Unsupervised Recurrent Hyperspectral Imagery Super-Resolution Using Pixel-Aware Refinement
Unsupervised fusion-based hyperspectral imagery (HSI) super-resolution (SR) is an essential task of HSI processing, which aims to reconstruct a high-resolution (HR) HSI using only an observed low-resolution HSI and a conventional HR image. Although a large number of unsupervised HSI SR methods have...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 60; pp. 1 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unsupervised fusion-based hyperspectral imagery (HSI) super-resolution (SR) is an essential task of HSI processing, which aims to reconstruct a high-resolution (HR) HSI using only an observed low-resolution HSI and a conventional HR image. Although a large number of unsupervised HSI SR methods have been proposed, the heuristic handcrafted image priors adopted by the majority of these methods restrict their capacity to capture specific characteristics of the HSI, as well as their ability to generalize to noisy observation images. In this study, we investigate a fusion-based HSI SR framework with the deep image prior, in which the deep neural network (rather than a heuristic handcrafted image prior) is exploited to capture plenty of image statistics. Within this framework, we further propose an unsupervised recurrence-based HSI SR method using pixel-aware refinement, which utilizes the intermediate reconstruction results to self-supervise unsupervised learning. Due to containing the information of the image-specific characteristic, the proposed method achieves better performance, in terms of both accuracy and robustness to noise, compared with the existing methods. Extensive experiments on four HSI data sets demonstrate the effectiveness of the proposed method. |
---|---|
AbstractList | Unsupervised fusion-based hyperspectral imagery (HSI) super-resolution (SR) is an essential task of HSI processing, which aims to reconstruct a high-resolution (HR) HSI using only an observed low-resolution HSI and a conventional HR image. Although a large number of unsupervised HSI SR methods have been proposed, the heuristic handcrafted image priors adopted by the majority of these methods restrict their capacity to capture specific characteristics of the HSI, as well as their ability to generalize to noisy observation images. In this study, we investigate a fusion-based HSI SR framework with the deep image prior, in which the deep neural network (rather than a heuristic handcrafted image prior) is exploited to capture plenty of image statistics. Within this framework, we further propose an unsupervised recurrence-based HSI SR method using pixel-aware refinement, which utilizes the intermediate reconstruction results to self-supervise unsupervised learning. Due to containing the information of the image-specific characteristic, the proposed method achieves better performance, in terms of both accuracy and robustness to noise, compared with the existing methods. Extensive experiments on four HSI data sets demonstrate the effectiveness of the proposed method. |
Author | Wei, Wei Zhang, Yanning Zhang, Lei Nie, Jiangtao |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-0655-056X surname: Wei fullname: Wei, Wei email: weiweinwpu@nwpu.edu.cn organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Jiangtao orcidid: 0000-0003-3692-6545 surname: Nie fullname: Nie, Jiangtao email: niejiangtao@mail.nwpu.edu.cn organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Lei orcidid: 0000-0002-7528-420X surname: Zhang fullname: Zhang, Lei email: zhanglei211@mail.nwpu.edu.cn organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Yanning orcidid: 0000-0002-2977-8057 surname: Zhang fullname: Zhang, Yanning email: ynzhang@nwpu.edu.cn organization: Shaanxi Provincial Key Laboratory of Speech and Image Information Processing, School of Computer Science, Northwestern Polytechnical University, Xi'an, China |
BookMark | eNp9kM1Lw0AQxRepYFv9A8RLwHPq7Ca7mz2Wom2hoPTj4iXkY1K2pEncTdT-925o8eDBywwM773h_UZkUNUVEnJPYUIpqKftfL2ZMGAwCSBQPAivyJByHvkgwnBAhkCV8Fmk2A0ZWXsAoCGnckjed5XtGjSf2mLurTHrjMGq9RYnd7QNZq1JSm95TPZoTt6ml_prtHXZtbquvJ3V1d57099Y-tOvxKCLKHSFR5dxS66LpLR4d9ljsnt53s4W_up1vpxNV34WcNX6GRQSaY4ocp5hyqVggoWpSqgCxFQIkCENlKsGUVqkiCAkzyOa0SiUbgZj8njObUz90aFt40Pdmcq9jJkALiHiCpyKnlWZqa01WMSN0cfEnGIKcY8w7hHGPcL4gtB55B9PptukL-6o6PJf58PZqRHx95NiioVCBD9vu4F6 |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1016_j_inffus_2025_103048 crossref_primary_10_1016_j_energy_2024_133128 crossref_primary_10_1109_TGRS_2021_3132093 crossref_primary_10_1109_TGRS_2023_3335975 crossref_primary_10_1142_S0219467823500584 crossref_primary_10_3390_app15063319 crossref_primary_10_1016_j_bspc_2025_107668 crossref_primary_10_1109_JSTARS_2023_3242048 crossref_primary_10_3390_atmos15010028 crossref_primary_10_3390_rs15061713 crossref_primary_10_1109_TGRS_2022_3173532 crossref_primary_10_1111_coin_12690 crossref_primary_10_3390_rs13173455 crossref_primary_10_1016_j_isprsjprs_2023_03_012 crossref_primary_10_3390_rs17050808 crossref_primary_10_1016_j_isprsjprs_2022_09_005 crossref_primary_10_1016_j_jag_2024_103915 crossref_primary_10_11834_jig_230038 crossref_primary_10_1109_TGRS_2022_3221971 crossref_primary_10_1016_j_jag_2022_102881 crossref_primary_10_1016_j_jag_2023_103510 crossref_primary_10_1109_MGRS_2022_3161377 crossref_primary_10_1016_j_isprsjprs_2024_09_017 crossref_primary_10_1109_TGRS_2022_3232705 crossref_primary_10_1016_j_eswa_2024_125505 crossref_primary_10_1016_j_isprsjprs_2024_02_001 crossref_primary_10_1109_TGRS_2023_3275135 crossref_primary_10_1016_j_jag_2023_103430 crossref_primary_10_1109_JSTARS_2024_3471899 crossref_primary_10_3390_rs15051432 crossref_primary_10_1007_s12145_023_01031_6 crossref_primary_10_1016_j_isprsjprs_2023_03_021 crossref_primary_10_1109_TGRS_2021_3135501 crossref_primary_10_3390_rs14246201 crossref_primary_10_1007_s10489_024_05359_4 crossref_primary_10_1007_s41324_024_00576_y crossref_primary_10_3390_s21196673 crossref_primary_10_1109_TGRS_2022_3217063 crossref_primary_10_1016_j_cosrev_2023_100584 crossref_primary_10_1016_j_knosys_2024_111966 crossref_primary_10_1016_j_jksuci_2022_05_020 crossref_primary_10_1109_JSTARS_2022_3228941 crossref_primary_10_1016_j_icarus_2023_115646 crossref_primary_10_1016_j_jag_2022_102970 crossref_primary_10_1016_j_ndteint_2024_103293 crossref_primary_10_1016_j_isprsjprs_2023_12_009 crossref_primary_10_1109_TAES_2022_3175186 crossref_primary_10_1109_TGRS_2022_3182425 crossref_primary_10_3390_s24072148 crossref_primary_10_1016_j_engappai_2024_108774 crossref_primary_10_1061_JCCEE5_CPENG_6263 crossref_primary_10_3390_app12073511 crossref_primary_10_1080_01431161_2022_2161856 crossref_primary_10_1109_TGRS_2023_3244992 crossref_primary_10_1049_ipr2_12642 crossref_primary_10_1007_s43762_023_00104_y crossref_primary_10_3390_rs14092061 crossref_primary_10_1016_j_isprsjprs_2024_10_006 crossref_primary_10_3390_rs14174145 crossref_primary_10_1109_TGRS_2022_3210046 crossref_primary_10_1109_TGRS_2022_3207230 crossref_primary_10_1016_j_isprsjprs_2023_01_015 crossref_primary_10_1109_TGRS_2021_3064450 crossref_primary_10_1007_s12665_024_11957_9 crossref_primary_10_1016_j_isprsjprs_2022_11_006 crossref_primary_10_1049_ell2_12650 |
Cites_doi | 10.1109/ICCVW.2019.00477 10.1109/ICME.2017.8019510 10.1109/TGRS.2007.901007 10.1109/MGRS.2013.2244672 10.1109/TIP.2018.2814210 10.1109/LGRS.2017.2786272 10.3390/rs10050800 10.1109/TGRS.2011.2161320 10.1109/CVPR.2017.241 10.1109/CVPR.2019.00168 10.1109/CVPR.2018.00266 10.1109/TGRS.2008.916211 10.1109/TGRS.2019.2918342 10.1109/TIP.2016.2542360 10.1109/CVPR.2018.00984 10.1109/TPAMI.2015.2439281 10.1007/s11263-018-1080-8 10.1109/JSTARS.2013.2292824 10.1109/TGRS.2018.2862384 10.1049/joe.2019.0322 10.1109/TIP.2019.2893530 10.1109/TIP.2018.2862629 10.1109/TGRS.2018.2860464 10.1109/TIP.2010.2046811 10.1109/TGRS.2003.812907 10.1109/LGRS.2017.2668299 10.1109/CVPR.2016.90 10.1109/MGRS.2017.2762087 10.1109/TNNLS.2017.2742528 10.1109/TGRS.2019.2927077 10.1109/TGRS.2018.2817393 10.1109/TGRS.2011.2167193 10.1109/JSTARS.2019.2950876 10.1109/IGARSS.2019.8900117 10.1109/TGRS.2020.2973370 10.1109/TGRS.2020.2979908 10.1109/TGRS.2019.2917759 10.1109/TGRS.2020.2964288 10.1109/TNNLS.2018.2885616 10.1109/ICCV.2015.409 10.1109/ACCESS.2019.2961240 10.1109/BigMM.2018.8499097 10.1109/TNNLS.2018.2798162 10.3390/rs9040305 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2020.3039534 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Computer Science |
EISSN | 1558-0644 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TGRS_2020_3039534 9292466 |
Genre | orig-research |
GrantInformation_xml | – fundername: Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University grantid: CX2020025 funderid: 10.13039/501100002663 – fundername: National Natural Science Foundation of China grantid: 61671385; 62071387; U19B2037 funderid: 10.13039/501100001809 – fundername: Science, Technology and Innovation Commission of Shenzhen Municipality grantid: JCYJ20190806160210899 funderid: 10.13039/501100010877 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c359t-c0f7e1dee6d5ceb5762624b9a190eeb6607413902008bfbee0675d81c18471c13 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Tue Aug 26 14:40:23 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Tue Jul 01 01:34:24 EDT 2025 Wed Aug 27 05:11:50 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-c0f7e1dee6d5ceb5762624b9a190eeb6607413902008bfbee0675d81c18471c13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7528-420X 0000-0002-0655-056X 0000-0002-2977-8057 0000-0003-3692-6545 |
PQID | 2605708590 |
PQPubID | 85465 |
PageCount | 15 |
ParticipantIDs | proquest_journals_2605708590 crossref_primary_10_1109_TGRS_2020_3039534 crossref_citationtrail_10_1109_TGRS_2020_3039534 ieee_primary_9292466 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref45 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 Yokoya (ref43) 2016 |
References_xml | – ident: ref13 doi: 10.1109/ICCVW.2019.00477 – ident: ref25 doi: 10.1109/ICME.2017.8019510 – ident: ref19 doi: 10.1109/TGRS.2007.901007 – ident: ref4 doi: 10.1109/MGRS.2013.2244672 – ident: ref15 doi: 10.1109/TIP.2018.2814210 – ident: ref1 doi: 10.1109/LGRS.2017.2786272 – ident: ref44 doi: 10.3390/rs10050800 – ident: ref20 doi: 10.1109/TGRS.2011.2161320 – ident: ref36 doi: 10.1109/CVPR.2017.241 – ident: ref23 doi: 10.1109/CVPR.2019.00168 – ident: ref38 doi: 10.1109/CVPR.2018.00266 – ident: ref18 doi: 10.1109/TGRS.2008.916211 – ident: ref10 doi: 10.1109/TGRS.2019.2918342 – ident: ref29 doi: 10.1109/TIP.2016.2542360 – ident: ref39 doi: 10.1109/CVPR.2018.00984 – ident: ref17 doi: 10.1109/TPAMI.2015.2439281 – year: 2016 ident: ref43 article-title: Airborne hyperspectral data over Chikusei – ident: ref30 doi: 10.1007/s11263-018-1080-8 – ident: ref14 doi: 10.1109/JSTARS.2013.2292824 – ident: ref40 doi: 10.1109/TGRS.2018.2862384 – ident: ref9 doi: 10.1049/joe.2019.0322 – ident: ref32 doi: 10.1109/TIP.2019.2893530 – ident: ref24 doi: 10.1109/TIP.2018.2862629 – ident: ref7 doi: 10.1109/TGRS.2018.2860464 – ident: ref42 doi: 10.1109/TIP.2010.2046811 – ident: ref2 doi: 10.1109/TGRS.2003.812907 – ident: ref22 doi: 10.1109/LGRS.2017.2668299 – ident: ref35 doi: 10.1109/CVPR.2016.90 – ident: ref3 doi: 10.1109/MGRS.2017.2762087 – ident: ref6 doi: 10.1109/TNNLS.2017.2742528 – ident: ref11 doi: 10.1109/TGRS.2019.2927077 – ident: ref41 doi: 10.1109/TGRS.2018.2817393 – ident: ref5 doi: 10.1109/TGRS.2011.2167193 – ident: ref8 doi: 10.1109/JSTARS.2019.2950876 – ident: ref27 doi: 10.1109/IGARSS.2019.8900117 – ident: ref16 doi: 10.1109/TGRS.2020.2973370 – ident: ref34 doi: 10.1109/TGRS.2020.2979908 – ident: ref21 doi: 10.1109/TGRS.2019.2917759 – ident: ref28 doi: 10.1109/TGRS.2020.2964288 – ident: ref33 doi: 10.1109/TNNLS.2018.2885616 – ident: ref26 doi: 10.1109/ICCV.2015.409 – ident: ref31 doi: 10.1109/ACCESS.2019.2961240 – ident: ref12 doi: 10.1109/BigMM.2018.8499097 – ident: ref37 doi: 10.1109/TNNLS.2018.2798162 – ident: ref45 doi: 10.3390/rs9040305 |
SSID | ssj0014517 |
Score | 2.4898055 |
Snippet | Unsupervised fusion-based hyperspectral imagery (HSI) super-resolution (SR) is an essential task of HSI processing, which aims to reconstruct a high-resolution... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Computer science Heuristic Hyperspectral image super-resolution (SR) Hyperspectral imaging Image reconstruction Image resolution Imagery Machine learning Neural networks Optimization pixel-aware refinement Pixels Problem solving Resolution Sparse matrices Spatial resolution Spectral analysis Statistical methods Training unsupervised deep learning |
Title | Unsupervised Recurrent Hyperspectral Imagery Super-Resolution Using Pixel-Aware Refinement |
URI | https://ieeexplore.ieee.org/document/9292466 https://www.proquest.com/docview/2605708590 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60IOjBaqtYX-zBk7h1s4_YPRZRq6CItiBelk12AqJW6QMfv96ZbFp8Id72kGQHJsnMN5n5BmAnxFyYuDB-ngtJACXiQJOJ_VRJ0TJC5soSz59fyE4vPrtJbmZgb1oLg4g2-Qyb_Gnf8osnPeZQ2T6Z8jCWchZmCbiVtVrTF4M4Ea40WvoEIkL3gimCdL97cnVNSDAkgEqyJFH8xQbZpio_bmJrXo6rcD4RrMwquW-OR6qp379xNv5X8iVYdH6m1y43xjLMYL8G1UkPB88d6RosfCIkrMGcTQjVwzrc9vrD8TNfJEMsvCuOyjOPk9ch3FqWZw5o-dNHpsB48655qM9PAeVG9mwmgnd594oPfvslHyAtYeg_LOYK9I6Puocd3_Vh8HWUpCNfB-YARYEoi0SjIoQSyjBWaU7OBKKSkt2SKA04lUIZhcgopGgJLdj0aRGtQqX_1Mc18FTOhIZSJabQBCWR4Rp5YHlcpIkh6NeAYKKZTDuScu6V8ZBZsBKkGSszY2VmTpkN2J1OeS4ZOv4aXGflTAc6vTRgc6L-zJ3hYcZI74D534L132dtwHzIxRA2ILMJldFgjFvkoozUtt2bHzFV4kg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTyMxDLaAFQIOsBQQBZadAyfEtJN5BOaIEFAeRQhaCXEZTTKOhIC26kOw--uxM2nFS6u9zSHJWHIS-3PszwA7IebCxIXx81xIAigRB5pM7KdKigMjZK4s8XzzSjba8fldcjcFe5NaGES0yWdY40_7ll909YhDZXUy5WEs5TT8ILufhGW11uTNIE6EK46WPsGI0L1hiiCtt05vbgkLhgRRSZokij9YIdtW5ctdbA3MyRI0x6KVeSWPtdFQ1fTfT6yN_yv7T1h0nqZ3WG6NZZjCTgWWxl0cPHeoK7DwjpKwArM2JVQPVuC-3RmMenyVDLDwbjguz0xOXoOQa1mg2aflz56ZBOOPd8tDfX4MKLeyZ3MRvOuHV3zyD1_yPtIShv7DYq5C--S4ddTwXScGX0dJOvR1YPZRFIiySDQqwiihDGOV5uROICop2TGJ0oCTKZRRiIxDigOhBRs_LaI1mOl0O7gOnsqZ0lCqxBSawCQyYCMfLI-LNDEE_qoQjDWTaUdTzt0ynjILV4I0Y2VmrMzMKbMKu5MpvZKj41-DV1g5k4FOL1XYGqs_c6d4kDHW22cGuGDj-1m_Ya7Ral5ml2dXF5swH3JphA3PbMHMsD_CX-SwDNW23advKZ7lkg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+Recurrent+Hyperspectral+Imagery+Super-Resolution+Using+Pixel-Aware+Refinement&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Wei%2C+Wei&rft.au=Nie%2C+Jiangtao&rft.au=Zhang%2C+Lei&rft.au=Zhang%2C+Yanning&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=60&rft.spage=1&rft_id=info:doi/10.1109%2FTGRS.2020.3039534&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |