CANintelliIDS: Detecting In-Vehicle Intrusion Attacks on a Controller Area Network Using CNN and Attention-Based GRU
Controller area network (CAN) is a communication protocol that provides reliable and productive transmission between in-vehicle nodes continuously. CAN bus protocol is broadly utilized standard channel to deliver sequential communications between electronic control units (ECUs) due to simple and rel...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 8; no. 2; pp. 1456 - 1466 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4697 2334-329X |
DOI | 10.1109/TNSE.2021.3059881 |
Cover
Loading…
Abstract | Controller area network (CAN) is a communication protocol that provides reliable and productive transmission between in-vehicle nodes continuously. CAN bus protocol is broadly utilized standard channel to deliver sequential communications between electronic control units (ECUs) due to simple and reliable in-vehicle communication. Existing studies report how easily an attack can be performed on the CAN bus of in-vehicle due to weak security mechanisms that could lead to system malfunctions. Hence the security of communications inside a vehicle is a latent problem. In this paper, we propose a novel approach named CANintelliIDS, for vehicle intrusion attack detection on the CAN bus. CANintelliIDS is based on a combination of convolutional neural network (CNN) and attention-based gated recurrent unit (GRU) model to detect single intrusion attacks as well as mixed intrusion attacks on a CAN bus. The proposed CANintelliIDS model is evaluated extensively and it achieved a performance gain of 10.79% on test intrusion attacks over existing approaches. |
---|---|
AbstractList | Controller area network (CAN) is a communication protocol that provides reliable and productive transmission between in-vehicle nodes continuously. CAN bus protocol is broadly utilized standard channel to deliver sequential communications between electronic control units (ECUs) due to simple and reliable in-vehicle communication. Existing studies report how easily an attack can be performed on the CAN bus of in-vehicle due to weak security mechanisms that could lead to system malfunctions. Hence the security of communications inside a vehicle is a latent problem. In this paper, we propose a novel approach named CANintelliIDS, for vehicle intrusion attack detection on the CAN bus. CANintelliIDS is based on a combination of convolutional neural network (CNN) and attention-based gated recurrent unit (GRU) model to detect single intrusion attacks as well as mixed intrusion attacks on a CAN bus. The proposed CANintelliIDS model is evaluated extensively and it achieved a performance gain of 10.79% on test intrusion attacks over existing approaches. |
Author | Javed, Abdul Rehman Alazab, Mamoun Khan, Mohib Ullah Rehman, Saif ur G, Thippa Reddy |
Author_xml | – sequence: 1 givenname: Abdul Rehman orcidid: 0000-0002-0570-1813 surname: Javed fullname: Javed, Abdul Rehman email: abdulrehman.cs@au.edu.pk organization: Department of Cyber Security, Air University, Islamabad, Pakistan – sequence: 2 givenname: Saif ur orcidid: 0000-0002-1324-1693 surname: Rehman fullname: Rehman, Saif ur email: 181065@students.au.edu.pk organization: Faculty of Computing and AI, Air University, Islamabad, Pakistan – sequence: 3 givenname: Mohib Ullah orcidid: 0000-0002-5557-8884 surname: Khan fullname: Khan, Mohib Ullah email: mohib_khn@outlook.com organization: National University of Computer and Emerging Sciences, Islamabad, Pakistan – sequence: 4 givenname: Mamoun orcidid: 0000-0002-1928-3704 surname: Alazab fullname: Alazab, Mamoun email: alazab.m@ieee.org organization: College of Engineering, IT, and Environment, Charles Darwin University, Casuarina, Northern Territory, Australia – sequence: 5 givenname: Thippa Reddy orcidid: 0000-0003-0097-801X surname: G fullname: G, Thippa Reddy email: thippareddy.g@vit.ac.in organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India |
BookMark | eNp9kE9LAzEQxYMoWLUfQLwEPG9NMvsv3uqqtSArqBVvS5pONe2a1SRF_PZmqXjw4Gkew_vN8N4B2bWdRUKOORtxzuTZY_1wNRJM8BGwTJYl3yEDAZAmIOTzbq9FkaS5LPbJ0PsVY4yLMgeAAQnVuDY2YNua6eXDOb3EgDoY-0KnNnnCV6NbjDK4jTedpeMQlF57GqWiVRf3Xduio2OHitYYPju3pjPf81VdU2UXPYI2RDi5UB4XdHI_OyJ7S9V6HP7MQzK7vnqsbpLbu8m0Gt8mGjIZEs2QQyrzsogh5yrlKoYrmNQshSzThciBY7rMFiD4gvFcgGblHPKCp6WUTMIhOd3efXfdxwZ9aFbdxtn4shFZ9JR5tEUX37q067x3uGzenXlT7qvhrOn7bfp-m77f5qffyBR_GG2C6lMGp0z7L3myJQ0i_n6SMXAGJXwDNiWHFQ |
CODEN | ITNSD5 |
CitedBy_id | crossref_primary_10_1007_s11042_023_17292_8 crossref_primary_10_1109_MVT_2022_3219239 crossref_primary_10_1145_3551893 crossref_primary_10_3390_app14135487 crossref_primary_10_3390_s22124394 crossref_primary_10_1109_JIOT_2023_3324543 crossref_primary_10_1109_TGCN_2022_3157591 crossref_primary_10_1016_j_comcom_2022_08_015 crossref_primary_10_1016_j_asoc_2023_110279 crossref_primary_10_1016_j_vehcom_2022_100565 crossref_primary_10_1371_journal_pone_0253200 crossref_primary_10_1049_pel2_12750 crossref_primary_10_1109_ACCESS_2022_3172304 crossref_primary_10_1109_JIOT_2024_3397665 crossref_primary_10_1016_j_knosys_2024_112563 crossref_primary_10_1016_j_vehcom_2024_100845 crossref_primary_10_1080_23307706_2022_2141358 crossref_primary_10_1155_2021_4700204 crossref_primary_10_1016_j_future_2025_107779 crossref_primary_10_3390_s24206528 crossref_primary_10_1016_j_hcc_2024_100207 crossref_primary_10_3390_s24186035 crossref_primary_10_3390_electronics11213428 crossref_primary_10_1007_s42979_023_02337_4 crossref_primary_10_3390_electronics11071072 crossref_primary_10_1016_j_cose_2024_103991 crossref_primary_10_1109_TITS_2022_3180928 crossref_primary_10_1109_TITS_2024_3478371 crossref_primary_10_3390_electronics11233934 crossref_primary_10_1155_2022_8266347 crossref_primary_10_1155_2022_9149164 crossref_primary_10_3390_technologies11050117 crossref_primary_10_3390_electronics11010016 crossref_primary_10_1155_2021_9070182 crossref_primary_10_1016_j_compeleceng_2022_108410 crossref_primary_10_1109_ACCESS_2023_3339192 crossref_primary_10_32604_cmc_2023_029999 crossref_primary_10_3390_su15129661 crossref_primary_10_1109_TII_2022_3142030 crossref_primary_10_1007_s00500_022_07508_8 crossref_primary_10_1016_j_simpat_2024_103040 crossref_primary_10_1155_2021_7147940 crossref_primary_10_1109_TITS_2024_3351438 crossref_primary_10_1007_s12083_024_01679_x crossref_primary_10_1142_S0129065724500242 crossref_primary_10_1016_j_vehcom_2024_100865 crossref_primary_10_3390_math10173188 crossref_primary_10_1109_OJCOMS_2023_3313352 crossref_primary_10_1049_els2_12069 crossref_primary_10_1007_s40747_022_00739_0 crossref_primary_10_1109_ACCESS_2024_3384528 crossref_primary_10_1155_2022_9273233 crossref_primary_10_1155_2022_9440886 crossref_primary_10_1007_s00500_024_10313_0 crossref_primary_10_1155_2021_3904273 crossref_primary_10_32604_csse_2022_023321 crossref_primary_10_1016_j_cose_2024_104067 crossref_primary_10_1016_j_ast_2024_108954 crossref_primary_10_32604_cmc_2022_031303 crossref_primary_10_1109_JIOT_2024_3448505 crossref_primary_10_1016_j_vehcom_2022_100551 crossref_primary_10_7717_peerj_cs_1648 crossref_primary_10_1007_s11042_022_12272_w crossref_primary_10_1016_j_compeleceng_2025_110209 crossref_primary_10_1007_s11042_023_16110_5 crossref_primary_10_1109_TVT_2024_3413849 crossref_primary_10_3390_app13169374 crossref_primary_10_1007_s11277_022_09781_0 crossref_primary_10_1007_s11227_023_05261_9 crossref_primary_10_1016_j_resourpol_2022_103212 crossref_primary_10_1109_MCE_2021_3116923 crossref_primary_10_1109_TCE_2024_3410536 crossref_primary_10_1109_TGCN_2022_3165692 crossref_primary_10_1016_j_cose_2024_104076 crossref_primary_10_1007_s11277_021_08781_w crossref_primary_10_1109_TITS_2022_3196466 crossref_primary_10_1016_j_geoen_2023_211715 crossref_primary_10_1109_JIOT_2021_3135789 crossref_primary_10_1109_TII_2022_3157727 crossref_primary_10_1109_ACCESS_2022_3214506 crossref_primary_10_1109_TEM_2021_3098463 crossref_primary_10_1109_OJVT_2024_3422253 crossref_primary_10_1016_j_vehcom_2022_100520 crossref_primary_10_32604_cmc_2023_026952 crossref_primary_10_1007_s10922_023_09781_w crossref_primary_10_23919_ICN_2024_0021 crossref_primary_10_1109_TITS_2023_3296002 crossref_primary_10_1109_TGCN_2022_3144641 crossref_primary_10_1016_j_cose_2024_103712 crossref_primary_10_1007_s40747_022_00829_z crossref_primary_10_1109_TITS_2022_3204068 crossref_primary_10_3390_electronics13183729 crossref_primary_10_32604_cmc_2023_032795 crossref_primary_10_1109_TGCN_2022_3151716 crossref_primary_10_1111_exsy_13103 crossref_primary_10_1109_TNSM_2024_3394842 crossref_primary_10_1016_j_jnlssr_2023_12_004 crossref_primary_10_1109_TITS_2023_3286611 crossref_primary_10_1016_j_asr_2024_08_054 crossref_primary_10_7717_peerj_cs_714 crossref_primary_10_1016_j_jpdc_2022_01_030 crossref_primary_10_1016_j_vehcom_2023_100639 crossref_primary_10_1016_j_future_2022_10_020 crossref_primary_10_3390_s23084086 crossref_primary_10_1109_TVT_2021_3106940 crossref_primary_10_1142_S0218126623300015 crossref_primary_10_1007_s11036_023_02182_y crossref_primary_10_1007_s11277_021_09040_8 crossref_primary_10_3390_electronics11234014 crossref_primary_10_1371_journal_pone_0279649 crossref_primary_10_3390_app13106251 crossref_primary_10_1109_ACCESS_2022_3142508 crossref_primary_10_1109_TNSM_2022_3202801 crossref_primary_10_3390_electronics11233845 crossref_primary_10_1109_TITS_2021_3095095 crossref_primary_10_1016_j_comnet_2025_111157 crossref_primary_10_1155_2024_1041791 crossref_primary_10_1109_TITS_2021_3113638 crossref_primary_10_1111_exsy_13072 crossref_primary_10_3390_s23083836 crossref_primary_10_1109_TIFS_2023_3327026 crossref_primary_10_3390_electronics14030598 crossref_primary_10_3390_electronics11142180 crossref_primary_10_3390_electronics11142183 crossref_primary_10_1109_TIFS_2021_3098162 crossref_primary_10_1089_big_2021_0268 crossref_primary_10_1016_j_jii_2025_100794 crossref_primary_10_1155_2022_2793998 crossref_primary_10_3390_electronics13050919 crossref_primary_10_32604_cmc_2024_054007 crossref_primary_10_32604_cmc_2024_053037 crossref_primary_10_1109_TVT_2024_3438929 crossref_primary_10_1109_ACCESS_2021_3138137 crossref_primary_10_1145_3460392 crossref_primary_10_3233_JCS_230027 crossref_primary_10_1109_TNSE_2022_3191601 crossref_primary_10_1111_exsy_13481 crossref_primary_10_1186_s42400_023_00195_4 crossref_primary_10_32604_iasc_2023_039992 crossref_primary_10_3390_electronics11203376 crossref_primary_10_1016_j_vehcom_2023_100652 crossref_primary_10_3390_s22239434 crossref_primary_10_1007_s12083_023_01508_7 crossref_primary_10_1007_s00521_023_08233_5 crossref_primary_10_1016_j_procs_2024_06_013 crossref_primary_10_1016_j_teler_2024_100130 |
Cites_doi | 10.1109/STA.2017.8314877 10.1109/ICOIN.2016.7427089 10.1186/s13638-019-1484-3 10.1016/j.energy.2020.117081 10.3390/electronics9091533 10.1109/ICDM.2008.17 10.1109/TIFS.2018.2812149 10.1109/TBDATA.2017.2723570 10.1109/SURV.2012.071812.00124 10.1109/DSAA.2016.20 10.1109/TITS.2019.2908074 10.1155/2018/1728303 10.1201/9780849380273.ch4 10.1109/TITS.2014.2351612 10.24963/ijcai.2017/366 10.1007/978-3-642-04468-7_13 10.1016/j.vehcom.2019.100198 10.1109/PST.2017.00017 10.1109/ICCVE45908.2019.8965028 10.1145/3064814.3064816 10.1109/MNET.2017.1600257 10.1109/ICC.2016.7511098 10.1109/MDAT.2019.2899062 10.1109/TVT.2018.2810232 10.1109/TC.2020.3015584 10.1109/GCCE.2018.8574820 10.1016/j.comnet.2020.107138 10.1145/3341105.3373868 10.1109/RTSS.2018.00030 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNSE.2021.3059881 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2334-329X |
EndPage | 1466 |
ExternalDocumentID | 10_1109_TNSE_2021_3059881 9359538 |
Genre | orig-research |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-c0e1349687109ba41a598709c04355c72631e4f5d321d01623c08b36714899093 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Mon Jun 30 09:39:59 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Tue Jul 01 03:10:43 EDT 2025 Wed Aug 27 02:26:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-c0e1349687109ba41a598709c04355c72631e4f5d321d01623c08b36714899093 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5557-8884 0000-0002-1324-1693 0000-0002-0570-1813 0000-0002-1928-3704 0000-0003-0097-801X |
PQID | 2548986990 |
PQPubID | 2040409 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2548986990 crossref_primary_10_1109_TNSE_2021_3059881 crossref_citationtrail_10_1109_TNSE_2021_3059881 ieee_primary_9359538 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref36 ref14 ref30 ref33 ref11 ref32 (ref2) 2020 ref17 ref19 ref18 galloway (ref4) 2012; 15 niu (ref25) 2020; 196 chorowski (ref34) 2015 ref24 ref23 ref26 k (ref1) 1999; 1 ref20 ref22 manevitz (ref35) 2001; 2 tariq (ref10) 2018 ref21 abadi (ref31) 2016 ref28 ref27 ref29 ref8 ref7 ref9 ref3 ref6 guo (ref16) 2020 ref5 |
References_xml | – ident: ref21 doi: 10.1109/STA.2017.8314877 – ident: ref5 doi: 10.1109/ICOIN.2016.7427089 – ident: ref7 doi: 10.1186/s13638-019-1484-3 – start-page: p. 115841 year: 2020 ident: ref16 article-title: Attention-based deep learning for network intrusion detection publication-title: Proc Int Conf Image Video Process Artif Intelli – start-page: 577 year: 2015 ident: ref34 article-title: Attention-based models for speech recognition publication-title: Adv Neural Inf Process Syst – volume: 196 year: 2020 ident: ref25 article-title: Wind power forecasting using attention-based gated recurrent unit network publication-title: Energy doi: 10.1016/j.energy.2020.117081 – ident: ref15 doi: 10.3390/electronics9091533 – ident: ref36 doi: 10.1109/ICDM.2008.17 – ident: ref22 doi: 10.1109/TIFS.2018.2812149 – ident: ref27 doi: 10.1109/TBDATA.2017.2723570 – volume: 15 start-page: 860 year: 2012 ident: ref4 article-title: Introduction to industrial control networks publication-title: IEEE Commun Surv Tut doi: 10.1109/SURV.2012.071812.00124 – ident: ref18 doi: 10.1109/DSAA.2016.20 – ident: ref17 doi: 10.1109/TITS.2019.2908074 – ident: ref28 doi: 10.1155/2018/1728303 – start-page: 265 year: 2016 ident: ref31 article-title: Tensorflow: A system for large-scale machine learning publication-title: Proc 12th USENIX Symp Operating Syst Des Implementation – ident: ref3 doi: 10.1201/9780849380273.ch4 – ident: ref8 doi: 10.1109/TITS.2014.2351612 – ident: ref33 doi: 10.24963/ijcai.2017/366 – ident: ref9 doi: 10.1007/978-3-642-04468-7_13 – ident: ref26 doi: 10.1016/j.vehcom.2019.100198 – ident: ref6 doi: 10.1109/PST.2017.00017 – ident: ref13 doi: 10.1109/ICCVE45908.2019.8965028 – year: 2020 ident: ref2 article-title: Controller area network (Can Bus – ident: ref20 doi: 10.1145/3064814.3064816 – ident: ref23 doi: 10.1109/MNET.2017.1600257 – volume: 1 start-page: 1 year: 1999 ident: ref1 article-title: Controller area network (can) basics publication-title: Microchip Technology Inc – ident: ref11 doi: 10.1109/ICC.2016.7511098 – ident: ref12 doi: 10.1109/MDAT.2019.2899062 – ident: ref14 doi: 10.1109/TVT.2018.2810232 – ident: ref29 doi: 10.1109/TC.2020.3015584 – volume: 2 start-page: 139 year: 2001 ident: ref35 article-title: One-class SVMS for document classification publication-title: J Mach Learn Res – ident: ref32 doi: 10.1109/GCCE.2018.8574820 – ident: ref30 doi: 10.1016/j.comnet.2020.107138 – ident: ref19 doi: 10.1145/3341105.3373868 – ident: ref24 doi: 10.1109/RTSS.2018.00030 – start-page: 39 year: 2018 ident: ref10 article-title: Detecting in-vehicle can message attacks using heuristics and rnns publication-title: Proc Int Workshop Inf Oper Technol Secur Syst |
SSID | ssj0001286333 |
Score | 2.5920959 |
Snippet | Controller area network (CAN) is a communication protocol that provides reliable and productive transmission between in-vehicle nodes continuously. CAN bus... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1456 |
SubjectTerms | Artificial neural networks Control equipment Controller area network Controllers cyberattacks Electronic control Electronic mail in - vehicle network (IVN) security In vehicle Intrusion Intrusion detection Logic gates Malfunctions Performance evaluation Protocols Security security protocols Testing |
Title | CANintelliIDS: Detecting In-Vehicle Intrusion Attacks on a Controller Area Network Using CNN and Attention-Based GRU |
URI | https://ieeexplore.ieee.org/document/9359538 https://www.proquest.com/docview/2548986990 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLZgJzjwRoyXcuCEyGiaPlJuYwwYEj0AQ9yqNvUEAhUE3YVfj5N0Ey8hbpEap2m_tLbjzw7AHnk9QRBizFGWyAPSabzI84LrUqiRCHwMbZ2CyzQ6HwYXd-HdDBxMc2EQ0ZLPsGOaNpZfPuux2So7tFmkUs3CLDluLlfr036KiqSUTeBSeMnhTXrdJwfQFx1a04lS4ovqsWep_PgBW61yugiXk_k4MsljZ1wXHf3-rVTjfye8BAuNecm6bj0swwxWKzD_qejgKtS9bvrgCnEOTq6P2AmaOAJdYoOK3-K9EaSmScYgzFi3rk0aPqNmznqO2P6Er3QLzFnqSOTMEg9YL01ZXpVGxJEo-THpyJKdXQ3XYHjav-md8-bsBa5pzjXXHprChZEyXM0iD0ROrzD2Eu2RfRXq2I-kwGAUltIXJZmNvtSeKmQUk3tFCi6R69CqnivcAKaLhIw8TJAGIYkg9zEymUNePBoVoYja4E1gyXRTmNycj_GUWQfFSzKDZGaQzBok27A_FXlxVTn-6rxqkJl2bEBpw_YE-6z5bt8ycpdVoiJ6gs3fpbZgzoztuDvb0CIwcIfMkrrYtevxA-uM3MY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOACHffDQdrcsPuwJ4RLHeTh7K-XR7tIcoEXcosSZihVVQGx62V-_YzuteAlxsxRP7ORzMjOeb8YAP8jrCYIQY46yRB6QTuNFnhdcl0JNROBjaOsUDNOoPw5-XYfXS3CwyIVBREs-w45p2lh-eadnZqvs0GaRSrUMq6FJxnXZWo92VFQkpWxCl8JLDkfp5Qm5gL7o0KpOlBJPlI89TeXFL9jqldOPMJzPyNFJbjuzuujof8-KNb53yp_gQ2Ngsq5bEZ9hCatN2HhUdnAL6l43_eNKcQ6OL3-yYzSRBLrEBhW_whsjSE2TjkGosW5dm0R8Rs2c9Ry1fYoPNATmLHU0cmapB6yXpiyvSiPiaJT8iLRkyc4uxtswPj0Z9fq8OX2Ba5pzzbWHpnRhpAxbs8gDkdMrjL1Ee2RhhTr2IykwmISl9EVJhqMvtacKGcXkYJGKS-QOrFR3FX4BpouEzDxMkG5CEkHuY2Ryh7x4MilCEbXAm8OS6aY0uTkhY5pZF8VLMoNkZpDMGiRbsL8QuXd1Od7qvGWQWXRsQGlBe4591ny5fzNymFWiInqCr69L7cFafzQ8z84H6e9vsG7GcUyeNqwQMLhLRkpdfLdr8z-YAeAO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CANintelliIDS%3A+Detecting+In-Vehicle+Intrusion+Attacks+on+a+Controller+Area+Network+Using+CNN+and+Attention-Based+GRU&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Javed%2C+Abdul+Rehman&rft.au=Rehman%2C+Saif+ur&rft.au=Khan%2C+Mohib+Ullah&rft.au=Alazab%2C+Mamoun&rft.date=2021-04-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=8&rft.issue=2&rft.spage=1456&rft.epage=1466&rft_id=info:doi/10.1109%2FTNSE.2021.3059881&rft.externalDocID=9359538 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |