P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data

The P-splines of Eilers and Marx (Stat Sci 11:89–121, 1996 ) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: (i) the basis and...

Full description

Saved in:
Bibliographic Details
Published inStatistics and computing Vol. 27; no. 4; pp. 985 - 989
Main Author Wood, Simon N.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0960-3174
1573-1375
DOI10.1007/s11222-016-9666-x

Cover

Loading…
Abstract The P-splines of Eilers and Marx (Stat Sci 11:89–121, 1996 ) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: (i) the basis and the penalty are sparse, enabling efficient computation, especially for Bayesian stochastic simulation; (ii) it is possible to flexibly ‘mix-and-match’ the order of B-spline basis and penalty, rather than the order of penalty controlling the order of the basis as in spline smoothing; (iii) it is very easy to set up the B-spline basis functions and penalties. The discrete penalties are somewhat less interpretable in terms of function shape than the traditional derivative based spline penalties, but tend towards penalties proportional to traditional spline penalties in the limit of large basis size. However part of the point of P-splines is not to use a large basis size. In addition the spline basis functions arise from solving functional optimization problems involving derivative based penalties, so moving to discrete penalties for smoothing may not always be desirable. The purpose of this note is to point out that the three properties of basis-penalty sparsity, mix-and-match penalization and ease of setup are readily obtainable with B-splines subject to derivative based penalization. The penalty setup typically requires a few lines of code, rather than the two lines typically required for P-splines, but this one off disadvantage seems to be the only one associated with using derivative based penalties. As an example application, it is shown how basis-penalty sparsity enables efficient computation with tensor product smoothers of scattered data.
AbstractList The P-splines of Eilers and Marx (Stat Sci 11:89–121, 1996 ) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: (i) the basis and the penalty are sparse, enabling efficient computation, especially for Bayesian stochastic simulation; (ii) it is possible to flexibly ‘mix-and-match’ the order of B-spline basis and penalty, rather than the order of penalty controlling the order of the basis as in spline smoothing; (iii) it is very easy to set up the B-spline basis functions and penalties. The discrete penalties are somewhat less interpretable in terms of function shape than the traditional derivative based spline penalties, but tend towards penalties proportional to traditional spline penalties in the limit of large basis size. However part of the point of P-splines is not to use a large basis size. In addition the spline basis functions arise from solving functional optimization problems involving derivative based penalties, so moving to discrete penalties for smoothing may not always be desirable. The purpose of this note is to point out that the three properties of basis-penalty sparsity, mix-and-match penalization and ease of setup are readily obtainable with B-splines subject to derivative based penalization. The penalty setup typically requires a few lines of code, rather than the two lines typically required for P-splines, but this one off disadvantage seems to be the only one associated with using derivative based penalties. As an example application, it is shown how basis-penalty sparsity enables efficient computation with tensor product smoothers of scattered data.
The P-splines of Eilers and Marx (Stat Sci 11:89–121, 1996) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a reduced rank spline like smoother. P-splines have three properties that make them very popular as reduced rank smoothers: (i) the basis and the penalty are sparse, enabling efficient computation, especially for Bayesian stochastic simulation; (ii) it is possible to flexibly ‘mix-and-match’ the order of B-spline basis and penalty, rather than the order of penalty controlling the order of the basis as in spline smoothing; (iii) it is very easy to set up the B-spline basis functions and penalties. The discrete penalties are somewhat less interpretable in terms of function shape than the traditional derivative based spline penalties, but tend towards penalties proportional to traditional spline penalties in the limit of large basis size. However part of the point of P-splines is not to use a large basis size. In addition the spline basis functions arise from solving functional optimization problems involving derivative based penalties, so moving to discrete penalties for smoothing may not always be desirable. The purpose of this note is to point out that the three properties of basis-penalty sparsity, mix-and-match penalization and ease of setup are readily obtainable with B-splines subject to derivative based penalization. The penalty setup typically requires a few lines of code, rather than the two lines typically required for P-splines, but this one off disadvantage seems to be the only one associated with using derivative based penalties. As an example application, it is shown how basis-penalty sparsity enables efficient computation with tensor product smoothers of scattered data.
Author Wood, Simon N.
Author_xml – sequence: 1
  givenname: Simon N.
  surname: Wood
  fullname: Wood, Simon N.
  email: simon.wood@bath.edu
  organization: School of Mathematics, University of Bristol
BookMark eNp9kE1LxDAQhoMouK7-AG8Bz9GZpk23RxG_YEEPeg5pk2ikJmuSrvrvzbIeRNDTHOZ9Zl6eA7LrgzeEHCOcIkB7lhCrqmKAgnVCCPaxQ2bYtJwhb5tdMoNOAOPY1vvkIKUXAETB6xkZ7llajc6bRN9dfqbaRLdW2a0N7VUymq6MV2N2Za-8ptn4FCJdxaCnIdP0GkJ-dv6JBksnb9bGj59Uu5Sj66dccK2yOiR7Vo3JHH3POXm8uny4uGHLu-vbi_MlG3jTZTZUXCwMVz0YrW2reQfa1tgJjbzvW2sBOyu4xYWAGpqmq5DDMOgedN03CvicnGzvlnpvk0lZvoQplvpJ4mIBTdVwUZcUblNDDClFY-UqulcVPyWC3LiUW5eyuJQbl_KjMO0vZnC5WAo-R-XGf8lqS6byxT-Z-KPTn9AXn_-M8w
CitedBy_id crossref_primary_10_1007_s00180_021_01066_7
crossref_primary_10_1021_acs_analchem_0c03693
crossref_primary_10_1007_s00300_021_02804_9
crossref_primary_10_1007_s11749_020_00711_5
crossref_primary_10_1016_j_jocs_2022_101767
crossref_primary_10_1016_j_wocn_2022_101191
crossref_primary_10_1371_journal_ppat_1012361
crossref_primary_10_21105_joss_05688
crossref_primary_10_3354_esr01050
crossref_primary_10_1080_09524622_2020_1819877
crossref_primary_10_1111_mms_12760
crossref_primary_10_1088_1742_6596_1988_1_012094
crossref_primary_10_1007_s11222_022_10103_4
crossref_primary_10_1016_j_socnet_2021_08_007
crossref_primary_10_1016_j_limno_2022_125995
crossref_primary_10_7717_peerj_6876
crossref_primary_10_1007_s12076_023_00361_9
crossref_primary_10_1214_23_SS142
crossref_primary_10_1016_j_scitotenv_2019_06_027
crossref_primary_10_3389_fmars_2022_827324
crossref_primary_10_1177_09622802221134172
crossref_primary_10_3389_fmars_2021_770424
crossref_primary_10_3390_su12104006
crossref_primary_10_3354_esr01089
crossref_primary_10_1007_s00477_020_01835_8
crossref_primary_10_1093_jrsssc_qlae033
crossref_primary_10_1177_21677026231195793
crossref_primary_10_1007_s11336_023_09910_z
crossref_primary_10_1007_s00227_022_04026_x
crossref_primary_10_1016_j_scitotenv_2023_162300
crossref_primary_10_1080_09524622_2022_2108145
crossref_primary_10_1093_biomtc_ujae098
crossref_primary_10_1016_j_jmarsys_2018_11_002
crossref_primary_10_1109_ACCESS_2020_3012610
Cites_doi 10.1137/1.9781611970128
10.1214/aos/1176349743
10.1137/1.9780898718881
10.1111/j.1467-842X.2008.00507.x
10.1111/j.1467-9868.2010.00749.x
10.1016/j.cpc.2013.04.008
10.1007/BFb0086566
10.56021/9781421407944
10.1111/j.1541-0420.2006.00574.x
10.1214/ss/1038425655
10.1007/978-1-4612-6333-3
10.1111/j.1467-9868.2007.00610.x
ContentType Journal Article
Copyright The Author(s) 2016
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: The Author(s) 2016
– notice: Copyright Springer Science & Business Media 2017
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11222-016-9666-x
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
EndPage 989
ExternalDocumentID 10_1007_s11222_016_9666_x
GrantInformation_xml – fundername: University of Bristol
  funderid: http://dx.doi.org/10.13039/501100000883
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c359t-c2368e3ab0eddf7d390df4196d13bb7ff019f63f1860405592130ccdb0d4b5a03
IEDL.DBID U2A
ISSN 0960-3174
IngestDate Fri Jul 25 03:34:15 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Tue Jul 01 02:17:03 EDT 2025
Fri Feb 21 02:34:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Derivative penalty
Reduced rank spline
P-spline
Tensor product smooth
Smoothing spline
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c2368e3ab0eddf7d390df4196d13bb7ff019f63f1860405592130ccdb0d4b5a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11222-016-9666-x
PQID 1880525364
PQPubID 2043829
PageCount 5
ParticipantIDs proquest_journals_1880525364
crossref_primary_10_1007_s11222_016_9666_x
crossref_citationtrail_10_1007_s11222_016_9666_x
springer_journals_10_1007_s11222_016_9666_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-01
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Wand, M., Ormerod, J.: On semiparametric regression with O’Sullivan penalized splines. Aust. N. Z. J. Stat. 50(2), 179–198 (2008)
EilersPHCMarxBDFlexible smoothing with B-splines and penaltiesStat. Sci.199611289121143548510.1214/ss/10384256550955.62562
EilersPHMarxBDDurbánMTwenty years of p-splinesSORT-Stat. Oper. Res. Trans.201539214918634674881339.41010
WahbaGA comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problemAnn. Stat.1985131378140281149810.1214/aos/11763497430596.65004
de BoorCA Practical Guide to Splines1978New YorkSpringer10.1007/978-1-4612-6333-30406.41003
DuchonJSchempWZellerKSplines minimizing rotation-invariant semi-norms in Solobev spacesConstruction Theory of Functions of Several Variables1977BerlinSpringer8510010.1007/BFb0086566
WoodSNFast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear modelsJ. R. Stat. Soc.: Ser. B (Stat. Methodol.)2011731336279773410.1111/j.1467-9868.2010.00749.x
DavisTADirect Methods for Sparse Linear Systems2006PhiladelphiaSIAM10.1137/1.97808987188811119.65021
Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: a generalized smoothing approach. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 69(5), 741–796 (2007)
de BoorCA Practical Guide to Splines2001RevisedNew YorkSpringer0987.65015
WoodSNLow-rank scale-invariant tensor product smooths for generalized additive mixed modelsBiometrics200662410251036229767310.1111/j.1541-0420.2006.00574.x1116.62076
WahbaGSpline Models for Observational Data1990PhiladelphiaSIAM10.1137/1.97816119701280813.62001
WhitehornNvan SantenJLafebreSPenalized splines for smooth representation of high-dimensional monte carlo datasetsComput. Phys. Commun.201318492214222010.1016/j.cpc.2013.04.0081344.65003
GolubGHVan LoanCFMatrix Computations20134BaltimoreJohns Hopkins University Press1268.65037
C Boor de (9666_CR2) 1978
SN Wood (9666_CR14) 2011; 73
J Duchon (9666_CR4) 1977
G Wahba (9666_CR9) 1985; 13
GH Golub (9666_CR7) 2013
C Boor de (9666_CR3) 2001
TA Davis (9666_CR1) 2006
SN Wood (9666_CR13) 2006; 62
N Whitehorn (9666_CR12) 2013; 184
PH Eilers (9666_CR5) 2015; 39
9666_CR8
G Wahba (9666_CR10) 1990
9666_CR11
PHC Eilers (9666_CR6) 1996; 11
References_xml – reference: EilersPHCMarxBDFlexible smoothing with B-splines and penaltiesStat. Sci.199611289121143548510.1214/ss/10384256550955.62562
– reference: DavisTADirect Methods for Sparse Linear Systems2006PhiladelphiaSIAM10.1137/1.97808987188811119.65021
– reference: de BoorCA Practical Guide to Splines2001RevisedNew YorkSpringer0987.65015
– reference: WahbaGA comparison of GCV and GML for choosing the smoothing parameter in the generalized spline smoothing problemAnn. Stat.1985131378140281149810.1214/aos/11763497430596.65004
– reference: Wand, M., Ormerod, J.: On semiparametric regression with O’Sullivan penalized splines. Aust. N. Z. J. Stat. 50(2), 179–198 (2008)
– reference: WoodSNLow-rank scale-invariant tensor product smooths for generalized additive mixed modelsBiometrics200662410251036229767310.1111/j.1541-0420.2006.00574.x1116.62076
– reference: DuchonJSchempWZellerKSplines minimizing rotation-invariant semi-norms in Solobev spacesConstruction Theory of Functions of Several Variables1977BerlinSpringer8510010.1007/BFb0086566
– reference: WahbaGSpline Models for Observational Data1990PhiladelphiaSIAM10.1137/1.97816119701280813.62001
– reference: de BoorCA Practical Guide to Splines1978New YorkSpringer10.1007/978-1-4612-6333-30406.41003
– reference: Ramsay, J.O., Hooker, G., Campbell, D., Cao, J.: Parameter estimation for differential equations: a generalized smoothing approach. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 69(5), 741–796 (2007)
– reference: WhitehornNvan SantenJLafebreSPenalized splines for smooth representation of high-dimensional monte carlo datasetsComput. Phys. Commun.201318492214222010.1016/j.cpc.2013.04.0081344.65003
– reference: EilersPHMarxBDDurbánMTwenty years of p-splinesSORT-Stat. Oper. Res. Trans.201539214918634674881339.41010
– reference: GolubGHVan LoanCFMatrix Computations20134BaltimoreJohns Hopkins University Press1268.65037
– reference: WoodSNFast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear modelsJ. R. Stat. Soc.: Ser. B (Stat. Methodol.)2011731336279773410.1111/j.1467-9868.2010.00749.x
– volume-title: Spline Models for Observational Data
  year: 1990
  ident: 9666_CR10
  doi: 10.1137/1.9781611970128
– volume: 13
  start-page: 1378
  year: 1985
  ident: 9666_CR9
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176349743
– volume-title: Direct Methods for Sparse Linear Systems
  year: 2006
  ident: 9666_CR1
  doi: 10.1137/1.9780898718881
– volume: 39
  start-page: 149
  issue: 2
  year: 2015
  ident: 9666_CR5
  publication-title: SORT-Stat. Oper. Res. Trans.
– ident: 9666_CR11
  doi: 10.1111/j.1467-842X.2008.00507.x
– volume: 73
  start-page: 3
  issue: 1
  year: 2011
  ident: 9666_CR14
  publication-title: J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
  doi: 10.1111/j.1467-9868.2010.00749.x
– volume: 184
  start-page: 2214
  issue: 9
  year: 2013
  ident: 9666_CR12
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2013.04.008
– start-page: 85
  volume-title: Construction Theory of Functions of Several Variables
  year: 1977
  ident: 9666_CR4
  doi: 10.1007/BFb0086566
– volume-title: Matrix Computations
  year: 2013
  ident: 9666_CR7
  doi: 10.56021/9781421407944
– volume: 62
  start-page: 1025
  issue: 4
  year: 2006
  ident: 9666_CR13
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00574.x
– volume: 11
  start-page: 89
  issue: 2
  year: 1996
  ident: 9666_CR6
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1038425655
– volume-title: A Practical Guide to Splines
  year: 2001
  ident: 9666_CR3
– volume-title: A Practical Guide to Splines
  year: 1978
  ident: 9666_CR2
  doi: 10.1007/978-1-4612-6333-3
– ident: 9666_CR8
  doi: 10.1111/j.1467-9868.2007.00610.x
SSID ssj0011634
Score 2.3453338
Snippet The P-splines of Eilers and Marx (Stat Sci 11:89–121, 1996 ) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a...
The P-splines of Eilers and Marx (Stat Sci 11:89–121, 1996) combine a B-spline basis with a discrete quadratic penalty on the basis coefficients, to produce a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 985
SubjectTerms Artificial Intelligence
Basis functions
Bayesian analysis
Computational efficiency
Computer simulation
Data smoothing
Fines & penalties
Mathematics and Statistics
Probability and Statistics in Computer Science
Sparsity
Splines
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Title P-splines with derivative based penalties and tensor product smoothing of unevenly distributed data
URI https://link.springer.com/article/10.1007/s11222-016-9666-x
https://www.proquest.com/docview/1880525364
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8NADLagXcrAo4Aoj-oGJlCkJHe5hLGqCggEYqBSmaJ7ZSpp1RQE_x47TVpAgMR8j0Sxff4c-z4DnJo4saFxylOC-55QGO4kiRKeSVzgc40jpmT7vJfXQ3EzikbVPe6irnavU5LlSb267BagL8PQVxKjpPQQODYjCt1RiYdhb5k6QIBRckYhNMcDJhZ1KvOnLb46oxXC_JYULX3N5TZsViCR9RZS3YE1l7dhq27AwCp7bMPG3ZJ0tWhDi4Djgnd5F8yDV9BlW1cw-tXKLGraa0nyzchxWTZ1-AhiU2Uqt4zq2CczNl3wv7LieYISxHdjk4y95MTyNH5nlkh2qT8WLqfK0j0YXg4e-9de1VDBMzy6mHsm5DJxXGnfWZvFll_4NhNogzbgWsdZhngvkzwLEom2jbFGiB7OGKt9K3SkfL4PjXySuwNgJoqc01ZYR6nTwGj0-0pmsZQaha50B_z6y6amYhunphfjdMWTTMJIqcKMhJG-deBsuWS6oNr4a_JxLa60sroiJW65KIy4FB04r0X4afi3zQ7_NfsIWiH59rJm9xga89mLO0FkMtddaPaunm4HXVjvy3631MsPodPfjw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMdPqAyUgUcBUZ4emEARaew4YUQVVYGCGFqpW-RXppJWpCD49tylSQsVIDH7kchn5_7OnX8GODNRbAPjlKcE9z2hcLsTx0p4JnYtn2ssMQXt81F2B-JuGA5LWDSdhVmK31_mqAcCSh6QxJGUHsrFVYEbZcrea8v2PGCAsqIgRaEgx89KJKoA5k9dfHdBC125FAotPExnCzZKaciuZ7bchhWXNWCzunaBlauwAesPc9Rq3oA6ycUZbXkHzJOX0xFblzP6wcoszq-3Au3NyF1ZNnH4CGKoMpVZRtnr4xc2mVFfWf48Rrvhu7Fxyl4zYjuNPpgltC7dioXNKZ90Fwadm36765XXKHiGh1dTzwRcxo4r7Ttr08jyK9-mOIbStrjWUZqiykslT1uxxBWNO4wA_ZoxVvtW6FD5fA9q2Thz-8BMGDqnrbCOAqYto9HbK5lGUmo0tdJN8KuRTUzJGKerLkbJgo5Mxkgor4yMkbw34XzeZDIDbPxV-agyV1KutTwholwYhFyKJlxUJvxS_FtnB_-qfQpr3f5DL-ndPt4fQj0g715k7R5Bbfry6o5Rm0z1STErPwEKptvw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8QwEMcHURA9-FgV12cOnpRi26RpPcrq4hsPCt5KniftLnYV_fbO9LGrooLnJmnpJJ1_OpPfAOyZNLOxcSpQgoeBULjdyTIlApO5KOQar5iK9nkjz-7FxUPy0NQ5Ldts9zYkWZ9pIEpTMTocWn84OfgWoV_DbbAkuqQMUETO4EalitP2ZG8cRkCxUfGjUKbjxyYVbVjzpyG-OqaJ2vwWIK38Tn8JFhrByI5rCy_DlCs6sNgWY2DN2uzA_PUYwFp2YI5EZM1gXgFzG5R08NaVjH67Mouz7rUCfjNyYpYNHd6CyKpMFZZRTvvgmQ1rFiwrnwZoTXw2NvDspSDi0-M7swTcpVpZ2J2yTFfhvn961zsLmuIKgeHJ0SgwMZeZ40qHzlqfWn4UWi9wPdqIa516j9rPS-6jTOI6x31HjN7OGKtDK3SiQr4G08WgcOvATJI4p62wjsKokdGoAZT0qZQaJ4DSXQjbN5ubhjxOBTAe8wkzmYyRU7YZGSN_68L-uMuwxm781XirNVferMAyJ85cEidcii4ctCb8dPm3wTb-1XoXZm9P-vnV-c3lJszF5PKrVN4tmB49v7htFCwjvVNNyg_SpOQ3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P-splines+with+derivative+based+penalties+and+tensor+product+smoothing+of+unevenly+distributed+data&rft.jtitle=Statistics+and+computing&rft.au=Wood%2C+Simon+N.&rft.date=2017-07-01&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=27&rft.issue=4&rft.spage=985&rft.epage=989&rft_id=info:doi/10.1007%2Fs11222-016-9666-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11222_016_9666_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon