Assessing ECG Interpretation Expertise in Medical Practitioners Through Eye Movement Data and Neuromorphic Models

This study introduces an innovative method for assessing ECG interpretation abilities in medical professionals via eye-tracking data. We examine eye movement patterns from five separate groups of cardiology practitioners utilizing a combination of neuromorphic computing models, including Spiking Neu...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 9430 - 9449
Main Authors Bokhari, Syed Mohsin, Shafi, Muhammad, Noor, Fazal, Sohaib, Sarmad, Alqahtany, Saad, Donnelly, Mark
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study introduces an innovative method for assessing ECG interpretation abilities in medical professionals via eye-tracking data. We examine eye movement patterns from five separate groups of cardiology practitioners utilizing a combination of neuromorphic computing models, including Spiking Neural Networks (SNN), Spiking Convolutional Neural Networks (SCNN), Recurrent Spiking Neural Networks (RSNN), and Spiking Convolutional Long Short-Term Memory (SCLSTM). Utilizing eye movement data, we analyze the skill levels of practitioners in diverse medical positions, including consultants, nurses, and technicians, during ECG evaluations. Our proposed work combines spiking neuron activations with convolutional and recurrent architectures to analyze spatial and temporal gaze patterns that reflect clinical expertise. The suggested SNN, SCNN, RSNN, and SCLSTM models attained accuracies of 84.35%, 93.04%, 94.68%, 99.76% respectively, exceeding standard machine learning approaches in both precision and recall for identifying expertise levels based on visual attention patterns. This paradigm has the potential to construct skill evaluation tools in medical education, specifically for ECG interpretation training, thereby addressing prevalent difficulties related to inconsistent ECG diagnosis methods.
AbstractList This study introduces an innovative method for assessing ECG interpretation abilities in medical professionals via eye-tracking data. We examine eye movement patterns from five separate groups of cardiology practitioners utilizing a combination of neuromorphic computing models, including Spiking Neural Networks (SNN), Spiking Convolutional Neural Networks (SCNN), Recurrent Spiking Neural Networks (RSNN), and Spiking Convolutional Long Short-Term Memory (SCLSTM). Utilizing eye movement data, we analyze the skill levels of practitioners in diverse medical positions, including consultants, nurses, and technicians, during ECG evaluations. Our proposed work combines spiking neuron activations with convolutional and recurrent architectures to analyze spatial and temporal gaze patterns that reflect clinical expertise. The suggested SNN, SCNN, RSNN, and SCLSTM models attained accuracies of 84.35%, 93.04%, 94.68%, 99.76% respectively, exceeding standard machine learning approaches in both precision and recall for identifying expertise levels based on visual attention patterns. This paradigm has the potential to construct skill evaluation tools in medical education, specifically for ECG interpretation training, thereby addressing prevalent difficulties related to inconsistent ECG diagnosis methods.
Author Sohaib, Sarmad
Donnelly, Mark
Shafi, Muhammad
Noor, Fazal
Bokhari, Syed Mohsin
Alqahtany, Saad
Author_xml – sequence: 1
  givenname: Syed Mohsin
  orcidid: 0009-0002-5888-4163
  surname: Bokhari
  fullname: Bokhari, Syed Mohsin
  organization: Department of Electrical and Computer Engineering, University of Engineering and Technology (UET) Taxila, Taxila, Pakistan
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0002-8430-206X
  surname: Shafi
  fullname: Shafi, Muhammad
  email: m.shafi@ulster.ac.uk
  organization: School of Computing, Ulster University, Belfast, U.K
– sequence: 3
  givenname: Fazal
  orcidid: 0000-0002-0096-3435
  surname: Noor
  fullname: Noor, Fazal
  organization: Faculty of Computer and Information Systems (FCIS), Islamic University of Madinah, Madinah, Saudi Arabia
– sequence: 4
  givenname: Sarmad
  surname: Sohaib
  fullname: Sohaib, Sarmad
  organization: Department of Electrical and Electronic Engineering, University of Jeddah, Jeddah, Saudi Arabia
– sequence: 5
  givenname: Saad
  surname: Alqahtany
  fullname: Alqahtany, Saad
  organization: Faculty of Computer and Information Systems (FCIS), Islamic University of Madinah, Madinah, Saudi Arabia
– sequence: 6
  givenname: Mark
  surname: Donnelly
  fullname: Donnelly, Mark
  organization: School of Computing, Ulster University, Belfast, U.K
BookMark eNpNUU1v2zAMFYYWWNf1F3QHATsn04cl28fA87oA7Vag7VmQJTpRkEiupBTrv58yF0N5IAmS75HE-4TOfPCA0DUlS0pJ-23Vdf3Dw5IRJpZcsIYJ_gFdMCrbBRdcnr3LP6KrlHakWFNKor5Az6uUICXnN7jvbvDaZ4hThKyzCx73fyaI2SXAzuM7sM7oPb6P2mR36kNM-HEbw3Gzxf0r4LvwAgfwGX_XWWPtLf4FxxgOIU5bZ0rbwj59Ruej3ie4eouX6OlH_9j9XNz-vll3q9uF4aLNxTPDbFONtRxYQ0HqCgZuamZpVUtjqhaItMwaMbZ6kDBaGCo-GklBy2Hg_BKtZ14b9E5N0R10fFVBO_WvEOJG6fKb2YOqOcDIGzaw2hTyWms2kpbRinDORCML19eZa4rh-Qgpq104Rl_OV5wKKauKNaJM8XnKxJBShPH_VkrUSSo1S6VOUqk3qQrqy4xyAPAO0XBZE8r_At67kpE
CODEN IAECCG
Cites_doi 10.1109/JPROC.2014.2313565
10.1016/j.eswa.2020.113704
10.1016/j.jelectrocard.2014.08.008
10.1016/j.jelectrocard.2014.07.011
10.1038/s41467-020-17236-y
10.1161/CIR.0b013e318267e99f
10.12968/bjca.2019.0073
10.1007/978-3-030-67303-1_4
10.1016/S0361-9230(99)00161-6
10.1016/j.compbiomed.2024.109225
10.1109/TBCAS.2018.2848477
10.1371/journal.pone.0299425
10.2196/26675
10.1109/ISCAS46773.2023.10181998
10.1109/BESC53957.2021.9635168
10.1109/TNN.2004.832719
10.1523/JNEUROSCI.18-24-10464.1998
10.1109/ICIoT48696.2020.9089538
10.1109/ISCID.2017.202
10.1007/978-981-16-6775-6_25
10.1109/ICDM.2008.17
10.1007/s13534-024-00405-z
10.3390/brainsci12070863
10.1109/ISWCS.2019.8877113
10.1016/j.jelectrocard.2014.10.017
10.1109/ACCESS.2020.2994360
10.3389/fdgth.2020.545646
10.1016/j.patrec.2024.08.002
10.1080/10401334.2020.1844009
10.2196/34058
10.1002/9781118392041
10.1177/0272989X13492016
10.24076/citec.2021v8i1.264
10.1109/ICEEICT.2015.7307376
10.1161/circulationaha.106.180200
10.1109/JPROC.2023.3308088
10.1145/3292500.3330701
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3528253
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 9449
ExternalDocumentID oai_doaj_org_article_73eef382b27c4767aa2f092140332586
10_1109_ACCESS_2025_3528253
10836701
Genre orig-research
GrantInformation_xml – fundername: Deanship of Scientific Research of Islamic University of Madinah
  funderid: 10.13039/501100020901
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-c32c2d84f76b281e6a4eb3c72d1476cc49e06d2dc5f9ab6efdeb43fc61ea6bb33
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:06:03 EDT 2025
Mon Jun 30 13:18:16 EDT 2025
Tue Jul 01 03:03:05 EDT 2025
Wed Aug 27 01:55:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c32c2d84f76b281e6a4eb3c72d1476cc49e06d2dc5f9ab6efdeb43fc61ea6bb33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0096-3435
0009-0002-5888-4163
0000-0002-8430-206X
OpenAccessLink https://doaj.org/article/73eef382b27c4767aa2f092140332586
PQID 3156644285
PQPubID 4845423
PageCount 20
ParticipantIDs ieee_primary_10836701
doaj_primary_oai_doaj_org_article_73eef382b27c4767aa2f092140332586
crossref_primary_10_1109_ACCESS_2025_3528253
proquest_journals_3156644285
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References De Luna (ref2) 2012
ref13
ref35
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref1
Cadet (ref7) 2009
ref17
ref39
ref16
ref38
ref19
ref18
Davies (ref12) 2018
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref27
  doi: 10.1109/JPROC.2014.2313565
– ident: ref38
  doi: 10.1016/j.eswa.2020.113704
– ident: ref14
  doi: 10.1016/j.jelectrocard.2014.08.008
– ident: ref17
  doi: 10.1016/j.jelectrocard.2014.07.011
– ident: ref37
  doi: 10.1038/s41467-020-17236-y
– ident: ref1
  doi: 10.1161/CIR.0b013e318267e99f
– ident: ref13
  doi: 10.12968/bjca.2019.0073
– ident: ref15
  doi: 10.1007/978-3-030-67303-1_4
– ident: ref28
  doi: 10.1016/S0361-9230(99)00161-6
– ident: ref25
  doi: 10.1016/j.compbiomed.2024.109225
– ident: ref3
  doi: 10.1109/TBCAS.2018.2848477
– volume-title: Cardiovascular Bus.
  year: 2009
  ident: ref7
  article-title: Report: Cost savings will drive ECG global market to nearly $160 m by 2015
– ident: ref18
  doi: 10.1371/journal.pone.0299425
– ident: ref19
  doi: 10.2196/26675
– year: 2018
  ident: ref12
  article-title: Examining expertise through eye movements: A study of clinicians interpreting electrocardiograms
– ident: ref36
  doi: 10.1109/ISCAS46773.2023.10181998
– ident: ref20
  doi: 10.1109/BESC53957.2021.9635168
– ident: ref29
  doi: 10.1109/TNN.2004.832719
– ident: ref32
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– ident: ref11
  doi: 10.1109/ICIoT48696.2020.9089538
– ident: ref23
  doi: 10.1109/ISCID.2017.202
– ident: ref21
  doi: 10.1007/978-981-16-6775-6_25
– ident: ref24
  doi: 10.1109/ICDM.2008.17
– ident: ref26
  doi: 10.1007/s13534-024-00405-z
– ident: ref33
  doi: 10.3390/brainsci12070863
– ident: ref10
  doi: 10.1109/ISWCS.2019.8877113
– ident: ref6
  doi: 10.1016/j.jelectrocard.2014.10.017
– ident: ref31
  doi: 10.1109/ACCESS.2020.2994360
– ident: ref16
  doi: 10.3389/fdgth.2020.545646
– ident: ref34
  doi: 10.1016/j.patrec.2024.08.002
– ident: ref9
  doi: 10.1080/10401334.2020.1844009
– ident: ref4
  doi: 10.2196/34058
– volume-title: Clinical Electrocardiography: A Textbook
  year: 2012
  ident: ref2
  doi: 10.1002/9781118392041
– ident: ref5
  doi: 10.1177/0272989X13492016
– ident: ref39
  doi: 10.24076/citec.2021v8i1.264
– ident: ref22
  doi: 10.1109/ICEEICT.2015.7307376
– ident: ref8
  doi: 10.1161/circulationaha.106.180200
– ident: ref30
  doi: 10.1109/JPROC.2023.3308088
– ident: ref35
  doi: 10.1145/3292500.3330701
SSID ssj0000816957
Score 2.3406854
Snippet This study introduces an innovative method for assessing ECG interpretation abilities in medical professionals via eye-tracking data. We examine eye movement...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 9430
SubjectTerms Artificial neural networks
Biomedical imaging
Cardiology
Data models
ECG
Electrocardiography
Evaluation
Eye movements
Gaze tracking
Long short term memory
Machine learning
Medical diagnostic imaging
Neural networks
Neuromorphic computing
random forest
recurrent spiking neural networks (RSNN)
Spiking
spiking convolutional long short-term memory (SCLSTM)
spiking convolutional neural networks (SCNN)
Spiking neural networks
Spiking neural networks (SNN)
Training
Visualization
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJzjwLGKhIB84kiXxMz6WZUuF1J5aqTfLj7FUAbvAZg_w6xk_ttqCkLhEVpTHxJ8d-_N4viHkDY4xXiTBO22S6QQH1rkBQpfUaHSI3kuWo5HPztXppfh0Ja9asHqJhQGAsvkM5rlYfPlxHbZ5qQx7-Jj1xpDs3EXmVoO1bhZUcgYJI3VTFhp68-54scCPQA7I5DyLmDDJb40-RaS_ZVX561dcxpeTh-R8Z1ndVvJ5vp38PPz6Q7Txv01_RB60mSY9rk3jMbkDqyfk_p7-4FPyvbp8sUyXi4_09gZEWlSQc65mer2izaFD9_WNNvSiZvmhy59Az9ZFenyiH9zkqFtFWoQ_vq4RyetAc9K1L5tDcnmyvFicdi0HQxe4NBMeWWBxFEkrz8YBlBNIv4NmcRBahSAM9CqyGGQyzitIEbzgKagBnPKe82fkYIUmPSc0eqwAqYMDFYVMzkTlxh5i5A4fOuoZebvDxn6rUhu2UJTe2AqlzVDaBuWMvM_43VyadbLLCax327qd1Rwg8ZF5pgPaq51jqTcsixRyJkc1I4cZq733VZhm5GjXHGzr1BvLM9cVyNfki3_c9pLcyybWJZojcjD92MIrnLRM_nVprL8BJy_rqw
  priority: 102
  providerName: IEEE
Title Assessing ECG Interpretation Expertise in Medical Practitioners Through Eye Movement Data and Neuromorphic Models
URI https://ieeexplore.ieee.org/document/10836701
https://www.proquest.com/docview/3156644285
https://doaj.org/article/73eef382b27c4767aa2f092140332586
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMctxAQD4lFEoVQeGAkkfnuEUqiQYKISm-WnVAlaoGHg22M7KUrFwMISRVEU2_9LfL7Y_h0AZ9HHGBIILrgMsiDYo0JX3haBCcmtM4aitBv54ZFNpuT-mT53Un2lNWENHrgR7pJj7wMWyCBuCWdcaxRKiRJmDiMqMmw7-rxOMJX7YFExSXmLGapKeXk1GsUWxYAQ0YtENEEUr7miTOxvU6z86pezs7ndBTvtKBFeNbXbAxt-vg-2O-zAA_DeTNfGczge3cH1xYMwE4xTnmU4m8N2MgZ22URL-NRk6IHjLw8fFhkbXsMbXWuo5w5maMfrIlphZmFKmPay7IHp7fhpNCna_AmFxVTW8YgscoIEzgwSlWeaxNDZcuSqqKS1RPqSOeQsDVIb5oPzhuBgWeU1MwbjQ7A5j1U6AtAZxuPIzmrPHKFBS8e0KL1zWMeHCt4H5ysp1VuDyVA5vCilapRXSXnVKt8H10nun1sT4zpfiJZXreXVX5bvg14yVqc8kWh0VR8MVtZT7Qe5VDjFqSTGWvT4P8o-AVupPc2_mAHYrD8-_WkcndRmmF_EYd5I-A164-FE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQOQAHnkUECvjAkQ27fq6PJaQEaHJKpd4sP8ZSBSQt2Rzg1-NXqhSExGVlrfYx629mx2N7vkHoTfQxlgVGG6mCahgF0pgOXBNEr6Tz1nKSspHnCzE7Y5_P-XlNVs-5MACQN5_BODXzWr5fu22aKosW3ie-sRjs3I6On5OSrnU9pZJqSCguK7dQ16p3x5NJ_IwYBRI-TjQmhNMb_ifT9Ne6Kn_9jLOHOXmAFjvZysaSr-PtYMfu1x-0jf8t_EN0v4418XFRjkfoFqweo3t7DIRP0FVZ9I1tPJ18xDe3IOLMg5yqNeOLFa5LOnif4WiDl6XOD57-BDxfZ_LxAX8wg8Fm5XGm_vi-jlheOJzKrn3bHKKzk-lyMmtqFYbGUa6GeCSO-J4FKSzpOxCGxQDcSeI7JoVzTEErPPGOB2WsgODBMhqc6MAIayl9ig5WUaRnCHsbO4BLZ0B4xoNRXpi-Be-piQ_t5Qi93WGjLwvZhs5BSqt0gVInKHWFcoTeJ_yuL01M2flE7HddDU9LChBoTyyRLsorjSGhVSTRFFLCezFChwmrvfcVmEboaKcOupr1RtMU7bIYsfHn_7jtNbozW85P9emnxZcX6G4St0zYHKGD4ccWXsYhzGBfZcX9DZck7vU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+ECG+Interpretation+Expertise+in+Medical+Practitioners+Through+Eye+Movement+Data+and+Neuromorphic+Models&rft.jtitle=IEEE+access&rft.au=Bokhari%2C+Syed+Mohsin&rft.au=Shafi%2C+Muhammad&rft.au=Noor%2C+Fazal&rft.au=Sohaib%2C+Sarmad&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=9430&rft.epage=9449&rft_id=info:doi/10.1109%2FACCESS.2025.3528253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3528253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon