012226 – fundername: Norwegian Research Council under the DILUTE Project grantid: 262854/F20 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-c45aa55927db76fc5632c5b62a980d15e1536ec6215e2cfa072bee9bab6b6d173 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 07:07:26 EDT 2025 Tue Jul 01 04:29:08 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Wed Aug 27 02:18:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-c45aa55927db76fc5632c5b62a980d15e1536ec6215e2cfa072bee9bab6b6d173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8173-0408 0000-0001-5645-9417 0000-0002-5298-1328 0000-0003-1104-5039 0000-0003-1672-054X |
PQID | 2774333803 |
PQPubID | 75735 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TITS_2022_3142566 crossref_primary_10_1109_TITS_2022_3142566 proquest_journals_2774333803 ieee_primary_9686591 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref4 doi: 10.1109/JBHI.2021.3069629 – ident: ref23 doi: 10.1109/TVT.2018.2883156 – ident: ref24 doi: 10.1109/JIOT.2020.2972061 – ident: ref21 doi: 10.1109/JIOT.2018.2876298 – ident: ref6 doi: 10.1109/TWC.2020.3046275 – ident: ref42 doi: 10.1109/TCOMM.2017.2699660 – ident: ref33 doi: 10.1016/j.vehcom.2020.100236 – ident: ref12 doi: 10.1007/s11036-020-01624-1 – ident: ref22 doi: 10.1109/TVT.2019.2935450 – ident: ref13 doi: 10.1109/JIOT.2020.3048345 – ident: ref3 doi: 10.1016/j.knosys.2017.11.010 – ident: ref16 doi: 10.1109/JIOT.2019.2961707 – ident: ref14 doi: 10.1109/TVT.2021.3105270 – ident: ref17 doi: 10.1109/JIOT.2018.2872013 – ident: ref32 doi: 10.1109/TVT.2019.2895593 – ident: ref18 doi: 10.1109/TVT.2019.2927634 – ident: ref20 doi: 10.1109/MVT.2017.2668838 – ident: ref39 doi: 10.1109/LCOMM.2019.2956514 – ident: ref38 doi: 10.1109/ACCESS.2019.2900530 – ident: ref29 doi: 10.1016/j.adhoc.2018.05.014 – ident: ref30 doi: 10.1109/TVT.2014.2316645 – ident: ref11 doi: 10.1109/MCOM.2018.1700882 – ident: ref34 doi: 10.1016/j.vehcom.2020.100268 – ident: ref19 doi: 10.1109/GLOCOM.2018.8647367 – ident: ref36 doi: 10.1109/TITS.2019.2911860 – ident: ref9 doi: 10.1109/TII.2021.3088407 – ident: ref15 doi: 10.1109/JIOT.2020.3003449 – ident: ref2 doi: 10.1109/TVT.2020.3027568 – ident: ref28 doi: 10.1109/TCSS.2021.3074949 – ident: ref43 doi: 10.1109/TMC.2018.2815533 – ident: ref40 doi: 10.1109/JIOT.2018.2875520 – ident: ref41 doi: 10.1109/TVT.2013.2251374 – ident: ref1 doi: 10.1109/TITS.2020.3042504 – ident: ref26 doi: 10.1109/TVT.2019.2930601 – ident: ref35 doi: 10.1109/JIOT.2021.3083065 – ident: ref25 doi: 10.1109/JIOT.2019.2903191 – ident: ref37 doi: 10.1109/TITS.2020.2991376 – ident: ref27 doi: 10.1109/TVT.2017.2760281 – ident: ref31 doi: 10.1109/MCOM.2018.1701130 – ident: ref7 doi: 10.1109/TVT.2021.3096928 – ident: ref8 doi: 10.1109/TNSE.2020.3048137 – ident: ref5 doi: 10.1109/COMST.2020.3005361 – ident: ref10 doi: 10.1109/TITS.2021.3114199 |
SSID | ssj0014511 |
Score | 2.6846907 |
Snippet | Vehicular Edge Computing (VEC) has gained increasing interest due to its potential to provide low latency and reduce the load in backhaul networks. In order to... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2169 |
SubjectTerms | Algorithms Computation offloading connectivity Delays Edge computing Electronic mail mobility multi-hop Optimization Resource management Servers Spread spectrum communication Task analysis task offloading User experience Vehicles Vehicular edge computing |
Title | Mobility-Aware Multi-Hop Task Offloading for Autonomous Driving in Vehicular Edge Computing and Networks |
URI | https://ieeexplore.ieee.org/document/9686591 https://www.proquest.com/docview/2774333803 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78NcXplBw8iZlZ2qTrcahjCtODm-xWkvRVh9KOrUX0rzdJuykq4q3QpAS-17z3ku99D6GTUAY0UVwRqXVMfBnERPoAhGsmKUDCPGlrhwe3oj_yb8Z8vILOlrUwAODIZ9Cyj-4uP850YY_KzkPREdyWqq-axK2s1VreGFidLaeNynwSUr64wWzT8Hx4Pbw3mSBjJkE1JuoEET99kGuq8mMndu6lt4kGi4WVrJLnVpGrln7_ptn435VvoY0qzsTd0jC20QqkO2j9i_pgHT0NMseMfSPdVzkD7GpxST-b4qGcP-O7JHnJHMMem8AWd4vc1j9kxRxfzib2GAJPUvwATxPHZMVX8SPgskeEfSfTGN-WFPP5Lhr1roYXfVI1XiDa42FOtM-lNKkGC2IViERz4THNlWAy7NC4zcFskwK0MOECMJ1IGjAFECqphBJxO_D2UC3NUthH2A-E8ZGJCpg224Uy3zT-MGHSY8ozsZZqILqAItKVKrltjvESueyEhpFFL7LoRRV6DXS6nDItJTn-Gly3aCwHVkA0UHOBd1T9tPOImVDYMyk79Q5-n3WI1my3-ZK03US1fFbAkYlJcnXsjPED8sLefw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hOBQOhfKhLl_1gVOFF68TO-S4akFLYbeHBsQtsp0JuwIlaDcRgl-P7WS3qEVVb5FiR5bexDNjvzcDcBSriOVaaKqMyWioooyqEJEKwxVDzHmgnHZ4OJKD6_DHrbhdguOFFgYRPfkMu-7R3-VnpandUdlJLE-lcFL1FeHEuI1aa3Fn4Cpt-eqoPKQxE_M7zB6LT5KL5JfNBTm3Kao1Ul8S8bcX8m1V_tqLvYM5X4fhfGkNr-S-W1e6a17-qNr4v2vfgI9tpEn6jWl8giUsNmHtTf3BLRgPS8-Nfab9JzVF4tW4dFA-kkTN7snPPH8oPcee2NCW9OvKKSDKeka-TyfuIIJMCnKD44nnspKz7A5J0yXCvVNFRkYNyXy2DdfnZ8m3AW1bL1ATiLiiJhRK2WSDR5mOZG6EDLgRWnIVn7KsJ9BulBKNtAEDcpMrFnGNGGulpZZZLwp2YLkoC_wMJIyk9ZK5jrixG4a237QeMecq4Dqw0ZbuAJtDkZq2Lrlrj_GQ-vyExalDL3XopS16Hfi6mPLYFOX41-Ath8ZiYAtEB_bneKftbztLuQ2GA5u0s2D3_Vlf4MMgGV6lVxejyz1Ydb3nGwr3PixX0xoPbIRS6UNvmK-1leHH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobility-Aware+Multi-Hop+Task+Offloading+for+Autonomous+Driving+in+Vehicular+Edge+Computing+and+Networks&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Liu%2C+Lei&rft.au=Zhao%2C+Ming&rft.au=Yu%2C+Miao&rft.au=Jan%2C+Mian+Ahmad&rft.date=2023-02-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTITS.2022.3142566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3142566 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |