Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Convergence Analysis

In this paper, convergence properties are established for the newly developed discrete-time local value iteration adaptive dynamic programming (ADP) algorithm. The present local iterative ADP algorithm permits an arbitrary positive semidefinite function to initialize the algorithm. Employing a state...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on systems, man, and cybernetics. Systems Vol. 48; no. 6; pp. 875 - 891
Main Authors Wei, Qinglai, Lewis, Frank L., Liu, Derong, Song, Ruizhuo, Lin, Hanquan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2216
2168-2232
DOI10.1109/TSMC.2016.2623766

Cover

Loading…
Abstract In this paper, convergence properties are established for the newly developed discrete-time local value iteration adaptive dynamic programming (ADP) algorithm. The present local iterative ADP algorithm permits an arbitrary positive semidefinite function to initialize the algorithm. Employing a state-dependent learning rate function, for the first time, the iterative value function and iterative control law can be updated in a subset of the state space instead of the whole state space, which effectively relaxes the computational burden. A new analysis method for the convergence property is developed to prove that the iterative value functions will converge to the optimum under some mild constraints. Monotonicity of the local value iteration ADP algorithm is presented, which shows that under some special conditions of the initial value function and the learning rate function, the iterative value function can monotonically converge to the optimum. Finally, three simulation examples and comparisons are given to illustrate the performance of the developed algorithm.
AbstractList In this paper, convergence properties are established for the newly developed discrete-time local value iteration adaptive dynamic programming (ADP) algorithm. The present local iterative ADP algorithm permits an arbitrary positive semidefinite function to initialize the algorithm. Employing a state-dependent learning rate function, for the first time, the iterative value function and iterative control law can be updated in a subset of the state space instead of the whole state space, which effectively relaxes the computational burden. A new analysis method for the convergence property is developed to prove that the iterative value functions will converge to the optimum under some mild constraints. Monotonicity of the local value iteration ADP algorithm is presented, which shows that under some special conditions of the initial value function and the learning rate function, the iterative value function can monotonically converge to the optimum. Finally, three simulation examples and comparisons are given to illustrate the performance of the developed algorithm.
Author Wei, Qinglai
Lin, Hanquan
Lewis, Frank L.
Liu, Derong
Song, Ruizhuo
Author_xml – sequence: 1
  givenname: Qinglai
  orcidid: 0000-0001-7002-9800
  surname: Wei
  fullname: Wei, Qinglai
  email: qinglai.wei@ia.ac.cn
  organization: The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Frank L.
  surname: Lewis
  fullname: Lewis, Frank L.
  email: lewis@uta.edu
  organization: UTA Research Institute, The University of Texas at Arlington, Arlington, TX, USA
– sequence: 3
  givenname: Derong
  orcidid: 0000-0003-3715-4778
  surname: Liu
  fullname: Liu, Derong
  email: derong@ustb.edu.cn
  organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 4
  givenname: Ruizhuo
  surname: Song
  fullname: Song, Ruizhuo
  email: ruishuosong@ustb.edu.cn
  organization: School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 5
  givenname: Hanquan
  surname: Lin
  fullname: Lin, Hanquan
  email: hanquan.lin@ia.ac.cn
  organization: The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
BookMark eNp9kE1rwkAQhpdiodb6A0ovgZ5j93uzvUnsh2BpodZrWDcTWcmH3Y2C_76xioceeppheJ9h5rlGvbqpAaFbgkeEYP0w_3xLRxQTOaKSMiXlBepTIpOYUkZ7557IKzQMYY0xJjSRDMs-WkxcsB5aiOeugmjWWFNGC1NuIZq24E3rmjoa52bTuh1Ek31tKmejD9-svKkqV68eo7Spd-BXUFuIxrUp98GFG3RZmDLA8FQH6Ov5aZ6-xrP3l2k6nsWWCd3Gy0JwYTG3tpAqzwttDaaJ4povuTZMJxwbsVTaiKIQQEmSSwmMa91NLNOKDdD9ce_GN99bCG22bra-OyJklCguqBQSdyl1TFnfhOChyKxrf19rvXFlRnB28JgdPGYHj9nJY0eSP-TGu8r4_b_M3ZFxAHDOK6U0EZz9ALg-f58
CODEN ITSMFE
CitedBy_id crossref_primary_10_1109_TNNLS_2023_3301383
crossref_primary_10_1109_TSMC_2018_2883801
crossref_primary_10_1002_rnc_4843
crossref_primary_10_1016_j_asoc_2019_105629
crossref_primary_10_1631_FITEE_2200010
crossref_primary_10_1007_s10462_023_10497_1
crossref_primary_10_1016_j_automatica_2020_109222
crossref_primary_10_1016_j_neucom_2024_128418
crossref_primary_10_1109_TNNLS_2022_3180054
crossref_primary_10_1109_TSMC_2023_3284612
crossref_primary_10_1109_TNNLS_2023_3245630
crossref_primary_10_1109_TSMC_2017_2771516
crossref_primary_10_1109_TNNLS_2022_3178017
crossref_primary_10_1109_TCYB_2021_3090067
crossref_primary_10_1016_j_neucom_2019_03_002
crossref_primary_10_1016_j_amc_2022_127248
crossref_primary_10_1109_TCYB_2019_2926631
crossref_primary_10_1109_TNNLS_2021_3137524
crossref_primary_10_1109_TSMC_2019_2898370
crossref_primary_10_1109_TCYB_2022_3233593
crossref_primary_10_1109_TSMC_2020_3003224
crossref_primary_10_1109_TFUZZ_2023_3245294
crossref_primary_10_1016_j_oceaneng_2023_114545
crossref_primary_10_1109_TMECH_2023_3336070
crossref_primary_10_1007_s11071_024_10173_1
crossref_primary_10_1109_TNNLS_2020_3009015
crossref_primary_10_1109_TSMC_2019_2958484
crossref_primary_10_1016_j_ejor_2025_01_037
crossref_primary_10_1109_TCYB_2019_2946122
crossref_primary_10_1109_TCYB_2022_3175650
crossref_primary_10_1016_j_neucom_2023_127048
crossref_primary_10_1109_TNNLS_2021_3105646
crossref_primary_10_1016_j_neucom_2021_07_058
crossref_primary_10_1109_TCYB_2019_2906694
crossref_primary_10_1109_TSMC_2017_2770160
crossref_primary_10_1109_TCYB_2019_2926248
crossref_primary_10_1109_TSMC_2020_2981478
crossref_primary_10_1016_j_ifacol_2020_12_2237
crossref_primary_10_1109_TSMC_2018_2818263
crossref_primary_10_1016_j_neucom_2022_03_049
crossref_primary_10_1016_j_ins_2021_11_026
crossref_primary_10_1109_TCYB_2022_3158702
crossref_primary_10_1109_TASE_2023_3295576
crossref_primary_10_1109_TCYB_2020_2984952
crossref_primary_10_1109_TIE_2020_2978699
crossref_primary_10_1109_TSMC_2019_2958094
crossref_primary_10_1109_TNNLS_2016_2638863
crossref_primary_10_1002_oca_2812
crossref_primary_10_1109_TNNLS_2021_3135405
crossref_primary_10_1109_TSMC_2018_2837899
crossref_primary_10_3233_AIS_230294
crossref_primary_10_1109_TSMC_2020_3042876
crossref_primary_10_1007_s12555_019_0165_7
crossref_primary_10_1007_s00500_017_2753_x
crossref_primary_10_1109_TSMC_2019_2962629
crossref_primary_10_1002_tee_22659
crossref_primary_10_1109_TNNLS_2021_3123444
crossref_primary_10_1109_TSMC_2019_2962103
crossref_primary_10_1109_ACCESS_2022_3210136
crossref_primary_10_1016_j_neucom_2023_01_060
crossref_primary_10_1109_TCSII_2024_3357493
crossref_primary_10_1002_rnc_4342
crossref_primary_10_1016_j_neucom_2020_01_082
crossref_primary_10_1016_j_neunet_2024_106364
crossref_primary_10_1109_TSMC_2023_3257871
crossref_primary_10_1109_ACCESS_2019_2917141
crossref_primary_10_1109_TFUZZ_2023_3348535
crossref_primary_10_1016_j_nahs_2023_101338
crossref_primary_10_1109_TSMC_2021_3073429
crossref_primary_10_1109_TSMC_2019_2911900
crossref_primary_10_1109_TIE_2017_2674581
crossref_primary_10_1109_TCSI_2023_3346029
crossref_primary_10_1109_TSMC_2022_3223910
crossref_primary_10_1002_oca_2834
crossref_primary_10_1109_TCYB_2025_3530951
crossref_primary_10_3390_app9091807
crossref_primary_10_3390_biomimetics8040353
crossref_primary_10_1109_TSMC_2018_2853089
crossref_primary_10_1007_s11432_023_3820_3
crossref_primary_10_1016_j_ast_2024_108972
crossref_primary_10_1016_j_phycom_2020_101240
crossref_primary_10_1002_rnc_5729
crossref_primary_10_1109_TSMC_2017_2758849
crossref_primary_10_1016_j_neucom_2017_04_008
crossref_primary_10_1109_TCYB_2021_3107801
crossref_primary_10_1109_TSMC_2020_3010121
crossref_primary_10_1109_TSMC_2018_2836194
crossref_primary_10_1016_j_automatica_2025_112168
crossref_primary_10_1109_ACCESS_2019_2962583
crossref_primary_10_1049_cth2_12520
crossref_primary_10_1109_ACCESS_2021_3051984
crossref_primary_10_1109_TCYB_2020_2979614
crossref_primary_10_1016_j_nahs_2022_101319
crossref_primary_10_1007_s00500_016_2475_5
crossref_primary_10_1109_TCSI_2024_3377641
crossref_primary_10_1016_j_engappai_2021_104443
crossref_primary_10_15377_2409_5761_2022_09_2
crossref_primary_10_1109_JAS_2024_124773
crossref_primary_10_1109_TNNLS_2017_2661865
crossref_primary_10_1007_s10462_017_9603_1
crossref_primary_10_3390_math10244701
crossref_primary_10_1109_TIE_2017_2650872
crossref_primary_10_1002_oca_2735
crossref_primary_10_1109_TSMC_2021_3113357
crossref_primary_10_1002_rnc_6213
crossref_primary_10_1109_TCYB_2018_2823199
crossref_primary_10_1109_TSMC_2021_3089944
crossref_primary_10_1016_j_sysconle_2024_105819
crossref_primary_10_1016_j_neucom_2018_10_072
crossref_primary_10_1109_TSMC_2017_2748964
crossref_primary_10_3390_e25121570
crossref_primary_10_1002_oca_3142
crossref_primary_10_1109_TSMC_2020_3032622
crossref_primary_10_1016_j_neucom_2020_02_078
crossref_primary_10_1109_TCYB_2019_2927471
crossref_primary_10_1109_TIE_2020_3001849
crossref_primary_10_1109_TSMC_2018_2853091
crossref_primary_10_1109_TSMC_2020_2966631
crossref_primary_10_1049_cth2_12663
crossref_primary_10_1016_j_neucom_2024_128370
crossref_primary_10_1109_TSMC_2018_2861826
Cites_doi 10.1109/TNNLS.2015.2464080
10.1109/TASE.2014.2303139
10.1109/TSMCB.2008.920269
10.1109/TCYB.2015.2421338
10.1109/TFUZZ.2014.2310238
10.1109/TNNLS.2012.2227339
10.1109/TCYB.2014.2354377
10.1109/TCYB.2016.2586082
10.1007/s11432-015-5462-z
10.1109/TNNLS.2014.2329942
10.1109/TSMC.2014.2301140
10.1109/MCS.2012.2214134
10.1109/TNNLS.2016.2638863
10.1109/TCYB.2014.2350511
10.1016/j.neucom.2012.11.021
10.1109/JAS.2016.7510262
10.1109/TASE.2013.2284545
10.1109/TNNLS.2015.2399020
10.1109/TNNLS.2014.2315646
10.1109/TNNLS.2015.2401334
10.1049/ip-cta:20050094
10.1109/TASE.2013.2280974
10.1109/TCYB.2015.2494007
10.1109/TNNLS.2016.2582849
10.1109/TIE.2014.2388198
10.1109/TNNLS.2014.2306201
10.1109/TSMC.2015.2422267
10.1109/TSMC.2013.2295351
10.1049/iet-cta.2012.0486
10.1109/TNNLS.2014.2360724
10.1016/j.automatica.2014.10.056
10.1007/s11432-013-4954-y
10.1109/TIE.2014.2301770
10.1109/TFUZZ.2015.2418000
10.1109/TSMCB.2012.2216523
10.7551/mitpress/4939.003.0007
10.1109/72.914523
10.1109/TSMCB.2008.926614
10.1109/TSMC.2015.2391258
10.1109/TCYB.2016.2542923
10.1016/j.sysconle.2004.05.008
10.1109/TAC.2015.2414811
10.1109/JAS.2016.7510073
10.1109/TNNLS.2014.2358227
10.1109/TIE.2014.2361485
10.1109/TSMCC.2002.801727
10.1109/TAC.2006.878720
10.1109/TNNLS.2014.2315622
10.1109/TSMC.2015.2417510
10.1109/TCYB.2015.2492242
10.1109/TNNLS.2013.2281663
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
DOI 10.1109/TSMC.2016.2623766
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-2232
EndPage 891
ExternalDocumentID 10_1109_TSMC_2016_2623766
7779154
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: FRF-TP-15-056A3
– fundername: National Natural Science Foundation of China
  grantid: 61233001; 61273140; 61374105; 61503379; 61304079; 61673054; 61533017; U1501251
  funderid: 10.13039/501100001809
– fundername: Open Research Project from SKLMCCS
  grantid: 20150104
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7TB
8FD
FR3
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-bf545c04ccf67ddf9ca0287494b49a39840a5b79a5ff5e218d66e34999a5c3973
IEDL.DBID RIE
ISSN 2168-2216
IngestDate Sun Jun 29 16:31:46 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Tue Jul 01 02:29:05 EDT 2025
Wed Aug 27 06:31:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-bf545c04ccf67ddf9ca0287494b49a39840a5b79a5ff5e218d66e34999a5c3973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7002-9800
0000-0003-3715-4778
PQID 2174526560
PQPubID 75739
PageCount 17
ParticipantIDs proquest_journals_2174526560
ieee_primary_7779154
crossref_primary_10_1109_TSMC_2016_2623766
crossref_citationtrail_10_1109_TSMC_2016_2623766
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on systems, man, and cybernetics. Systems
PublicationTitleAbbrev TSMC
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref54
ref10
ref17
ref16
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
bertsekas (ref44) 2007
ref43
ref49
ref8
ref7
werbos (ref4) 1977; 22
ref9
ref3
ref6
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
liu (ref28) 2013; 43
ref2
ref1
ref39
ref38
bertsekas (ref22) 1996
ref24
ref23
ref26
ref25
ref20
liu (ref19) 2014; 25
werbos (ref5) 1991
ref21
ref27
ref29
References_xml – ident: ref10
  doi: 10.1109/TNNLS.2015.2464080
– ident: ref20
  doi: 10.1109/TASE.2014.2303139
– volume: 22
  start-page: 25
  year: 1977
  ident: ref4
  article-title: Advanced forecasting methods for global crisis warning and models of intelligence
  publication-title: General Systems Yearbook
– ident: ref26
  doi: 10.1109/TSMCB.2008.920269
– ident: ref16
  doi: 10.1109/TCYB.2015.2421338
– ident: ref17
  doi: 10.1109/TFUZZ.2014.2310238
– ident: ref30
  doi: 10.1109/TNNLS.2012.2227339
– ident: ref27
  doi: 10.1109/TCYB.2014.2354377
– ident: ref12
  doi: 10.1109/TCYB.2016.2586082
– ident: ref41
  doi: 10.1007/s11432-015-5462-z
– ident: ref40
  doi: 10.1109/TNNLS.2014.2329942
– ident: ref3
  doi: 10.1109/TSMC.2014.2301140
– ident: ref14
  doi: 10.1109/MCS.2012.2214134
– ident: ref34
  doi: 10.1109/TNNLS.2016.2638863
– ident: ref37
  doi: 10.1109/TCYB.2014.2350511
– ident: ref35
  doi: 10.1016/j.neucom.2012.11.021
– ident: ref7
  doi: 10.1109/JAS.2016.7510262
– ident: ref48
  doi: 10.1109/TASE.2013.2284545
– ident: ref38
  doi: 10.1109/TNNLS.2015.2399020
– ident: ref31
  doi: 10.1109/TNNLS.2014.2315646
– ident: ref32
  doi: 10.1109/TNNLS.2015.2401334
– ident: ref25
  doi: 10.1049/ip-cta:20050094
– ident: ref13
  doi: 10.1109/TASE.2013.2280974
– ident: ref9
  doi: 10.1109/TCYB.2015.2494007
– ident: ref39
  doi: 10.1109/TNNLS.2016.2582849
– ident: ref47
  doi: 10.1109/TIE.2014.2388198
– ident: ref18
  doi: 10.1109/TNNLS.2014.2306201
– ident: ref1
  doi: 10.1109/TSMC.2015.2422267
– ident: ref21
  doi: 10.1109/TSMC.2013.2295351
– ident: ref49
  doi: 10.1049/iet-cta.2012.0486
– year: 1996
  ident: ref22
  publication-title: Neuro-Dynamic Programming
– ident: ref43
  doi: 10.1109/TNNLS.2014.2360724
– ident: ref54
  doi: 10.1016/j.automatica.2014.10.056
– ident: ref42
  doi: 10.1007/s11432-013-4954-y
– ident: ref33
  doi: 10.1109/TIE.2014.2301770
– ident: ref8
  doi: 10.1109/TFUZZ.2015.2418000
– volume: 43
  start-page: 779
  year: 2013
  ident: ref28
  article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2216523
– start-page: 67
  year: 1991
  ident: ref5
  article-title: A menu of designs for reinforcement learning over time
  publication-title: Neural Networks for Control
  doi: 10.7551/mitpress/4939.003.0007
– ident: ref52
  doi: 10.1109/72.914523
– ident: ref23
  doi: 10.1109/TSMCB.2008.926614
– ident: ref2
  doi: 10.1109/TSMC.2015.2391258
– ident: ref11
  doi: 10.1109/TCYB.2016.2542923
– ident: ref53
  doi: 10.1016/j.sysconle.2004.05.008
– ident: ref45
  doi: 10.1109/TAC.2015.2414811
– ident: ref6
  doi: 10.1109/JAS.2016.7510073
– year: 2007
  ident: ref44
  publication-title: Dynamic Programming and Optimal Control
– ident: ref36
  doi: 10.1109/TNNLS.2014.2358227
– ident: ref46
  doi: 10.1109/TIE.2014.2361485
– ident: ref15
  doi: 10.1109/TSMCC.2002.801727
– ident: ref24
  doi: 10.1109/TAC.2006.878720
– ident: ref29
  doi: 10.1109/TNNLS.2014.2315622
– ident: ref51
  doi: 10.1109/TSMC.2015.2417510
– ident: ref50
  doi: 10.1109/TCYB.2015.2492242
– volume: 25
  start-page: 621
  year: 2014
  ident: ref19
  article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2281663
SSID ssj0001286306
Score 2.4538124
Snippet In this paper, convergence properties are established for the newly developed discrete-time local value iteration adaptive dynamic programming (ADP) algorithm....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 875
SubjectTerms Adaptive algorithms
Adaptive critic designs
adaptive dynamic programming (ADP)
Aerospace electronics
Algorithms
approximate dynamic programming
Approximation algorithms
Computer simulation
Control theory
Convergence
Dynamic programming
Iterative algorithms
Iterative methods
local iteration
Machine learning
neural networks
neuro-dynamic programming
Nonlinear systems
Optimal control
Title Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Convergence Analysis
URI https://ieeexplore.ieee.org/document/7779154
https://www.proquest.com/docview/2174526560
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH4BTnrwFxpRND14Mg4G27rVGwEJGjEmAuG2dF2bGBGIwsW_3ve6QfBHjJdlh7Vp-rq-99rvfR_AhTaJiYTxHI6-3fHDpnIilXCHG6m5NKYRWvm2_gPvDf27cTAuwNW6FkZrbcFnukav9i4_naklHZXVwzAU6PKLUMTELavV2jhPibhnpTSbDY7Gx2d-idlwRX3w1G8TjovXmpxwIPyLG7K6Kj82Y-thurvQX40tA5a81JaLpKY-vtE2_nfwe7CTh5qsla2NfSjo6QFsbxAQlmHUecZtA-Nmh0pB2D05NjaSk6Vmt5ZuGa3GWqmc06bIOpl6PXvMMF2v2MU1axNs3VZwarZiODmEYfdm0O45udKCo7xALJzEYCClXF8pw8M0NUJJl4jwhZ_4QnoCs0AZJKGQgTGBxqgg5Vx7lCzJQGFE4x1BaTqb6mNgmPAKhVlQI5XcF24iPJIzNhEXXpA2Q10BdzXxscppyEkNYxLbdMQVMdkqJlvFua0qcLluMs84OP76uExzv_4wn_YKVFfWjfO_9D2mdIzkAbh78nurU9jCvqMMGlaF0uJtqc8wCFkk53b1fQJp4Nc8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3ojBgBw4Ibq1a5s23KYBGrAhJLZptypNEwkxBoLtwq_HTruJlxCXqoekjewkthP7-wCOtUlNLIzvcLTtThA1lBOrlDvcSM2lMV5k6du6t7zdD66H4bAEp_NaGK21TT7TNXq1d_nZs5rSUVk9iiKBJn8BFtHuh15erfXpRCXmviXTbHgc1Y_P4hrTc0W9d99tUSYXrzU4ZYLwL4bIMqv82I6tjblcg-5sdHlqyWNtOklr6v0bcON_h78Oq4WzyZr57NiAkh5vwsonCMItGJw_4MaBnrNDxSCsQ6aNDeRoqtmVBVxGvbFmJl9oW2TnOX89u8uzup7wE2esRYnrtoZTsxnGyTb0Ly96rbZTcC04yg_FxEkNilS5gVKGR1lmhJIuQeGLIA2E9AXGgTJMIyFDY0KNfkHGufYpXJKhQp_G34Hy-Hmsd4FhyCsUxkFeJnkg3FT4RGhsYi78MGtEugLuTPCJKoDIiQ9jlNiAxBUJ6SohXSWFripwMu_ykqNw_NV4i2Q_b1iIvQLVmXaTYp2-JRSQEUEAd_d-73UES-1et5N0rm5v9mEZ_xPniWJVKE9ep_oAXZJJemhn4gfQQdqF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete-Time+Local+Value+Iteration+Adaptive+Dynamic+Programming%3A+Convergence+Analysis&rft.jtitle=IEEE+transactions+on+systems%2C+man%2C+and+cybernetics.+Systems&rft.au=Wei%2C+Qinglai&rft.au=Lewis%2C+Frank+L&rft.au=Liu%2C+Derong&rft.au=Song%2C+Ruizhuo&rft.date=2018-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2216&rft.eissn=2168-2232&rft.volume=48&rft.issue=6&rft.spage=875&rft_id=info:doi/10.1109%2FTSMC.2016.2623766&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2216&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2216&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2216&client=summon