Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Convergence Analysis
In this paper, convergence properties are established for the newly developed discrete-time local value iteration adaptive dynamic programming (ADP) algorithm. The present local iterative ADP algorithm permits an arbitrary positive semidefinite function to initialize the algorithm. Employing a state...
Saved in:
Published in | IEEE transactions on systems, man, and cybernetics. Systems Vol. 48; no. 6; pp. 875 - 891 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2216 2168-2232 |
DOI | 10.1109/TSMC.2016.2623766 |
Cover
Loading…
Abstract | In this paper, convergence properties are established for the newly developed discrete-time local value iteration adaptive dynamic programming (ADP) algorithm. The present local iterative ADP algorithm permits an arbitrary positive semidefinite function to initialize the algorithm. Employing a state-dependent learning rate function, for the first time, the iterative value function and iterative control law can be updated in a subset of the state space instead of the whole state space, which effectively relaxes the computational burden. A new analysis method for the convergence property is developed to prove that the iterative value functions will converge to the optimum under some mild constraints. Monotonicity of the local value iteration ADP algorithm is presented, which shows that under some special conditions of the initial value function and the learning rate function, the iterative value function can monotonically converge to the optimum. Finally, three simulation examples and comparisons are given to illustrate the performance of the developed algorithm. |
---|---|
AbstractList | In this paper, convergence properties are established for the newly developed discrete-time local value iteration adaptive dynamic programming (ADP) algorithm. The present local iterative ADP algorithm permits an arbitrary positive semidefinite function to initialize the algorithm. Employing a state-dependent learning rate function, for the first time, the iterative value function and iterative control law can be updated in a subset of the state space instead of the whole state space, which effectively relaxes the computational burden. A new analysis method for the convergence property is developed to prove that the iterative value functions will converge to the optimum under some mild constraints. Monotonicity of the local value iteration ADP algorithm is presented, which shows that under some special conditions of the initial value function and the learning rate function, the iterative value function can monotonically converge to the optimum. Finally, three simulation examples and comparisons are given to illustrate the performance of the developed algorithm. |
Author | Wei, Qinglai Lin, Hanquan Lewis, Frank L. Liu, Derong Song, Ruizhuo |
Author_xml | – sequence: 1 givenname: Qinglai orcidid: 0000-0001-7002-9800 surname: Wei fullname: Wei, Qinglai email: qinglai.wei@ia.ac.cn organization: The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Frank L. surname: Lewis fullname: Lewis, Frank L. email: lewis@uta.edu organization: UTA Research Institute, The University of Texas at Arlington, Arlington, TX, USA – sequence: 3 givenname: Derong orcidid: 0000-0003-3715-4778 surname: Liu fullname: Liu, Derong email: derong@ustb.edu.cn organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 4 givenname: Ruizhuo surname: Song fullname: Song, Ruizhuo email: ruishuosong@ustb.edu.cn organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 5 givenname: Hanquan surname: Lin fullname: Lin, Hanquan email: hanquan.lin@ia.ac.cn organization: The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China |
BookMark | eNp9kE1rwkAQhpdiodb6A0ovgZ5j93uzvUnsh2BpodZrWDcTWcmH3Y2C_76xioceeppheJ9h5rlGvbqpAaFbgkeEYP0w_3xLRxQTOaKSMiXlBepTIpOYUkZ7557IKzQMYY0xJjSRDMs-WkxcsB5aiOeugmjWWFNGC1NuIZq24E3rmjoa52bTuh1Ek31tKmejD9-svKkqV68eo7Spd-BXUFuIxrUp98GFG3RZmDLA8FQH6Ov5aZ6-xrP3l2k6nsWWCd3Gy0JwYTG3tpAqzwttDaaJ4povuTZMJxwbsVTaiKIQQEmSSwmMa91NLNOKDdD9ce_GN99bCG22bra-OyJklCguqBQSdyl1TFnfhOChyKxrf19rvXFlRnB28JgdPGYHj9nJY0eSP-TGu8r4_b_M3ZFxAHDOK6U0EZz9ALg-f58 |
CODEN | ITSMFE |
CitedBy_id | crossref_primary_10_1109_TNNLS_2023_3301383 crossref_primary_10_1109_TSMC_2018_2883801 crossref_primary_10_1002_rnc_4843 crossref_primary_10_1016_j_asoc_2019_105629 crossref_primary_10_1631_FITEE_2200010 crossref_primary_10_1007_s10462_023_10497_1 crossref_primary_10_1016_j_automatica_2020_109222 crossref_primary_10_1016_j_neucom_2024_128418 crossref_primary_10_1109_TNNLS_2022_3180054 crossref_primary_10_1109_TSMC_2023_3284612 crossref_primary_10_1109_TNNLS_2023_3245630 crossref_primary_10_1109_TSMC_2017_2771516 crossref_primary_10_1109_TNNLS_2022_3178017 crossref_primary_10_1109_TCYB_2021_3090067 crossref_primary_10_1016_j_neucom_2019_03_002 crossref_primary_10_1016_j_amc_2022_127248 crossref_primary_10_1109_TCYB_2019_2926631 crossref_primary_10_1109_TNNLS_2021_3137524 crossref_primary_10_1109_TSMC_2019_2898370 crossref_primary_10_1109_TCYB_2022_3233593 crossref_primary_10_1109_TSMC_2020_3003224 crossref_primary_10_1109_TFUZZ_2023_3245294 crossref_primary_10_1016_j_oceaneng_2023_114545 crossref_primary_10_1109_TMECH_2023_3336070 crossref_primary_10_1007_s11071_024_10173_1 crossref_primary_10_1109_TNNLS_2020_3009015 crossref_primary_10_1109_TSMC_2019_2958484 crossref_primary_10_1016_j_ejor_2025_01_037 crossref_primary_10_1109_TCYB_2019_2946122 crossref_primary_10_1109_TCYB_2022_3175650 crossref_primary_10_1016_j_neucom_2023_127048 crossref_primary_10_1109_TNNLS_2021_3105646 crossref_primary_10_1016_j_neucom_2021_07_058 crossref_primary_10_1109_TCYB_2019_2906694 crossref_primary_10_1109_TSMC_2017_2770160 crossref_primary_10_1109_TCYB_2019_2926248 crossref_primary_10_1109_TSMC_2020_2981478 crossref_primary_10_1016_j_ifacol_2020_12_2237 crossref_primary_10_1109_TSMC_2018_2818263 crossref_primary_10_1016_j_neucom_2022_03_049 crossref_primary_10_1016_j_ins_2021_11_026 crossref_primary_10_1109_TCYB_2022_3158702 crossref_primary_10_1109_TASE_2023_3295576 crossref_primary_10_1109_TCYB_2020_2984952 crossref_primary_10_1109_TIE_2020_2978699 crossref_primary_10_1109_TSMC_2019_2958094 crossref_primary_10_1109_TNNLS_2016_2638863 crossref_primary_10_1002_oca_2812 crossref_primary_10_1109_TNNLS_2021_3135405 crossref_primary_10_1109_TSMC_2018_2837899 crossref_primary_10_3233_AIS_230294 crossref_primary_10_1109_TSMC_2020_3042876 crossref_primary_10_1007_s12555_019_0165_7 crossref_primary_10_1007_s00500_017_2753_x crossref_primary_10_1109_TSMC_2019_2962629 crossref_primary_10_1002_tee_22659 crossref_primary_10_1109_TNNLS_2021_3123444 crossref_primary_10_1109_TSMC_2019_2962103 crossref_primary_10_1109_ACCESS_2022_3210136 crossref_primary_10_1016_j_neucom_2023_01_060 crossref_primary_10_1109_TCSII_2024_3357493 crossref_primary_10_1002_rnc_4342 crossref_primary_10_1016_j_neucom_2020_01_082 crossref_primary_10_1016_j_neunet_2024_106364 crossref_primary_10_1109_TSMC_2023_3257871 crossref_primary_10_1109_ACCESS_2019_2917141 crossref_primary_10_1109_TFUZZ_2023_3348535 crossref_primary_10_1016_j_nahs_2023_101338 crossref_primary_10_1109_TSMC_2021_3073429 crossref_primary_10_1109_TSMC_2019_2911900 crossref_primary_10_1109_TIE_2017_2674581 crossref_primary_10_1109_TCSI_2023_3346029 crossref_primary_10_1109_TSMC_2022_3223910 crossref_primary_10_1002_oca_2834 crossref_primary_10_1109_TCYB_2025_3530951 crossref_primary_10_3390_app9091807 crossref_primary_10_3390_biomimetics8040353 crossref_primary_10_1109_TSMC_2018_2853089 crossref_primary_10_1007_s11432_023_3820_3 crossref_primary_10_1016_j_ast_2024_108972 crossref_primary_10_1016_j_phycom_2020_101240 crossref_primary_10_1002_rnc_5729 crossref_primary_10_1109_TSMC_2017_2758849 crossref_primary_10_1016_j_neucom_2017_04_008 crossref_primary_10_1109_TCYB_2021_3107801 crossref_primary_10_1109_TSMC_2020_3010121 crossref_primary_10_1109_TSMC_2018_2836194 crossref_primary_10_1016_j_automatica_2025_112168 crossref_primary_10_1109_ACCESS_2019_2962583 crossref_primary_10_1049_cth2_12520 crossref_primary_10_1109_ACCESS_2021_3051984 crossref_primary_10_1109_TCYB_2020_2979614 crossref_primary_10_1016_j_nahs_2022_101319 crossref_primary_10_1007_s00500_016_2475_5 crossref_primary_10_1109_TCSI_2024_3377641 crossref_primary_10_1016_j_engappai_2021_104443 crossref_primary_10_15377_2409_5761_2022_09_2 crossref_primary_10_1109_JAS_2024_124773 crossref_primary_10_1109_TNNLS_2017_2661865 crossref_primary_10_1007_s10462_017_9603_1 crossref_primary_10_3390_math10244701 crossref_primary_10_1109_TIE_2017_2650872 crossref_primary_10_1002_oca_2735 crossref_primary_10_1109_TSMC_2021_3113357 crossref_primary_10_1002_rnc_6213 crossref_primary_10_1109_TCYB_2018_2823199 crossref_primary_10_1109_TSMC_2021_3089944 crossref_primary_10_1016_j_sysconle_2024_105819 crossref_primary_10_1016_j_neucom_2018_10_072 crossref_primary_10_1109_TSMC_2017_2748964 crossref_primary_10_3390_e25121570 crossref_primary_10_1002_oca_3142 crossref_primary_10_1109_TSMC_2020_3032622 crossref_primary_10_1016_j_neucom_2020_02_078 crossref_primary_10_1109_TCYB_2019_2927471 crossref_primary_10_1109_TIE_2020_3001849 crossref_primary_10_1109_TSMC_2018_2853091 crossref_primary_10_1109_TSMC_2020_2966631 crossref_primary_10_1049_cth2_12663 crossref_primary_10_1016_j_neucom_2024_128370 crossref_primary_10_1109_TSMC_2018_2861826 |
Cites_doi | 10.1109/TNNLS.2015.2464080 10.1109/TASE.2014.2303139 10.1109/TSMCB.2008.920269 10.1109/TCYB.2015.2421338 10.1109/TFUZZ.2014.2310238 10.1109/TNNLS.2012.2227339 10.1109/TCYB.2014.2354377 10.1109/TCYB.2016.2586082 10.1007/s11432-015-5462-z 10.1109/TNNLS.2014.2329942 10.1109/TSMC.2014.2301140 10.1109/MCS.2012.2214134 10.1109/TNNLS.2016.2638863 10.1109/TCYB.2014.2350511 10.1016/j.neucom.2012.11.021 10.1109/JAS.2016.7510262 10.1109/TASE.2013.2284545 10.1109/TNNLS.2015.2399020 10.1109/TNNLS.2014.2315646 10.1109/TNNLS.2015.2401334 10.1049/ip-cta:20050094 10.1109/TASE.2013.2280974 10.1109/TCYB.2015.2494007 10.1109/TNNLS.2016.2582849 10.1109/TIE.2014.2388198 10.1109/TNNLS.2014.2306201 10.1109/TSMC.2015.2422267 10.1109/TSMC.2013.2295351 10.1049/iet-cta.2012.0486 10.1109/TNNLS.2014.2360724 10.1016/j.automatica.2014.10.056 10.1007/s11432-013-4954-y 10.1109/TIE.2014.2301770 10.1109/TFUZZ.2015.2418000 10.1109/TSMCB.2012.2216523 10.7551/mitpress/4939.003.0007 10.1109/72.914523 10.1109/TSMCB.2008.926614 10.1109/TSMC.2015.2391258 10.1109/TCYB.2016.2542923 10.1016/j.sysconle.2004.05.008 10.1109/TAC.2015.2414811 10.1109/JAS.2016.7510073 10.1109/TNNLS.2014.2358227 10.1109/TIE.2014.2361485 10.1109/TSMCC.2002.801727 10.1109/TAC.2006.878720 10.1109/TNNLS.2014.2315622 10.1109/TSMC.2015.2417510 10.1109/TCYB.2015.2492242 10.1109/TNNLS.2013.2281663 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
DOI | 10.1109/TSMC.2016.2623766 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-2232 |
EndPage | 891 |
ExternalDocumentID | 10_1109_TSMC_2016_2623766 7779154 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: FRF-TP-15-056A3 – fundername: National Natural Science Foundation of China grantid: 61233001; 61273140; 61374105; 61503379; 61304079; 61673054; 61533017; U1501251 funderid: 10.13039/501100001809 – fundername: Open Research Project from SKLMCCS grantid: 20150104 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-bf545c04ccf67ddf9ca0287494b49a39840a5b79a5ff5e218d66e34999a5c3973 |
IEDL.DBID | RIE |
ISSN | 2168-2216 |
IngestDate | Sun Jun 29 16:31:46 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Tue Jul 01 02:29:05 EDT 2025 Wed Aug 27 06:31:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-bf545c04ccf67ddf9ca0287494b49a39840a5b79a5ff5e218d66e34999a5c3973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7002-9800 0000-0003-3715-4778 |
PQID | 2174526560 |
PQPubID | 75739 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2174526560 ieee_primary_7779154 crossref_primary_10_1109_TSMC_2016_2623766 crossref_citationtrail_10_1109_TSMC_2016_2623766 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on systems, man, and cybernetics. Systems |
PublicationTitleAbbrev | TSMC |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref54 ref10 ref17 ref16 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 bertsekas (ref44) 2007 ref43 ref49 ref8 ref7 werbos (ref4) 1977; 22 ref9 ref3 ref6 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 liu (ref28) 2013; 43 ref2 ref1 ref39 ref38 bertsekas (ref22) 1996 ref24 ref23 ref26 ref25 ref20 liu (ref19) 2014; 25 werbos (ref5) 1991 ref21 ref27 ref29 |
References_xml | – ident: ref10 doi: 10.1109/TNNLS.2015.2464080 – ident: ref20 doi: 10.1109/TASE.2014.2303139 – volume: 22 start-page: 25 year: 1977 ident: ref4 article-title: Advanced forecasting methods for global crisis warning and models of intelligence publication-title: General Systems Yearbook – ident: ref26 doi: 10.1109/TSMCB.2008.920269 – ident: ref16 doi: 10.1109/TCYB.2015.2421338 – ident: ref17 doi: 10.1109/TFUZZ.2014.2310238 – ident: ref30 doi: 10.1109/TNNLS.2012.2227339 – ident: ref27 doi: 10.1109/TCYB.2014.2354377 – ident: ref12 doi: 10.1109/TCYB.2016.2586082 – ident: ref41 doi: 10.1007/s11432-015-5462-z – ident: ref40 doi: 10.1109/TNNLS.2014.2329942 – ident: ref3 doi: 10.1109/TSMC.2014.2301140 – ident: ref14 doi: 10.1109/MCS.2012.2214134 – ident: ref34 doi: 10.1109/TNNLS.2016.2638863 – ident: ref37 doi: 10.1109/TCYB.2014.2350511 – ident: ref35 doi: 10.1016/j.neucom.2012.11.021 – ident: ref7 doi: 10.1109/JAS.2016.7510262 – ident: ref48 doi: 10.1109/TASE.2013.2284545 – ident: ref38 doi: 10.1109/TNNLS.2015.2399020 – ident: ref31 doi: 10.1109/TNNLS.2014.2315646 – ident: ref32 doi: 10.1109/TNNLS.2015.2401334 – ident: ref25 doi: 10.1049/ip-cta:20050094 – ident: ref13 doi: 10.1109/TASE.2013.2280974 – ident: ref9 doi: 10.1109/TCYB.2015.2494007 – ident: ref39 doi: 10.1109/TNNLS.2016.2582849 – ident: ref47 doi: 10.1109/TIE.2014.2388198 – ident: ref18 doi: 10.1109/TNNLS.2014.2306201 – ident: ref1 doi: 10.1109/TSMC.2015.2422267 – ident: ref21 doi: 10.1109/TSMC.2013.2295351 – ident: ref49 doi: 10.1049/iet-cta.2012.0486 – year: 1996 ident: ref22 publication-title: Neuro-Dynamic Programming – ident: ref43 doi: 10.1109/TNNLS.2014.2360724 – ident: ref54 doi: 10.1016/j.automatica.2014.10.056 – ident: ref42 doi: 10.1007/s11432-013-4954-y – ident: ref33 doi: 10.1109/TIE.2014.2301770 – ident: ref8 doi: 10.1109/TFUZZ.2015.2418000 – volume: 43 start-page: 779 year: 2013 ident: ref28 article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2216523 – start-page: 67 year: 1991 ident: ref5 article-title: A menu of designs for reinforcement learning over time publication-title: Neural Networks for Control doi: 10.7551/mitpress/4939.003.0007 – ident: ref52 doi: 10.1109/72.914523 – ident: ref23 doi: 10.1109/TSMCB.2008.926614 – ident: ref2 doi: 10.1109/TSMC.2015.2391258 – ident: ref11 doi: 10.1109/TCYB.2016.2542923 – ident: ref53 doi: 10.1016/j.sysconle.2004.05.008 – ident: ref45 doi: 10.1109/TAC.2015.2414811 – ident: ref6 doi: 10.1109/JAS.2016.7510073 – year: 2007 ident: ref44 publication-title: Dynamic Programming and Optimal Control – ident: ref36 doi: 10.1109/TNNLS.2014.2358227 – ident: ref46 doi: 10.1109/TIE.2014.2361485 – ident: ref15 doi: 10.1109/TSMCC.2002.801727 – ident: ref24 doi: 10.1109/TAC.2006.878720 – ident: ref29 doi: 10.1109/TNNLS.2014.2315622 – ident: ref51 doi: 10.1109/TSMC.2015.2417510 – ident: ref50 doi: 10.1109/TCYB.2015.2492242 – volume: 25 start-page: 621 year: 2014 ident: ref19 article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2281663 |
SSID | ssj0001286306 |
Score | 2.4538124 |
Snippet | In this paper, convergence properties are established for the newly developed discrete-time local value iteration adaptive dynamic programming (ADP) algorithm.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 875 |
SubjectTerms | Adaptive algorithms Adaptive critic designs adaptive dynamic programming (ADP) Aerospace electronics Algorithms approximate dynamic programming Approximation algorithms Computer simulation Control theory Convergence Dynamic programming Iterative algorithms Iterative methods local iteration Machine learning neural networks neuro-dynamic programming Nonlinear systems Optimal control |
Title | Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Convergence Analysis |
URI | https://ieeexplore.ieee.org/document/7779154 https://www.proquest.com/docview/2174526560 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTnrwFxpRND14Mg4G27rVGwEJGjEmAuG2dF2bGBGIwsW_3ve6QfBHjJdlh7Vp-rq-99rvfR_AhTaJiYTxHI6-3fHDpnIilXCHG6m5NKYRWvm2_gPvDf27cTAuwNW6FkZrbcFnukav9i4_naklHZXVwzAU6PKLUMTELavV2jhPibhnpTSbDY7Gx2d-idlwRX3w1G8TjovXmpxwIPyLG7K6Kj82Y-thurvQX40tA5a81JaLpKY-vtE2_nfwe7CTh5qsla2NfSjo6QFsbxAQlmHUecZtA-Nmh0pB2D05NjaSk6Vmt5ZuGa3GWqmc06bIOpl6PXvMMF2v2MU1axNs3VZwarZiODmEYfdm0O45udKCo7xALJzEYCClXF8pw8M0NUJJl4jwhZ_4QnoCs0AZJKGQgTGBxqgg5Vx7lCzJQGFE4x1BaTqb6mNgmPAKhVlQI5XcF24iPJIzNhEXXpA2Q10BdzXxscppyEkNYxLbdMQVMdkqJlvFua0qcLluMs84OP76uExzv_4wn_YKVFfWjfO_9D2mdIzkAbh78nurU9jCvqMMGlaF0uJtqc8wCFkk53b1fQJp4Nc8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3ojBgBw4Ibq1a5s23KYBGrAhJLZptypNEwkxBoLtwq_HTruJlxCXqoekjewkthP7-wCOtUlNLIzvcLTtThA1lBOrlDvcSM2lMV5k6du6t7zdD66H4bAEp_NaGK21TT7TNXq1d_nZs5rSUVk9iiKBJn8BFtHuh15erfXpRCXmviXTbHgc1Y_P4hrTc0W9d99tUSYXrzU4ZYLwL4bIMqv82I6tjblcg-5sdHlqyWNtOklr6v0bcON_h78Oq4WzyZr57NiAkh5vwsonCMItGJw_4MaBnrNDxSCsQ6aNDeRoqtmVBVxGvbFmJl9oW2TnOX89u8uzup7wE2esRYnrtoZTsxnGyTb0Ly96rbZTcC04yg_FxEkNilS5gVKGR1lmhJIuQeGLIA2E9AXGgTJMIyFDY0KNfkHGufYpXJKhQp_G34Hy-Hmsd4FhyCsUxkFeJnkg3FT4RGhsYi78MGtEugLuTPCJKoDIiQ9jlNiAxBUJ6SohXSWFripwMu_ykqNw_NV4i2Q_b1iIvQLVmXaTYp2-JRSQEUEAd_d-73UES-1et5N0rm5v9mEZ_xPniWJVKE9ep_oAXZJJemhn4gfQQdqF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete-Time+Local+Value+Iteration+Adaptive+Dynamic+Programming%3A+Convergence+Analysis&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Wei%2C+Qinglai&rft.au=Lewis%2C+Frank+L&rft.au=Liu%2C+Derong&rft.au=Song%2C+Ruizhuo&rft.date=2018-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=48&rft.issue=6&rft.spage=875&rft_id=info:doi/10.1109%2FTSMC.2016.2623766&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon |