Unsupervised Recurrent Hyperspectral Imagery Super-Resolution Using Pixel-Aware Refinement

Unsupervised fusion-based hyperspectral imagery (HSI) super-resolution (SR) is an essential task of HSI processing, which aims to reconstruct a high-resolution (HR) HSI using only an observed low-resolution HSI and a conventional HR image. Although a large number of unsupervised HSI SR methods have...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 15
Main Authors Wei, Wei, Nie, Jiangtao, Zhang, Lei, Zhang, Yanning
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unsupervised fusion-based hyperspectral imagery (HSI) super-resolution (SR) is an essential task of HSI processing, which aims to reconstruct a high-resolution (HR) HSI using only an observed low-resolution HSI and a conventional HR image. Although a large number of unsupervised HSI SR methods have been proposed, the heuristic handcrafted image priors adopted by the majority of these methods restrict their capacity to capture specific characteristics of the HSI, as well as their ability to generalize to noisy observation images. In this study, we investigate a fusion-based HSI SR framework with the deep image prior, in which the deep neural network (rather than a heuristic handcrafted image prior) is exploited to capture plenty of image statistics. Within this framework, we further propose an unsupervised recurrence-based HSI SR method using pixel-aware refinement, which utilizes the intermediate reconstruction results to self-supervise unsupervised learning. Due to containing the information of the image-specific characteristic, the proposed method achieves better performance, in terms of both accuracy and robustness to noise, compared with the existing methods. Extensive experiments on four HSI data sets demonstrate the effectiveness of the proposed method.
AbstractList Unsupervised fusion-based hyperspectral imagery (HSI) super-resolution (SR) is an essential task of HSI processing, which aims to reconstruct a high-resolution (HR) HSI using only an observed low-resolution HSI and a conventional HR image. Although a large number of unsupervised HSI SR methods have been proposed, the heuristic handcrafted image priors adopted by the majority of these methods restrict their capacity to capture specific characteristics of the HSI, as well as their ability to generalize to noisy observation images. In this study, we investigate a fusion-based HSI SR framework with the deep image prior, in which the deep neural network (rather than a heuristic handcrafted image prior) is exploited to capture plenty of image statistics. Within this framework, we further propose an unsupervised recurrence-based HSI SR method using pixel-aware refinement, which utilizes the intermediate reconstruction results to self-supervise unsupervised learning. Due to containing the information of the image-specific characteristic, the proposed method achieves better performance, in terms of both accuracy and robustness to noise, compared with the existing methods. Extensive experiments on four HSI data sets demonstrate the effectiveness of the proposed method.
Author Wei, Wei
Zhang, Yanning
Zhang, Lei
Nie, Jiangtao
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-0655-056X
  surname: Wei
  fullname: Wei, Wei
  email: weiweinwpu@nwpu.edu.cn
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Jiangtao
  orcidid: 0000-0003-3692-6545
  surname: Nie
  fullname: Nie, Jiangtao
  email: niejiangtao@mail.nwpu.edu.cn
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-7528-420X
  surname: Zhang
  fullname: Zhang, Lei
  email: zhanglei211@mail.nwpu.edu.cn
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Yanning
  orcidid: 0000-0002-2977-8057
  surname: Zhang
  fullname: Zhang, Yanning
  email: ynzhang@nwpu.edu.cn
  organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
BookMark eNp9kM1Lw0AQxRepYFv9A8RLwHPq7Ca7mz2Wom2hoPTj4iXkY1K2pEncTdT-925o8eDBywwM773h_UZkUNUVEnJPYUIpqKftfL2ZMGAwCSBQPAivyJByHvkgwnBAhkCV8Fmk2A0ZWXsAoCGnckjed5XtGjSf2mLurTHrjMGq9RYnd7QNZq1JSm95TPZoTt6ml_prtHXZtbquvJ3V1d57099Y-tOvxKCLKHSFR5dxS66LpLR4d9ljsnt53s4W_up1vpxNV34WcNX6GRQSaY4ocp5hyqVggoWpSqgCxFQIkCENlKsGUVqkiCAkzyOa0SiUbgZj8njObUz90aFt40Pdmcq9jJkALiHiCpyKnlWZqa01WMSN0cfEnGIKcY8w7hHGPcL4gtB55B9PptukL-6o6PJf58PZqRHx95NiioVCBD9vu4F6
CODEN IGRSD2
CitedBy_id crossref_primary_10_1016_j_inffus_2025_103048
crossref_primary_10_1016_j_energy_2024_133128
crossref_primary_10_1109_TGRS_2021_3132093
crossref_primary_10_1109_TGRS_2023_3335975
crossref_primary_10_1142_S0219467823500584
crossref_primary_10_3390_app15063319
crossref_primary_10_1016_j_bspc_2025_107668
crossref_primary_10_1109_JSTARS_2023_3242048
crossref_primary_10_3390_atmos15010028
crossref_primary_10_3390_rs15061713
crossref_primary_10_1109_TGRS_2022_3173532
crossref_primary_10_1111_coin_12690
crossref_primary_10_3390_rs13173455
crossref_primary_10_1016_j_isprsjprs_2023_03_012
crossref_primary_10_3390_rs17050808
crossref_primary_10_1016_j_isprsjprs_2022_09_005
crossref_primary_10_1016_j_jag_2024_103915
crossref_primary_10_11834_jig_230038
crossref_primary_10_1109_TGRS_2022_3221971
crossref_primary_10_1016_j_jag_2022_102881
crossref_primary_10_1016_j_jag_2023_103510
crossref_primary_10_1109_MGRS_2022_3161377
crossref_primary_10_1016_j_isprsjprs_2024_09_017
crossref_primary_10_1109_TGRS_2022_3232705
crossref_primary_10_1016_j_eswa_2024_125505
crossref_primary_10_1016_j_isprsjprs_2024_02_001
crossref_primary_10_1109_TGRS_2023_3275135
crossref_primary_10_1016_j_jag_2023_103430
crossref_primary_10_1109_JSTARS_2024_3471899
crossref_primary_10_3390_rs15051432
crossref_primary_10_1007_s12145_023_01031_6
crossref_primary_10_1016_j_isprsjprs_2023_03_021
crossref_primary_10_1109_TGRS_2021_3135501
crossref_primary_10_3390_rs14246201
crossref_primary_10_1007_s10489_024_05359_4
crossref_primary_10_1007_s41324_024_00576_y
crossref_primary_10_3390_s21196673
crossref_primary_10_1109_TGRS_2022_3217063
crossref_primary_10_1016_j_cosrev_2023_100584
crossref_primary_10_1016_j_knosys_2024_111966
crossref_primary_10_1016_j_jksuci_2022_05_020
crossref_primary_10_1109_JSTARS_2022_3228941
crossref_primary_10_1016_j_icarus_2023_115646
crossref_primary_10_1016_j_jag_2022_102970
crossref_primary_10_1016_j_ndteint_2024_103293
crossref_primary_10_1016_j_isprsjprs_2023_12_009
crossref_primary_10_1109_TAES_2022_3175186
crossref_primary_10_1109_TGRS_2022_3182425
crossref_primary_10_3390_s24072148
crossref_primary_10_1016_j_engappai_2024_108774
crossref_primary_10_1061_JCCEE5_CPENG_6263
crossref_primary_10_3390_app12073511
crossref_primary_10_1080_01431161_2022_2161856
crossref_primary_10_1109_TGRS_2023_3244992
crossref_primary_10_1049_ipr2_12642
crossref_primary_10_1007_s43762_023_00104_y
crossref_primary_10_3390_rs14092061
crossref_primary_10_1016_j_isprsjprs_2024_10_006
crossref_primary_10_3390_rs14174145
crossref_primary_10_1109_TGRS_2022_3210046
crossref_primary_10_1109_TGRS_2022_3207230
crossref_primary_10_1016_j_isprsjprs_2023_01_015
crossref_primary_10_1109_TGRS_2021_3064450
crossref_primary_10_1007_s12665_024_11957_9
crossref_primary_10_1016_j_isprsjprs_2022_11_006
crossref_primary_10_1049_ell2_12650
Cites_doi 10.1109/ICCVW.2019.00477
10.1109/ICME.2017.8019510
10.1109/TGRS.2007.901007
10.1109/MGRS.2013.2244672
10.1109/TIP.2018.2814210
10.1109/LGRS.2017.2786272
10.3390/rs10050800
10.1109/TGRS.2011.2161320
10.1109/CVPR.2017.241
10.1109/CVPR.2019.00168
10.1109/CVPR.2018.00266
10.1109/TGRS.2008.916211
10.1109/TGRS.2019.2918342
10.1109/TIP.2016.2542360
10.1109/CVPR.2018.00984
10.1109/TPAMI.2015.2439281
10.1007/s11263-018-1080-8
10.1109/JSTARS.2013.2292824
10.1109/TGRS.2018.2862384
10.1049/joe.2019.0322
10.1109/TIP.2019.2893530
10.1109/TIP.2018.2862629
10.1109/TGRS.2018.2860464
10.1109/TIP.2010.2046811
10.1109/TGRS.2003.812907
10.1109/LGRS.2017.2668299
10.1109/CVPR.2016.90
10.1109/MGRS.2017.2762087
10.1109/TNNLS.2017.2742528
10.1109/TGRS.2019.2927077
10.1109/TGRS.2018.2817393
10.1109/TGRS.2011.2167193
10.1109/JSTARS.2019.2950876
10.1109/IGARSS.2019.8900117
10.1109/TGRS.2020.2973370
10.1109/TGRS.2020.2979908
10.1109/TGRS.2019.2917759
10.1109/TGRS.2020.2964288
10.1109/TNNLS.2018.2885616
10.1109/ICCV.2015.409
10.1109/ACCESS.2019.2961240
10.1109/BigMM.2018.8499097
10.1109/TNNLS.2018.2798162
10.3390/rs9040305
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.3039534
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1558-0644
EndPage 15
ExternalDocumentID 10_1109_TGRS_2020_3039534
9292466
Genre orig-research
GrantInformation_xml – fundername: Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University
  grantid: CX2020025
  funderid: 10.13039/501100002663
– fundername: National Natural Science Foundation of China
  grantid: 61671385; 62071387; U19B2037
  funderid: 10.13039/501100001809
– fundername: Science, Technology and Innovation Commission of Shenzhen Municipality
  grantid: JCYJ20190806160210899
  funderid: 10.13039/501100010877
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c359t-c0f7e1dee6d5ceb5762624b9a190eeb6607413902008bfbee0675d81c18471c13
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Tue Aug 26 14:40:23 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Tue Jul 01 01:34:24 EDT 2025
Wed Aug 27 05:11:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-c0f7e1dee6d5ceb5762624b9a190eeb6607413902008bfbee0675d81c18471c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7528-420X
0000-0002-0655-056X
0000-0002-2977-8057
0000-0003-3692-6545
PQID 2605708590
PQPubID 85465
PageCount 15
ParticipantIDs proquest_journals_2605708590
crossref_primary_10_1109_TGRS_2020_3039534
crossref_citationtrail_10_1109_TGRS_2020_3039534
ieee_primary_9292466
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref45
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
Yokoya (ref43) 2016
References_xml – ident: ref13
  doi: 10.1109/ICCVW.2019.00477
– ident: ref25
  doi: 10.1109/ICME.2017.8019510
– ident: ref19
  doi: 10.1109/TGRS.2007.901007
– ident: ref4
  doi: 10.1109/MGRS.2013.2244672
– ident: ref15
  doi: 10.1109/TIP.2018.2814210
– ident: ref1
  doi: 10.1109/LGRS.2017.2786272
– ident: ref44
  doi: 10.3390/rs10050800
– ident: ref20
  doi: 10.1109/TGRS.2011.2161320
– ident: ref36
  doi: 10.1109/CVPR.2017.241
– ident: ref23
  doi: 10.1109/CVPR.2019.00168
– ident: ref38
  doi: 10.1109/CVPR.2018.00266
– ident: ref18
  doi: 10.1109/TGRS.2008.916211
– ident: ref10
  doi: 10.1109/TGRS.2019.2918342
– ident: ref29
  doi: 10.1109/TIP.2016.2542360
– ident: ref39
  doi: 10.1109/CVPR.2018.00984
– ident: ref17
  doi: 10.1109/TPAMI.2015.2439281
– year: 2016
  ident: ref43
  article-title: Airborne hyperspectral data over Chikusei
– ident: ref30
  doi: 10.1007/s11263-018-1080-8
– ident: ref14
  doi: 10.1109/JSTARS.2013.2292824
– ident: ref40
  doi: 10.1109/TGRS.2018.2862384
– ident: ref9
  doi: 10.1049/joe.2019.0322
– ident: ref32
  doi: 10.1109/TIP.2019.2893530
– ident: ref24
  doi: 10.1109/TIP.2018.2862629
– ident: ref7
  doi: 10.1109/TGRS.2018.2860464
– ident: ref42
  doi: 10.1109/TIP.2010.2046811
– ident: ref2
  doi: 10.1109/TGRS.2003.812907
– ident: ref22
  doi: 10.1109/LGRS.2017.2668299
– ident: ref35
  doi: 10.1109/CVPR.2016.90
– ident: ref3
  doi: 10.1109/MGRS.2017.2762087
– ident: ref6
  doi: 10.1109/TNNLS.2017.2742528
– ident: ref11
  doi: 10.1109/TGRS.2019.2927077
– ident: ref41
  doi: 10.1109/TGRS.2018.2817393
– ident: ref5
  doi: 10.1109/TGRS.2011.2167193
– ident: ref8
  doi: 10.1109/JSTARS.2019.2950876
– ident: ref27
  doi: 10.1109/IGARSS.2019.8900117
– ident: ref16
  doi: 10.1109/TGRS.2020.2973370
– ident: ref34
  doi: 10.1109/TGRS.2020.2979908
– ident: ref21
  doi: 10.1109/TGRS.2019.2917759
– ident: ref28
  doi: 10.1109/TGRS.2020.2964288
– ident: ref33
  doi: 10.1109/TNNLS.2018.2885616
– ident: ref26
  doi: 10.1109/ICCV.2015.409
– ident: ref31
  doi: 10.1109/ACCESS.2019.2961240
– ident: ref12
  doi: 10.1109/BigMM.2018.8499097
– ident: ref37
  doi: 10.1109/TNNLS.2018.2798162
– ident: ref45
  doi: 10.3390/rs9040305
SSID ssj0014517
Score 2.4898055
Snippet Unsupervised fusion-based hyperspectral imagery (HSI) super-resolution (SR) is an essential task of HSI processing, which aims to reconstruct a high-resolution...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Computer science
Heuristic
Hyperspectral image super-resolution (SR)
Hyperspectral imaging
Image reconstruction
Image resolution
Imagery
Machine learning
Neural networks
Optimization
pixel-aware refinement
Pixels
Problem solving
Resolution
Sparse matrices
Spatial resolution
Spectral analysis
Statistical methods
Training
unsupervised deep learning
Title Unsupervised Recurrent Hyperspectral Imagery Super-Resolution Using Pixel-Aware Refinement
URI https://ieeexplore.ieee.org/document/9292466
https://www.proquest.com/docview/2605708590
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60IOjBaqtYX-zBk7h1s4_YPRZRq6CItiBelk12AqJW6QMfv96ZbFp8Id72kGQHJsnMN5n5BmAnxFyYuDB-ngtJACXiQJOJ_VRJ0TJC5soSz59fyE4vPrtJbmZgb1oLg4g2-Qyb_Gnf8osnPeZQ2T6Z8jCWchZmCbiVtVrTF4M4Ea40WvoEIkL3gimCdL97cnVNSDAkgEqyJFH8xQbZpio_bmJrXo6rcD4RrMwquW-OR6qp379xNv5X8iVYdH6m1y43xjLMYL8G1UkPB88d6RosfCIkrMGcTQjVwzrc9vrD8TNfJEMsvCuOyjOPk9ch3FqWZw5o-dNHpsB48655qM9PAeVG9mwmgnd594oPfvslHyAtYeg_LOYK9I6Puocd3_Vh8HWUpCNfB-YARYEoi0SjIoQSyjBWaU7OBKKSkt2SKA04lUIZhcgopGgJLdj0aRGtQqX_1Mc18FTOhIZSJabQBCWR4Rp5YHlcpIkh6NeAYKKZTDuScu6V8ZBZsBKkGSszY2VmTpkN2J1OeS4ZOv4aXGflTAc6vTRgc6L-zJ3hYcZI74D534L132dtwHzIxRA2ILMJldFgjFvkoozUtt2bHzFV4kg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTyMxDLaAFQIOsBQQBZadAyfEtJN5BOaIEFAeRQhaCXEZTTKOhIC26kOw--uxM2nFS6u9zSHJWHIS-3PszwA7IebCxIXx81xIAigRB5pM7KdKigMjZK4s8XzzSjba8fldcjcFe5NaGES0yWdY40_7ll909YhDZXUy5WEs5TT8ILufhGW11uTNIE6EK46WPsGI0L1hiiCtt05vbgkLhgRRSZokij9YIdtW5ctdbA3MyRI0x6KVeSWPtdFQ1fTfT6yN_yv7T1h0nqZ3WG6NZZjCTgWWxl0cPHeoK7DwjpKwArM2JVQPVuC-3RmMenyVDLDwbjguz0xOXoOQa1mg2aflz56ZBOOPd8tDfX4MKLeyZ3MRvOuHV3zyD1_yPtIShv7DYq5C--S4ddTwXScGX0dJOvR1YPZRFIiySDQqwiihDGOV5uROICop2TGJ0oCTKZRRiIxDigOhBRs_LaI1mOl0O7gOnsqZ0lCqxBSawCQyYCMfLI-LNDEE_qoQjDWTaUdTzt0ynjILV4I0Y2VmrMzMKbMKu5MpvZKj41-DV1g5k4FOL1XYGqs_c6d4kDHW22cGuGDj-1m_Ya7Ral5ml2dXF5swH3JphA3PbMHMsD_CX-SwDNW23advKZ7lkg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Recurrent+Hyperspectral+Imagery+Super-Resolution+Using+Pixel-Aware+Refinement&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wei%2C+Wei&rft.au=Nie%2C+Jiangtao&rft.au=Zhang%2C+Lei&rft.au=Zhang%2C+Yanning&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft_id=info:doi/10.1109%2FTGRS.2020.3039534&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon