Assessing ECG Interpretation Expertise in Medical Practitioners Through Eye Movement Data and Neuromorphic Models
This study introduces an innovative method for assessing ECG interpretation abilities in medical professionals via eye-tracking data. We examine eye movement patterns from five separate groups of cardiology practitioners utilizing a combination of neuromorphic computing models, including Spiking Neu...
Saved in:
Published in | IEEE access Vol. 13; pp. 9430 - 9449 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study introduces an innovative method for assessing ECG interpretation abilities in medical professionals via eye-tracking data. We examine eye movement patterns from five separate groups of cardiology practitioners utilizing a combination of neuromorphic computing models, including Spiking Neural Networks (SNN), Spiking Convolutional Neural Networks (SCNN), Recurrent Spiking Neural Networks (RSNN), and Spiking Convolutional Long Short-Term Memory (SCLSTM). Utilizing eye movement data, we analyze the skill levels of practitioners in diverse medical positions, including consultants, nurses, and technicians, during ECG evaluations. Our proposed work combines spiking neuron activations with convolutional and recurrent architectures to analyze spatial and temporal gaze patterns that reflect clinical expertise. The suggested SNN, SCNN, RSNN, and SCLSTM models attained accuracies of 84.35%, 93.04%, 94.68%, 99.76% respectively, exceeding standard machine learning approaches in both precision and recall for identifying expertise levels based on visual attention patterns. This paradigm has the potential to construct skill evaluation tools in medical education, specifically for ECG interpretation training, thereby addressing prevalent difficulties related to inconsistent ECG diagnosis methods. |
---|---|
AbstractList | This study introduces an innovative method for assessing ECG interpretation abilities in medical professionals via eye-tracking data. We examine eye movement patterns from five separate groups of cardiology practitioners utilizing a combination of neuromorphic computing models, including Spiking Neural Networks (SNN), Spiking Convolutional Neural Networks (SCNN), Recurrent Spiking Neural Networks (RSNN), and Spiking Convolutional Long Short-Term Memory (SCLSTM). Utilizing eye movement data, we analyze the skill levels of practitioners in diverse medical positions, including consultants, nurses, and technicians, during ECG evaluations. Our proposed work combines spiking neuron activations with convolutional and recurrent architectures to analyze spatial and temporal gaze patterns that reflect clinical expertise. The suggested SNN, SCNN, RSNN, and SCLSTM models attained accuracies of 84.35%, 93.04%, 94.68%, 99.76% respectively, exceeding standard machine learning approaches in both precision and recall for identifying expertise levels based on visual attention patterns. This paradigm has the potential to construct skill evaluation tools in medical education, specifically for ECG interpretation training, thereby addressing prevalent difficulties related to inconsistent ECG diagnosis methods. |
Author | Sohaib, Sarmad Donnelly, Mark Shafi, Muhammad Noor, Fazal Bokhari, Syed Mohsin Alqahtany, Saad |
Author_xml | – sequence: 1 givenname: Syed Mohsin orcidid: 0009-0002-5888-4163 surname: Bokhari fullname: Bokhari, Syed Mohsin organization: Department of Electrical and Computer Engineering, University of Engineering and Technology (UET) Taxila, Taxila, Pakistan – sequence: 2 givenname: Muhammad orcidid: 0000-0002-8430-206X surname: Shafi fullname: Shafi, Muhammad email: m.shafi@ulster.ac.uk organization: School of Computing, Ulster University, Belfast, U.K – sequence: 3 givenname: Fazal orcidid: 0000-0002-0096-3435 surname: Noor fullname: Noor, Fazal organization: Faculty of Computer and Information Systems (FCIS), Islamic University of Madinah, Madinah, Saudi Arabia – sequence: 4 givenname: Sarmad surname: Sohaib fullname: Sohaib, Sarmad organization: Department of Electrical and Electronic Engineering, University of Jeddah, Jeddah, Saudi Arabia – sequence: 5 givenname: Saad surname: Alqahtany fullname: Alqahtany, Saad organization: Faculty of Computer and Information Systems (FCIS), Islamic University of Madinah, Madinah, Saudi Arabia – sequence: 6 givenname: Mark surname: Donnelly fullname: Donnelly, Mark organization: School of Computing, Ulster University, Belfast, U.K |
BookMark | eNpNUU1v2zAMFYYWWNf1F3QHATsn04cl28fA87oA7Vag7VmQJTpRkEiupBTrv58yF0N5IAmS75HE-4TOfPCA0DUlS0pJ-23Vdf3Dw5IRJpZcsIYJ_gFdMCrbBRdcnr3LP6KrlHakWFNKor5Az6uUICXnN7jvbvDaZ4hThKyzCx73fyaI2SXAzuM7sM7oPb6P2mR36kNM-HEbw3Gzxf0r4LvwAgfwGX_XWWPtLf4FxxgOIU5bZ0rbwj59Ruej3ie4eouX6OlH_9j9XNz-vll3q9uF4aLNxTPDbFONtRxYQ0HqCgZuamZpVUtjqhaItMwaMbZ6kDBaGCo-GklBy2Hg_BKtZ14b9E5N0R10fFVBO_WvEOJG6fKb2YOqOcDIGzaw2hTyWms2kpbRinDORCML19eZa4rh-Qgpq104Rl_OV5wKKauKNaJM8XnKxJBShPH_VkrUSSo1S6VOUqk3qQrqy4xyAPAO0XBZE8r_At67kpE |
CODEN | IAECCG |
Cites_doi | 10.1109/JPROC.2014.2313565 10.1016/j.eswa.2020.113704 10.1016/j.jelectrocard.2014.08.008 10.1016/j.jelectrocard.2014.07.011 10.1038/s41467-020-17236-y 10.1161/CIR.0b013e318267e99f 10.12968/bjca.2019.0073 10.1007/978-3-030-67303-1_4 10.1016/S0361-9230(99)00161-6 10.1016/j.compbiomed.2024.109225 10.1109/TBCAS.2018.2848477 10.1371/journal.pone.0299425 10.2196/26675 10.1109/ISCAS46773.2023.10181998 10.1109/BESC53957.2021.9635168 10.1109/TNN.2004.832719 10.1523/JNEUROSCI.18-24-10464.1998 10.1109/ICIoT48696.2020.9089538 10.1109/ISCID.2017.202 10.1007/978-981-16-6775-6_25 10.1109/ICDM.2008.17 10.1007/s13534-024-00405-z 10.3390/brainsci12070863 10.1109/ISWCS.2019.8877113 10.1016/j.jelectrocard.2014.10.017 10.1109/ACCESS.2020.2994360 10.3389/fdgth.2020.545646 10.1016/j.patrec.2024.08.002 10.1080/10401334.2020.1844009 10.2196/34058 10.1002/9781118392041 10.1177/0272989X13492016 10.24076/citec.2021v8i1.264 10.1109/ICEEICT.2015.7307376 10.1161/circulationaha.106.180200 10.1109/JPROC.2023.3308088 10.1145/3292500.3330701 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3528253 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 9449 |
ExternalDocumentID | oai_doaj_org_article_73eef382b27c4767aa2f092140332586 10_1109_ACCESS_2025_3528253 10836701 |
Genre | orig-research |
GrantInformation_xml | – fundername: Deanship of Scientific Research of Islamic University of Madinah funderid: 10.13039/501100020901 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-c32c2d84f76b281e6a4eb3c72d1476cc49e06d2dc5f9ab6efdeb43fc61ea6bb33 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:06:03 EDT 2025 Mon Jun 30 13:18:16 EDT 2025 Tue Jul 01 03:03:05 EDT 2025 Wed Aug 27 01:55:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-c32c2d84f76b281e6a4eb3c72d1476cc49e06d2dc5f9ab6efdeb43fc61ea6bb33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0096-3435 0009-0002-5888-4163 0000-0002-8430-206X |
OpenAccessLink | https://doaj.org/article/73eef382b27c4767aa2f092140332586 |
PQID | 3156644285 |
PQPubID | 4845423 |
PageCount | 20 |
ParticipantIDs | ieee_primary_10836701 doaj_primary_oai_doaj_org_article_73eef382b27c4767aa2f092140332586 crossref_primary_10_1109_ACCESS_2025_3528253 proquest_journals_3156644285 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | De Luna (ref2) 2012 ref13 ref35 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref1 Cadet (ref7) 2009 ref17 ref39 ref16 ref38 ref19 ref18 Davies (ref12) 2018 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref27 doi: 10.1109/JPROC.2014.2313565 – ident: ref38 doi: 10.1016/j.eswa.2020.113704 – ident: ref14 doi: 10.1016/j.jelectrocard.2014.08.008 – ident: ref17 doi: 10.1016/j.jelectrocard.2014.07.011 – ident: ref37 doi: 10.1038/s41467-020-17236-y – ident: ref1 doi: 10.1161/CIR.0b013e318267e99f – ident: ref13 doi: 10.12968/bjca.2019.0073 – ident: ref15 doi: 10.1007/978-3-030-67303-1_4 – ident: ref28 doi: 10.1016/S0361-9230(99)00161-6 – ident: ref25 doi: 10.1016/j.compbiomed.2024.109225 – ident: ref3 doi: 10.1109/TBCAS.2018.2848477 – volume-title: Cardiovascular Bus. year: 2009 ident: ref7 article-title: Report: Cost savings will drive ECG global market to nearly $160 m by 2015 – ident: ref18 doi: 10.1371/journal.pone.0299425 – ident: ref19 doi: 10.2196/26675 – year: 2018 ident: ref12 article-title: Examining expertise through eye movements: A study of clinicians interpreting electrocardiograms – ident: ref36 doi: 10.1109/ISCAS46773.2023.10181998 – ident: ref20 doi: 10.1109/BESC53957.2021.9635168 – ident: ref29 doi: 10.1109/TNN.2004.832719 – ident: ref32 doi: 10.1523/JNEUROSCI.18-24-10464.1998 – ident: ref11 doi: 10.1109/ICIoT48696.2020.9089538 – ident: ref23 doi: 10.1109/ISCID.2017.202 – ident: ref21 doi: 10.1007/978-981-16-6775-6_25 – ident: ref24 doi: 10.1109/ICDM.2008.17 – ident: ref26 doi: 10.1007/s13534-024-00405-z – ident: ref33 doi: 10.3390/brainsci12070863 – ident: ref10 doi: 10.1109/ISWCS.2019.8877113 – ident: ref6 doi: 10.1016/j.jelectrocard.2014.10.017 – ident: ref31 doi: 10.1109/ACCESS.2020.2994360 – ident: ref16 doi: 10.3389/fdgth.2020.545646 – ident: ref34 doi: 10.1016/j.patrec.2024.08.002 – ident: ref9 doi: 10.1080/10401334.2020.1844009 – ident: ref4 doi: 10.2196/34058 – volume-title: Clinical Electrocardiography: A Textbook year: 2012 ident: ref2 doi: 10.1002/9781118392041 – ident: ref5 doi: 10.1177/0272989X13492016 – ident: ref39 doi: 10.24076/citec.2021v8i1.264 – ident: ref22 doi: 10.1109/ICEEICT.2015.7307376 – ident: ref8 doi: 10.1161/circulationaha.106.180200 – ident: ref30 doi: 10.1109/JPROC.2023.3308088 – ident: ref35 doi: 10.1145/3292500.3330701 |
SSID | ssj0000816957 |
Score | 2.3406854 |
Snippet | This study introduces an innovative method for assessing ECG interpretation abilities in medical professionals via eye-tracking data. We examine eye movement... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 9430 |
SubjectTerms | Artificial neural networks Biomedical imaging Cardiology Data models ECG Electrocardiography Evaluation Eye movements Gaze tracking Long short term memory Machine learning Medical diagnostic imaging Neural networks Neuromorphic computing random forest recurrent spiking neural networks (RSNN) Spiking spiking convolutional long short-term memory (SCLSTM) spiking convolutional neural networks (SCNN) Spiking neural networks Spiking neural networks (SNN) Training Visualization |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJzjwLGKhIB84kiXxMz6WZUuF1J5aqTfLj7FUAbvAZg_w6xk_ttqCkLhEVpTHxJ8d-_N4viHkDY4xXiTBO22S6QQH1rkBQpfUaHSI3kuWo5HPztXppfh0Ja9asHqJhQGAsvkM5rlYfPlxHbZ5qQx7-Jj1xpDs3EXmVoO1bhZUcgYJI3VTFhp68-54scCPQA7I5DyLmDDJb40-RaS_ZVX561dcxpeTh-R8Z1ndVvJ5vp38PPz6Q7Txv01_RB60mSY9rk3jMbkDqyfk_p7-4FPyvbp8sUyXi4_09gZEWlSQc65mer2izaFD9_WNNvSiZvmhy59Az9ZFenyiH9zkqFtFWoQ_vq4RyetAc9K1L5tDcnmyvFicdi0HQxe4NBMeWWBxFEkrz8YBlBNIv4NmcRBahSAM9CqyGGQyzitIEbzgKagBnPKe82fkYIUmPSc0eqwAqYMDFYVMzkTlxh5i5A4fOuoZebvDxn6rUhu2UJTe2AqlzVDaBuWMvM_43VyadbLLCax327qd1Rwg8ZF5pgPaq51jqTcsixRyJkc1I4cZq733VZhm5GjXHGzr1BvLM9cVyNfki3_c9pLcyybWJZojcjD92MIrnLRM_nVprL8BJy_rqw priority: 102 providerName: IEEE |
Title | Assessing ECG Interpretation Expertise in Medical Practitioners Through Eye Movement Data and Neuromorphic Models |
URI | https://ieeexplore.ieee.org/document/10836701 https://www.proquest.com/docview/3156644285 https://doaj.org/article/73eef382b27c4767aa2f092140332586 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T8MwEMctxAQD4lFEoVQeGAkkfnuEUqiQYKISm-WnVAlaoGHg22M7KUrFwMISRVEU2_9LfL7Y_h0AZ9HHGBIILrgMsiDYo0JX3haBCcmtM4aitBv54ZFNpuT-mT53Un2lNWENHrgR7pJj7wMWyCBuCWdcaxRKiRJmDiMqMmw7-rxOMJX7YFExSXmLGapKeXk1GsUWxYAQ0YtENEEUr7miTOxvU6z86pezs7ndBTvtKBFeNbXbAxt-vg-2O-zAA_DeTNfGczge3cH1xYMwE4xTnmU4m8N2MgZ22URL-NRk6IHjLw8fFhkbXsMbXWuo5w5maMfrIlphZmFKmPay7IHp7fhpNCna_AmFxVTW8YgscoIEzgwSlWeaxNDZcuSqqKS1RPqSOeQsDVIb5oPzhuBgWeU1MwbjQ7A5j1U6AtAZxuPIzmrPHKFBS8e0KL1zWMeHCt4H5ysp1VuDyVA5vCilapRXSXnVKt8H10nun1sT4zpfiJZXreXVX5bvg14yVqc8kWh0VR8MVtZT7Qe5VDjFqSTGWvT4P8o-AVupPc2_mAHYrD8-_WkcndRmmF_EYd5I-A164-FE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQOQAHnkUECvjAkQ27fq6PJaQEaHJKpd4sP8ZSBSQt2Rzg1-NXqhSExGVlrfYx629mx2N7vkHoTfQxlgVGG6mCahgF0pgOXBNEr6Tz1nKSspHnCzE7Y5_P-XlNVs-5MACQN5_BODXzWr5fu22aKosW3ie-sRjs3I6On5OSrnU9pZJqSCguK7dQ16p3x5NJ_IwYBRI-TjQmhNMb_ifT9Ne6Kn_9jLOHOXmAFjvZysaSr-PtYMfu1x-0jf8t_EN0v4418XFRjkfoFqweo3t7DIRP0FVZ9I1tPJ18xDe3IOLMg5yqNeOLFa5LOnif4WiDl6XOD57-BDxfZ_LxAX8wg8Fm5XGm_vi-jlheOJzKrn3bHKKzk-lyMmtqFYbGUa6GeCSO-J4FKSzpOxCGxQDcSeI7JoVzTEErPPGOB2WsgODBMhqc6MAIayl9ig5WUaRnCHsbO4BLZ0B4xoNRXpi-Be-piQ_t5Qi93WGjLwvZhs5BSqt0gVInKHWFcoTeJ_yuL01M2flE7HddDU9LChBoTyyRLsorjSGhVSTRFFLCezFChwmrvfcVmEboaKcOupr1RtMU7bIYsfHn_7jtNbozW85P9emnxZcX6G4St0zYHKGD4ccWXsYhzGBfZcX9DZck7vU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+ECG+Interpretation+Expertise+in+Medical+Practitioners+Through+Eye+Movement+Data+and+Neuromorphic+Models&rft.jtitle=IEEE+access&rft.au=Bokhari%2C+Syed+Mohsin&rft.au=Shafi%2C+Muhammad&rft.au=Noor%2C+Fazal&rft.au=Sohaib%2C+Sarmad&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=9430&rft.epage=9449&rft_id=info:doi/10.1109%2FACCESS.2025.3528253&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3528253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |