P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data
The P-splines of Eilers and Marx (Stat Sci 11:89–121, 1996 ) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: (i) the basis and...
Saved in:
Published in | Statistics and computing Vol. 27; no. 4; pp. 985 - 989 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0960-3174 1573-1375 |
DOI | 10.1007/s11222-016-9666-x |
Cover
Loading…
Abstract | The P-splines of Eilers and Marx (Stat Sci 11:89–121,
1996
) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: (i) the basis and the penalty are sparse, enabling efficient computation, especially for Bayesian stochastic simulation; (ii) it is possible to flexibly ‘mix-and-match’ the order of B-spline basis and penalty, rather than the order of penalty controlling the order of the basis as in spline smoothing; (iii) it is very easy to set up the B-spline basis functions and penalties. The discrete penalties are somewhat less interpretable in terms of function shape than the traditional derivative based spline penalties, but tend towards penalties proportional to traditional spline penalties in the limit of large basis size. However part of the point of P-splines is not to use a large basis size. In addition the spline basis functions arise from solving functional optimization problems involving derivative based penalties, so moving to discrete penalties for smoothing may not always be desirable. The purpose of this note is to point out that the three properties of basis-penalty sparsity, mix-and-match penalization and ease of setup are readily obtainable with B-splines subject to derivative based penalization. The penalty setup typically requires a few lines of code, rather than the two lines typically required for P-splines, but this one off disadvantage seems to be the only one associated with using derivative based penalties. As an example application, it is shown how basis-penalty sparsity enables efficient computation with tensor product smoothers of scattered data. |
---|---|
AbstractList | The P-splines of Eilers and Marx (Stat Sci 11:89–121,
1996
) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: (i) the basis and the penalty are sparse, enabling efficient computation, especially for Bayesian stochastic simulation; (ii) it is possible to flexibly ‘mix-and-match’ the order of B-spline basis and penalty, rather than the order of penalty controlling the order of the basis as in spline smoothing; (iii) it is very easy to set up the B-spline basis functions and penalties. The discrete penalties are somewhat less interpretable in terms of function shape than the traditional derivative based spline penalties, but tend towards penalties proportional to traditional spline penalties in the limit of large basis size. However part of the point of P-splines is not to use a large basis size. In addition the spline basis functions arise from solving functional optimization problems involving derivative based penalties, so moving to discrete penalties for smoothing may not always be desirable. The purpose of this note is to point out that the three properties of basis-penalty sparsity, mix-and-match penalization and ease of setup are readily obtainable with B-splines subject to derivative based penalization. The penalty setup typically requires a few lines of code, rather than the two lines typically required for P-splines, but this one off disadvantage seems to be the only one associated with using derivative based penalties. As an example application, it is shown how basis-penalty sparsity enables efficient computation with tensor product smoothers of scattered data. The P-splines of Eilers and Marx (Stat Sci 11:89–121, 1996) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: (i) the basis and the penalty are sparse, enabling efficient computation, especially for Bayesian stochastic simulation; (ii) it is possible to flexibly ‘mix-and-match’ the order of B-spline basis and penalty, rather than the order of penalty controlling the order of the basis as in spline smoothing; (iii) it is very easy to set up the B-spline basis functions and penalties. The discrete penalties are somewhat less interpretable in terms of function shape than the traditional derivative based spline penalties, but tend towards penalties proportional to traditional spline penalties in the limit of large basis size. However part of the point of P-splines is not to use a large basis size. In addition the spline basis functions arise from solving functional optimization problems involving derivative based penalties, so moving to discrete penalties for smoothing may not always be desirable. The purpose of this note is to point out that the three properties of basis-penalty sparsity, mix-and-match penalization and ease of setup are readily obtainable with B-splines subject to derivative based penalization. The penalty setup typically requires a few lines of code, rather than the two lines typically required for P-splines, but this one off disadvantage seems to be the only one associated with using derivative based penalties. As an example application, it is shown how basis-penalty sparsity enables efficient computation with tensor product smoothers of scattered data. |
Author | Wood, Simon N. |
Author_xml | – sequence: 1 givenname: Simon N. surname: Wood fullname: Wood, Simon N. email: simon.wood@bath.edu organization: School of Mathematics, University of Bristol |
BookMark | eNp9kE1LxDAQhoMouK7-AG8Bz9GZpk23RxG_YEEPeg5pk2ikJmuSrvrvzbIeRNDTHOZ9Zl6eA7LrgzeEHCOcIkB7lhCrqmKAgnVCCPaxQ2bYtJwhb5tdMoNOAOPY1vvkIKUXAETB6xkZ7llajc6bRN9dfqbaRLdW2a0N7VUymq6MV2N2Za-8ptn4FCJdxaCnIdP0GkJ-dv6JBksnb9bGj59Uu5Sj66dccK2yOiR7Vo3JHH3POXm8uny4uGHLu-vbi_MlG3jTZTZUXCwMVz0YrW2reQfa1tgJjbzvW2sBOyu4xYWAGpqmq5DDMOgedN03CvicnGzvlnpvk0lZvoQplvpJ4mIBTdVwUZcUblNDDClFY-UqulcVPyWC3LiUW5eyuJQbl_KjMO0vZnC5WAo-R-XGf8lqS6byxT-Z-KPTn9AXn_-M8w |
CitedBy_id | crossref_primary_10_1007_s00180_021_01066_7 crossref_primary_10_1021_acs_analchem_0c03693 crossref_primary_10_1007_s00300_021_02804_9 crossref_primary_10_1007_s11749_020_00711_5 crossref_primary_10_1016_j_jocs_2022_101767 crossref_primary_10_1016_j_wocn_2022_101191 crossref_primary_10_1371_journal_ppat_1012361 crossref_primary_10_21105_joss_05688 crossref_primary_10_3354_esr01050 crossref_primary_10_1080_09524622_2020_1819877 crossref_primary_10_1111_mms_12760 crossref_primary_10_1088_1742_6596_1988_1_012094 crossref_primary_10_1007_s11222_022_10103_4 crossref_primary_10_1016_j_socnet_2021_08_007 crossref_primary_10_1016_j_limno_2022_125995 crossref_primary_10_7717_peerj_6876 crossref_primary_10_1007_s12076_023_00361_9 crossref_primary_10_1214_23_SS142 crossref_primary_10_1016_j_scitotenv_2019_06_027 crossref_primary_10_3389_fmars_2022_827324 crossref_primary_10_1177_09622802221134172 crossref_primary_10_3389_fmars_2021_770424 crossref_primary_10_3390_su12104006 crossref_primary_10_3354_esr01089 crossref_primary_10_1007_s00477_020_01835_8 crossref_primary_10_1093_jrsssc_qlae033 crossref_primary_10_1177_21677026231195793 crossref_primary_10_1007_s11336_023_09910_z crossref_primary_10_1007_s00227_022_04026_x crossref_primary_10_1016_j_scitotenv_2023_162300 crossref_primary_10_1080_09524622_2022_2108145 crossref_primary_10_1093_biomtc_ujae098 crossref_primary_10_1016_j_jmarsys_2018_11_002 crossref_primary_10_1109_ACCESS_2020_3012610 |
Cites_doi | 10.1137/1.9781611970128 10.1214/aos/1176349743 10.1137/1.9780898718881 10.1111/j.1467-842X.2008.00507.x 10.1111/j.1467-9868.2010.00749.x 10.1016/j.cpc.2013.04.008 10.1007/BFb0086566 10.56021/9781421407944 10.1111/j.1541-0420.2006.00574.x 10.1214/ss/1038425655 10.1007/978-1-4612-6333-3 10.1111/j.1467-9868.2007.00610.x |
ContentType | Journal Article |
Copyright | The Author(s) 2016 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: The Author(s) 2016 – notice: Copyright Springer Science & Business Media 2017 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s11222-016-9666-x |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1573-1375 |
EndPage | 989 |
ExternalDocumentID | 10_1007_s11222_016_9666_x |
GrantInformation_xml | – fundername: University of Bristol funderid: http://dx.doi.org/10.13039/501100000883 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z81 Z83 Z87 Z88 Z8O Z8R Z8U Z8W Z91 Z92 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c359t-c2368e3ab0eddf7d390df4196d13bb7ff019f63f1860405592130ccdb0d4b5a03 |
IEDL.DBID | U2A |
ISSN | 0960-3174 |
IngestDate | Fri Jul 25 03:34:15 EDT 2025 Thu Apr 24 23:09:33 EDT 2025 Tue Jul 01 02:17:03 EDT 2025 Fri Feb 21 02:34:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Derivative penalty Reduced rank spline P-spline Tensor product smooth Smoothing spline |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-c2368e3ab0eddf7d390df4196d13bb7ff019f63f1860405592130ccdb0d4b5a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s11222-016-9666-x |
PQID | 1880525364 |
PQPubID | 2043829 |
PageCount | 5 |
ParticipantIDs | proquest_journals_1880525364 crossref_primary_10_1007_s11222_016_9666_x crossref_citationtrail_10_1007_s11222_016_9666_x springer_journals_10_1007_s11222_016_9666_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-01 |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Statistics and computing |
PublicationTitleAbbrev | Stat Comput |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Wand, M., Ormerod, J.: On semiparametric regression with O’Sullivan penalized splines. Aust. N. Z. J. Stat. 50(2), 179–198 (2008) EilersPHCMarxBDFlexible smoothing with B-splines and penaltiesStat. Sci.199611289121143548510.1214/ss/10384256550955.62562 EilersPHMarxBDDurbánMTwenty years of p-splinesSORT-Stat. Oper. Res. Trans.201539214918634674881339.41010 WahbaGA comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problemAnn. Stat.1985131378140281149810.1214/aos/11763497430596.65004 de BoorCA Practical Guide to Splines1978New YorkSpringer10.1007/978-1-4612-6333-30406.41003 DuchonJSchempWZellerKSplines minimizing rotation-invariant semi-norms in Solobev spacesConstruction Theory of Functions of Several Variables1977BerlinSpringer8510010.1007/BFb0086566 WoodSNFast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear modelsJ. R. Stat. Soc.: Ser. B (Stat. Methodol.)2011731336279773410.1111/j.1467-9868.2010.00749.x DavisTADirect Methods for Sparse Linear Systems2006PhiladelphiaSIAM10.1137/1.97808987188811119.65021 Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: a generalized smoothing approach. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 69(5), 741–796 (2007) de BoorCA Practical Guide to Splines2001RevisedNew YorkSpringer0987.65015 WoodSNLow-rank scale-invariant tensor product smooths for generalized additive mixed modelsBiometrics200662410251036229767310.1111/j.1541-0420.2006.00574.x1116.62076 WahbaGSpline Models for Observational Data1990PhiladelphiaSIAM10.1137/1.97816119701280813.62001 WhitehornNvan SantenJLafebreSPenalized splines for smooth representation of high-dimensional monte carlo datasetsComput. Phys. Commun.201318492214222010.1016/j.cpc.2013.04.0081344.65003 GolubGHVan LoanCFMatrix Computations20134BaltimoreJohns Hopkins University Press1268.65037 C Boor de (9666_CR2) 1978 SN Wood (9666_CR14) 2011; 73 J Duchon (9666_CR4) 1977 G Wahba (9666_CR9) 1985; 13 GH Golub (9666_CR7) 2013 C Boor de (9666_CR3) 2001 TA Davis (9666_CR1) 2006 SN Wood (9666_CR13) 2006; 62 N Whitehorn (9666_CR12) 2013; 184 PH Eilers (9666_CR5) 2015; 39 9666_CR8 G Wahba (9666_CR10) 1990 9666_CR11 PHC Eilers (9666_CR6) 1996; 11 |
References_xml | – reference: EilersPHCMarxBDFlexible smoothing with B-splines and penaltiesStat. Sci.199611289121143548510.1214/ss/10384256550955.62562 – reference: DavisTADirect Methods for Sparse Linear Systems2006PhiladelphiaSIAM10.1137/1.97808987188811119.65021 – reference: de BoorCA Practical Guide to Splines2001RevisedNew YorkSpringer0987.65015 – reference: WahbaGA comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problemAnn. Stat.1985131378140281149810.1214/aos/11763497430596.65004 – reference: Wand, M., Ormerod, J.: On semiparametric regression with O’Sullivan penalized splines. Aust. N. Z. J. Stat. 50(2), 179–198 (2008) – reference: WoodSNLow-rank scale-invariant tensor product smooths for generalized additive mixed modelsBiometrics200662410251036229767310.1111/j.1541-0420.2006.00574.x1116.62076 – reference: DuchonJSchempWZellerKSplines minimizing rotation-invariant semi-norms in Solobev spacesConstruction Theory of Functions of Several Variables1977BerlinSpringer8510010.1007/BFb0086566 – reference: WahbaGSpline Models for Observational Data1990PhiladelphiaSIAM10.1137/1.97816119701280813.62001 – reference: de BoorCA Practical Guide to Splines1978New YorkSpringer10.1007/978-1-4612-6333-30406.41003 – reference: Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: a generalized smoothing approach. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 69(5), 741–796 (2007) – reference: WhitehornNvan SantenJLafebreSPenalized splines for smooth representation of high-dimensional monte carlo datasetsComput. Phys. Commun.201318492214222010.1016/j.cpc.2013.04.0081344.65003 – reference: EilersPHMarxBDDurbánMTwenty years of p-splinesSORT-Stat. Oper. Res. Trans.201539214918634674881339.41010 – reference: GolubGHVan LoanCFMatrix Computations20134BaltimoreJohns Hopkins University Press1268.65037 – reference: WoodSNFast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear modelsJ. R. Stat. Soc.: Ser. B (Stat. Methodol.)2011731336279773410.1111/j.1467-9868.2010.00749.x – volume-title: Spline Models for Observational Data year: 1990 ident: 9666_CR10 doi: 10.1137/1.9781611970128 – volume: 13 start-page: 1378 year: 1985 ident: 9666_CR9 publication-title: Ann. Stat. doi: 10.1214/aos/1176349743 – volume-title: Direct Methods for Sparse Linear Systems year: 2006 ident: 9666_CR1 doi: 10.1137/1.9780898718881 – volume: 39 start-page: 149 issue: 2 year: 2015 ident: 9666_CR5 publication-title: SORT-Stat. Oper. Res. Trans. – ident: 9666_CR11 doi: 10.1111/j.1467-842X.2008.00507.x – volume: 73 start-page: 3 issue: 1 year: 2011 ident: 9666_CR14 publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2010.00749.x – volume: 184 start-page: 2214 issue: 9 year: 2013 ident: 9666_CR12 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2013.04.008 – start-page: 85 volume-title: Construction Theory of Functions of Several Variables year: 1977 ident: 9666_CR4 doi: 10.1007/BFb0086566 – volume-title: Matrix Computations year: 2013 ident: 9666_CR7 doi: 10.56021/9781421407944 – volume: 62 start-page: 1025 issue: 4 year: 2006 ident: 9666_CR13 publication-title: Biometrics doi: 10.1111/j.1541-0420.2006.00574.x – volume: 11 start-page: 89 issue: 2 year: 1996 ident: 9666_CR6 publication-title: Stat. Sci. doi: 10.1214/ss/1038425655 – volume-title: A Practical Guide to Splines year: 2001 ident: 9666_CR3 – volume-title: A Practical Guide to Splines year: 1978 ident: 9666_CR2 doi: 10.1007/978-1-4612-6333-3 – ident: 9666_CR8 doi: 10.1111/j.1467-9868.2007.00610.x |
SSID | ssj0011634 |
Score | 2.3453338 |
Snippet | The P-splines of Eilers and Marx (Stat Sci 11:89–121,
1996
) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a... The P-splines of Eilers and Marx (Stat Sci 11:89–121, 1996) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 985 |
SubjectTerms | Artificial Intelligence Basis functions Bayesian analysis Computational efficiency Computer simulation Data smoothing Fines & penalties Mathematics and Statistics Probability and Statistics in Computer Science Sparsity Splines Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs |
Title | P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data |
URI | https://link.springer.com/article/10.1007/s11222-016-9666-x https://www.proquest.com/docview/1880525364 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8NADLagXcrAo4Aoj-oGJlCkJHe5hLGqCggEYqBSmaJ7ZSpp1RQE_x47TVpAgMR8j0Sxff4c-z4DnJo4saFxylOC-55QGO4kiRKeSVzgc40jpmT7vJfXQ3EzikbVPe6irnavU5LlSb267BagL8PQVxKjpPQQODYjCt1RiYdhb5k6QIBRckYhNMcDJhZ1KvOnLb46oxXC_JYULX3N5TZsViCR9RZS3YE1l7dhq27AwCp7bMPG3ZJ0tWhDi4Djgnd5F8yDV9BlW1cw-tXKLGraa0nyzchxWTZ1-AhiU2Uqt4zq2CczNl3wv7LieYISxHdjk4y95MTyNH5nlkh2qT8WLqfK0j0YXg4e-9de1VDBMzy6mHsm5DJxXGnfWZvFll_4NhNogzbgWsdZhngvkzwLEom2jbFGiB7OGKt9K3SkfL4PjXySuwNgJoqc01ZYR6nTwGj0-0pmsZQaha50B_z6y6amYhunphfjdMWTTMJIqcKMhJG-deBsuWS6oNr4a_JxLa60sroiJW65KIy4FB04r0X4afi3zQ7_NfsIWiH59rJm9xga89mLO0FkMtddaPaunm4HXVjvy3631MsPodPfjw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdPqAyUgUcBUZ4emEARaew4YUQVVYGCGFqpW-RXppJWpCD49tylSQsVIDH7kchn5_7OnX8GODNRbAPjlKcE9z2hcLsTx0p4JnYtn2ssMQXt81F2B-JuGA5LWDSdhVmK31_mqAcCSh6QxJGUHsrFVYEbZcrea8v2PGCAsqIgRaEgx89KJKoA5k9dfHdBC125FAotPExnCzZKaciuZ7bchhWXNWCzunaBlauwAesPc9Rq3oA6ycUZbXkHzJOX0xFblzP6wcoszq-3Au3NyF1ZNnH4CGKoMpVZRtnr4xc2mVFfWf48Rrvhu7Fxyl4zYjuNPpgltC7dioXNKZ90Fwadm36765XXKHiGh1dTzwRcxo4r7Ttr08jyK9-mOIbStrjWUZqiykslT1uxxBWNO4wA_ZoxVvtW6FD5fA9q2Thz-8BMGDqnrbCOAqYto9HbK5lGUmo0tdJN8KuRTUzJGKerLkbJgo5Mxkgor4yMkbw34XzeZDIDbPxV-agyV1KutTwholwYhFyKJlxUJvxS_FtnB_-qfQpr3f5DL-ndPt4fQj0g715k7R5Bbfry6o5Rm0z1STErPwEKptvw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMcHURA9-FgV12cOnpRi26RpPcrq4hsPCt5KniftLnYV_fbO9LGrooLnJmnpJJ1_OpPfAOyZNLOxcSpQgoeBULjdyTIlApO5KOQar5iK9nkjz-7FxUPy0NQ5Ldts9zYkWZ9pIEpTMTocWn84OfgWoV_DbbAkuqQMUETO4EalitP2ZG8cRkCxUfGjUKbjxyYVbVjzpyG-OqaJ2vwWIK38Tn8JFhrByI5rCy_DlCs6sNgWY2DN2uzA_PUYwFp2YI5EZM1gXgFzG5R08NaVjH67Mouz7rUCfjNyYpYNHd6CyKpMFZZRTvvgmQ1rFiwrnwZoTXw2NvDspSDi0-M7swTcpVpZ2J2yTFfhvn961zsLmuIKgeHJ0SgwMZeZ40qHzlqfWn4UWi9wPdqIa516j9rPS-6jTOI6x31HjN7OGKtDK3SiQr4G08WgcOvATJI4p62wjsKokdGoAZT0qZQaJ4DSXQjbN5ubhjxOBTAe8wkzmYyRU7YZGSN_68L-uMuwxm781XirNVferMAyJ85cEidcii4ctCb8dPm3wTb-1XoXZm9P-vnV-c3lJszF5PKrVN4tmB49v7htFCwjvVNNyg_SpOQ3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P-splines+with+derivative+based+penalties+and+tensor+product+smoothing+of+unevenly+distributed+data&rft.jtitle=Statistics+and+computing&rft.au=Wood%2C+Simon+N.&rft.date=2017-07-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=27&rft.issue=4&rft.spage=985&rft.epage=989&rft_id=info:doi/10.1007%2Fs11222-016-9666-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_016_9666_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon |