Mobility-Aware Multi-Hop Task Offloading for Autonomous Driving in Vehicular Edge Computing and Networks

Vehicular Edge Computing (VEC) has gained increasing interest due to its potential to provide low latency and reduce the load in backhaul networks. In order to meet drastically increasing computation demands from emerging ever-growing vehicular applications, e.g., autonomous driving, abundant comput...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 24; no. 2; pp. 2169 - 2182
Main Authors Liu, Lei, Zhao, Ming, Yu, Miao, Jan, Mian Ahmad, Lan, Dapeng, Taherkordi, Amirhosein
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2022.3142566

Cover

Loading…
Abstract Vehicular Edge Computing (VEC) has gained increasing interest due to its potential to provide low latency and reduce the load in backhaul networks. In order to meet drastically increasing computation demands from emerging ever-growing vehicular applications, e.g., autonomous driving, abundant computation resources of individual vehicles can play a crucial role in task execution in a VEC scenario, that can further contribute in considerably improving user experience. This is however an extremely challenging task due to high mobility of vehicles that can easily lead to intermittent connectivity, thereby disrupting on-going task processing. In this paper, we propose a task offloading scheme by exploiting multi-hop vehicle computation resources in VEC based on mobility analysis of vehicles. In addition to the vehicles within one hop from the task vehicle that generates computation tasks, certain multi-hop vehicles that meet the given requirements in terms of link connectivity and computation capacity, are also leveraged to carry out the tasks offloaded by the task vehicle. An optimization problem is formulated for the task vehicle to minimize the weighted sum of execution time and computation cost of all tasks. A semidefinite relaxation approach with an adaptive adjustment procedure is proposed to solve the formulated optimization problem for obtaining the corresponding offloading decisions. The simulation results show that our proposed offloading scheme can achieve significant improvement in terms of response delay by at least 34% compared with the other algorithms (e.g., local processing and random offloading).
AbstractList Vehicular Edge Computing (VEC) has gained increasing interest due to its potential to provide low latency and reduce the load in backhaul networks. In order to meet drastically increasing computation demands from emerging ever-growing vehicular applications, e.g., autonomous driving, abundant computation resources of individual vehicles can play a crucial role in task execution in a VEC scenario, that can further contribute in considerably improving user experience. This is however an extremely challenging task due to high mobility of vehicles that can easily lead to intermittent connectivity, thereby disrupting on-going task processing. In this paper, we propose a task offloading scheme by exploiting multi-hop vehicle computation resources in VEC based on mobility analysis of vehicles. In addition to the vehicles within one hop from the task vehicle that generates computation tasks, certain multi-hop vehicles that meet the given requirements in terms of link connectivity and computation capacity, are also leveraged to carry out the tasks offloaded by the task vehicle. An optimization problem is formulated for the task vehicle to minimize the weighted sum of execution time and computation cost of all tasks. A semidefinite relaxation approach with an adaptive adjustment procedure is proposed to solve the formulated optimization problem for obtaining the corresponding offloading decisions. The simulation results show that our proposed offloading scheme can achieve significant improvement in terms of response delay by at least 34% compared with the other algorithms (e.g., local processing and random offloading).
Author Lan, Dapeng
Zhao, Ming
Yu, Miao
Jan, Mian Ahmad
Liu, Lei
Taherkordi, Amirhosein
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0001-8173-0408
  surname: Liu
  fullname: Liu, Lei
  email: tianjiaoliulei@163.com
  organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, China
– sequence: 2
  givenname: Ming
  orcidid: 0000-0001-5645-9417
  surname: Zhao
  fullname: Zhao, Ming
  email: zm227926019@163.com
  organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an, China
– sequence: 3
  givenname: Miao
  surname: Yu
  fullname: Yu, Miao
  email: yumiao@qdu.edu.cn
  organization: College of Textiles and Clothing, Qingdao University, Qingdao, China
– sequence: 4
  givenname: Mian Ahmad
  orcidid: 0000-0002-5298-1328
  surname: Jan
  fullname: Jan, Mian Ahmad
  email: mianjan@awkum.edu.pk
  organization: Department of Computer Science, Abdul Wali Khan University Mardan, Mardan, Pakistan
– sequence: 5
  givenname: Dapeng
  orcidid: 0000-0003-1104-5039
  surname: Lan
  fullname: Lan, Dapeng
  email: dapengl@ifi.uio.no
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 6
  givenname: Amirhosein
  orcidid: 0000-0003-1672-054X
  surname: Taherkordi
  fullname: Taherkordi, Amirhosein
  email: amirhost@ifi.uio.no
  organization: Department of Informatics, University of Oslo, Oslo, Norway
BookMark eNp9kF9PwjAUxRuDiYB-AONLE5-H_bN22yNBFBKQB6evS9d1UBgrtp2Eb-8WiA8--HRPzj3n3uQ3AL3a1AqAe4xGGKPkKZ2n7yOCCBlRHBLG-RXoY8biACHMe50mYZAghm7AwLlt64YM4z7YLE2uK-1PwfgorILLpvI6mJkDTIXbwVVZVkYUul7D0lg4brypzd40Dj5b_d3ZuoafaqNlUwkLp8VawYnZHxrf7URdwDflj8bu3C24LkXl1N1lDsHHyzSdzILF6nU-GS8CSVniAxkyIRhLSFTkES8l45RIlnMikhgVmCnMKFeSk1YSWQoUkVypJBc5z3mBIzoEj-e7B2u-GuV8tjWNrduXGYmikFIaI9qm8DklrXHOqjI7WL0X9pRhlHVAsw5o1gHNLkDbTvSnI7UXXpvaW6Grf5sP56ZWSv1-SnjMWYLpD2MuhfM
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TVT_2024_3422179
crossref_primary_10_1109_TNSE_2024_3445890
crossref_primary_10_1109_JIOT_2024_3382723
crossref_primary_10_1145_3582556
crossref_primary_10_1109_TMLCN_2024_3433620
crossref_primary_10_1109_MCOM_001_2200252
crossref_primary_10_1109_TMC_2023_3332668
crossref_primary_10_1109_JIOT_2022_3181821
crossref_primary_10_1109_JIOT_2023_3338020
crossref_primary_10_1109_TMC_2023_3342102
crossref_primary_10_1109_TCE_2023_3280484
crossref_primary_10_1109_TSG_2024_3498945
crossref_primary_10_1109_TVT_2024_3389951
crossref_primary_10_1109_TVT_2024_3430507
crossref_primary_10_3390_s23020724
crossref_primary_10_1109_ACCESS_2023_3270279
crossref_primary_10_1109_JIOT_2023_3293164
crossref_primary_10_1109_ACCESS_2024_3388891
crossref_primary_10_1109_TII_2024_3495760
crossref_primary_10_1109_ACCESS_2024_3376607
crossref_primary_10_1109_JIOT_2024_3427834
crossref_primary_10_1109_JIOT_2024_3447036
crossref_primary_10_1109_TGCN_2022_3158953
crossref_primary_10_1186_s13638_022_02161_z
crossref_primary_10_1109_TNSM_2023_3322881
crossref_primary_10_1155_2022_3792205
crossref_primary_10_1155_2022_3227712
crossref_primary_10_1109_TVT_2024_3495536
crossref_primary_10_1109_JIOT_2024_3443866
crossref_primary_10_1109_ACCESS_2025_3526627
crossref_primary_10_1109_JIOT_2024_3445642
crossref_primary_10_1007_s11390_024_4035_2
crossref_primary_10_1109_TMC_2023_3323524
crossref_primary_10_1109_JIOT_2022_3188631
crossref_primary_10_1109_TITS_2023_3292140
crossref_primary_10_1109_TWC_2024_3435871
crossref_primary_10_1109_JIOT_2024_3483275
crossref_primary_10_1109_TMC_2024_3451715
crossref_primary_10_1109_TGCN_2023_3349273
crossref_primary_10_1155_2022_4384954
crossref_primary_10_1155_2022_3091495
crossref_primary_10_1155_2022_8350006
crossref_primary_10_1109_TCOMM_2023_3314892
crossref_primary_10_1109_JSEN_2024_3440412
crossref_primary_10_1155_2022_6833535
crossref_primary_10_1109_OJCOMS_2024_3399015
crossref_primary_10_1109_TSC_2024_3495510
crossref_primary_10_1186_s13677_023_00411_z
crossref_primary_10_1155_2022_2279362
crossref_primary_10_1109_TCOMM_2023_3324029
crossref_primary_10_1109_TPDS_2023_3332333
crossref_primary_10_1109_TVT_2022_3162044
crossref_primary_10_1109_JIOT_2022_3150042
crossref_primary_10_1145_3532093
crossref_primary_10_1109_TMC_2024_3449374
crossref_primary_10_1155_2022_8768928
crossref_primary_10_3389_fenrg_2022_1078938
crossref_primary_10_1109_TITS_2024_3394130
crossref_primary_10_3390_app122412522
crossref_primary_10_3934_mbe_2022338
crossref_primary_10_1109_JIOT_2022_3221966
crossref_primary_10_1109_LCOMM_2024_3481674
crossref_primary_10_1109_TITS_2024_3371096
crossref_primary_10_1155_2022_8482415
crossref_primary_10_1155_2023_4916127
crossref_primary_10_1109_TVT_2023_3318259
crossref_primary_10_1155_2022_6807257
crossref_primary_10_1109_TMC_2024_3356443
crossref_primary_10_1109_TMC_2024_3366928
crossref_primary_10_1002_spy2_277
crossref_primary_10_1109_TMC_2024_3462731
crossref_primary_10_1109_TITS_2024_3491168
crossref_primary_10_1186_s13677_023_00547_y
crossref_primary_10_1155_2022_3940132
crossref_primary_10_1155_2022_7787866
crossref_primary_10_7717_peerj_cs_1986
crossref_primary_10_1109_TC_2024_3355767
crossref_primary_10_23919_ICN_2024_0012
crossref_primary_10_1109_TITS_2023_3242997
crossref_primary_10_1155_2022_9358531
crossref_primary_10_1109_TICPS_2024_3424425
crossref_primary_10_1109_TNET_2023_3323514
crossref_primary_10_1109_ACCESS_2024_3371488
crossref_primary_10_1109_JIOT_2023_3333679
crossref_primary_10_1109_TVT_2024_3364669
crossref_primary_10_1109_TMC_2023_3298643
crossref_primary_10_1109_TVT_2024_3444815
crossref_primary_10_1109_TVT_2024_3351224
crossref_primary_10_1155_2022_3222979
crossref_primary_10_3390_e24101464
crossref_primary_10_1109_TSMC_2023_3298513
crossref_primary_10_1109_JSAC_2022_3227027
crossref_primary_10_1109_TITS_2023_3336704
crossref_primary_10_1109_TWC_2022_3233035
crossref_primary_10_1109_TCCN_2024_3417609
crossref_primary_10_1155_2022_7099494
crossref_primary_10_1109_JIOT_2024_3492694
crossref_primary_10_1109_TSC_2024_3478841
crossref_primary_10_1155_2023_7400235
crossref_primary_10_1155_2023_8405990
crossref_primary_10_1109_TWC_2023_3335362
crossref_primary_10_1109_TITS_2024_3410896
crossref_primary_10_1155_2022_4542705
Cites_doi 10.1109/JBHI.2021.3069629
10.1109/TVT.2018.2883156
10.1109/JIOT.2020.2972061
10.1109/JIOT.2018.2876298
10.1109/TWC.2020.3046275
10.1109/TCOMM.2017.2699660
10.1016/j.vehcom.2020.100236
10.1007/s11036-020-01624-1
10.1109/TVT.2019.2935450
10.1109/JIOT.2020.3048345
10.1016/j.knosys.2017.11.010
10.1109/JIOT.2019.2961707
10.1109/TVT.2021.3105270
10.1109/JIOT.2018.2872013
10.1109/TVT.2019.2895593
10.1109/TVT.2019.2927634
10.1109/MVT.2017.2668838
10.1109/LCOMM.2019.2956514
10.1109/ACCESS.2019.2900530
10.1016/j.adhoc.2018.05.014
10.1109/TVT.2014.2316645
10.1109/MCOM.2018.1700882
10.1016/j.vehcom.2020.100268
10.1109/GLOCOM.2018.8647367
10.1109/TITS.2019.2911860
10.1109/TII.2021.3088407
10.1109/JIOT.2020.3003449
10.1109/TVT.2020.3027568
10.1109/TCSS.2021.3074949
10.1109/TMC.2018.2815533
10.1109/JIOT.2018.2875520
10.1109/TVT.2013.2251374
10.1109/TITS.2020.3042504
10.1109/TVT.2019.2930601
10.1109/JIOT.2021.3083065
10.1109/JIOT.2019.2903191
10.1109/TITS.2020.2991376
10.1109/TVT.2017.2760281
10.1109/MCOM.2018.1701130
10.1109/TVT.2021.3096928
10.1109/TNSE.2020.3048137
10.1109/COMST.2020.3005361
10.1109/TITS.2021.3114199
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3142566
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 2182
ExternalDocumentID 10_1109_TITS_2022_3142566
9686591
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Hebei Province
  grantid: F2020501037
  funderid: 10.13039/501100003787
– fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2020A1515110496; 2020A1515110079
– fundername: National Key Research and Development Program of China
  grantid: 2019YFE0196600
  funderid: 10.13039/501100012166
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M692501
  funderid: 10.13039/501100002858
– fundername: Fundamental Research Funds for the Central Universities
  grantid: XJS210105; XJS210107
  funderid: 10.13039/501100012226
– fundername: Norwegian Research Council under the DILUTE Project
  grantid: 262854/F20
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-c45aa55927db76fc5632c5b62a980d15e1536ec6215e2cfa072bee9bab6b6d173
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 07:07:26 EDT 2025
Tue Jul 01 04:29:08 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Wed Aug 27 02:18:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c45aa55927db76fc5632c5b62a980d15e1536ec6215e2cfa072bee9bab6b6d173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8173-0408
0000-0001-5645-9417
0000-0002-5298-1328
0000-0003-1104-5039
0000-0003-1672-054X
PQID 2774333803
PQPubID 75735
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TITS_2022_3142566
crossref_primary_10_1109_TITS_2022_3142566
proquest_journals_2774333803
ieee_primary_9686591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref4
  doi: 10.1109/JBHI.2021.3069629
– ident: ref23
  doi: 10.1109/TVT.2018.2883156
– ident: ref24
  doi: 10.1109/JIOT.2020.2972061
– ident: ref21
  doi: 10.1109/JIOT.2018.2876298
– ident: ref6
  doi: 10.1109/TWC.2020.3046275
– ident: ref42
  doi: 10.1109/TCOMM.2017.2699660
– ident: ref33
  doi: 10.1016/j.vehcom.2020.100236
– ident: ref12
  doi: 10.1007/s11036-020-01624-1
– ident: ref22
  doi: 10.1109/TVT.2019.2935450
– ident: ref13
  doi: 10.1109/JIOT.2020.3048345
– ident: ref3
  doi: 10.1016/j.knosys.2017.11.010
– ident: ref16
  doi: 10.1109/JIOT.2019.2961707
– ident: ref14
  doi: 10.1109/TVT.2021.3105270
– ident: ref17
  doi: 10.1109/JIOT.2018.2872013
– ident: ref32
  doi: 10.1109/TVT.2019.2895593
– ident: ref18
  doi: 10.1109/TVT.2019.2927634
– ident: ref20
  doi: 10.1109/MVT.2017.2668838
– ident: ref39
  doi: 10.1109/LCOMM.2019.2956514
– ident: ref38
  doi: 10.1109/ACCESS.2019.2900530
– ident: ref29
  doi: 10.1016/j.adhoc.2018.05.014
– ident: ref30
  doi: 10.1109/TVT.2014.2316645
– ident: ref11
  doi: 10.1109/MCOM.2018.1700882
– ident: ref34
  doi: 10.1016/j.vehcom.2020.100268
– ident: ref19
  doi: 10.1109/GLOCOM.2018.8647367
– ident: ref36
  doi: 10.1109/TITS.2019.2911860
– ident: ref9
  doi: 10.1109/TII.2021.3088407
– ident: ref15
  doi: 10.1109/JIOT.2020.3003449
– ident: ref2
  doi: 10.1109/TVT.2020.3027568
– ident: ref28
  doi: 10.1109/TCSS.2021.3074949
– ident: ref43
  doi: 10.1109/TMC.2018.2815533
– ident: ref40
  doi: 10.1109/JIOT.2018.2875520
– ident: ref41
  doi: 10.1109/TVT.2013.2251374
– ident: ref1
  doi: 10.1109/TITS.2020.3042504
– ident: ref26
  doi: 10.1109/TVT.2019.2930601
– ident: ref35
  doi: 10.1109/JIOT.2021.3083065
– ident: ref25
  doi: 10.1109/JIOT.2019.2903191
– ident: ref37
  doi: 10.1109/TITS.2020.2991376
– ident: ref27
  doi: 10.1109/TVT.2017.2760281
– ident: ref31
  doi: 10.1109/MCOM.2018.1701130
– ident: ref7
  doi: 10.1109/TVT.2021.3096928
– ident: ref8
  doi: 10.1109/TNSE.2020.3048137
– ident: ref5
  doi: 10.1109/COMST.2020.3005361
– ident: ref10
  doi: 10.1109/TITS.2021.3114199
SSID ssj0014511
Score 2.6846907
Snippet Vehicular Edge Computing (VEC) has gained increasing interest due to its potential to provide low latency and reduce the load in backhaul networks. In order to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2169
SubjectTerms Algorithms
Computation offloading
connectivity
Delays
Edge computing
Electronic mail
mobility
multi-hop
Optimization
Resource management
Servers
Spread spectrum communication
Task analysis
task offloading
User experience
Vehicles
Vehicular edge computing
Title Mobility-Aware Multi-Hop Task Offloading for Autonomous Driving in Vehicular Edge Computing and Networks
URI https://ieeexplore.ieee.org/document/9686591
https://www.proquest.com/docview/2774333803
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kx78NcXplBw8iZlZ2qTrcahjCtODm-xWkvRVh9KOrUX0rzdJuykq4q3QpAS-17z3ku99D6GTUAY0UVwRqXVMfBnERPoAhGsmKUDCPGlrhwe3oj_yb8Z8vILOlrUwAODIZ9Cyj-4uP850YY_KzkPREdyWqq-axK2s1VreGFidLaeNynwSUr64wWzT8Hx4Pbw3mSBjJkE1JuoEET99kGuq8mMndu6lt4kGi4WVrJLnVpGrln7_ptn435VvoY0qzsTd0jC20QqkO2j9i_pgHT0NMseMfSPdVzkD7GpxST-b4qGcP-O7JHnJHMMem8AWd4vc1j9kxRxfzib2GAJPUvwATxPHZMVX8SPgskeEfSfTGN-WFPP5Lhr1roYXfVI1XiDa42FOtM-lNKkGC2IViERz4THNlWAy7NC4zcFskwK0MOECMJ1IGjAFECqphBJxO_D2UC3NUthH2A-E8ZGJCpg224Uy3zT-MGHSY8ozsZZqILqAItKVKrltjvESueyEhpFFL7LoRRV6DXS6nDItJTn-Gly3aCwHVkA0UHOBd1T9tPOImVDYMyk79Q5-n3WI1my3-ZK03US1fFbAkYlJcnXsjPED8sLefw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0hOBQOhfKhLl_1gVOFF68TO-S4akFLYbeHBsQtsp0JuwIlaDcRgl-P7WS3qEVVb5FiR5bexDNjvzcDcBSriOVaaKqMyWioooyqEJEKwxVDzHmgnHZ4OJKD6_DHrbhdguOFFgYRPfkMu-7R3-VnpandUdlJLE-lcFL1FeHEuI1aa3Fn4Cpt-eqoPKQxE_M7zB6LT5KL5JfNBTm3Kao1Ul8S8bcX8m1V_tqLvYM5X4fhfGkNr-S-W1e6a17-qNr4v2vfgI9tpEn6jWl8giUsNmHtTf3BLRgPS8-Nfab9JzVF4tW4dFA-kkTN7snPPH8oPcee2NCW9OvKKSDKeka-TyfuIIJMCnKD44nnspKz7A5J0yXCvVNFRkYNyXy2DdfnZ8m3AW1bL1ATiLiiJhRK2WSDR5mOZG6EDLgRWnIVn7KsJ9BulBKNtAEDcpMrFnGNGGulpZZZLwp2YLkoC_wMJIyk9ZK5jrixG4a237QeMecq4Dqw0ZbuAJtDkZq2Lrlrj_GQ-vyExalDL3XopS16Hfi6mPLYFOX41-Ath8ZiYAtEB_bneKftbztLuQ2GA5u0s2D3_Vlf4MMgGV6lVxejyz1Ydb3nGwr3PixX0xoPbIRS6UNvmK-1leHH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mobility-Aware+Multi-Hop+Task+Offloading+for+Autonomous+Driving+in+Vehicular+Edge+Computing+and+Networks&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Liu%2C+Lei&rft.au=Zhao%2C+Ming&rft.au=Yu%2C+Miao&rft.au=Jan%2C+Mian+Ahmad&rft.date=2023-02-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1109%2FTITS.2022.3142566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2022_3142566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon