A New Global ZTD Forecast Model Based on Improved LSTM Neural Network
Zenith tropospheric delay (ZTD), consisting of zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD), is a significant contributor to errors in precise positioning using the global navigation satellite system (GNSS) precise point positioning (PPP) and real-time kinematic techniques. Accurate and...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 9606 - 9614 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Zenith tropospheric delay (ZTD), consisting of zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD), is a significant contributor to errors in precise positioning using the global navigation satellite system (GNSS) precise point positioning (PPP) and real-time kinematic techniques. Accurate and timely predictions of ZTD on a global scale are crucial for enhancing GNSS positioning accuracy and expediting convergence. This study proposes an innovative global tropospheric prediction model that leverages long short-term memory (LSTM) neural networks, aiming to achieve both high precision and long-term prediction capability for ZTD. The experimental data utilized were sourced from the Vienna Mapping Functions 3-Optimized zenith total delay (ZTD) dataset. This study delves further into the analysis of ZTD residuals by extracting periodic signals. The ZTD residuals were then utilized to train a modified LSTM neural network model, enabling the prediction of global residuals. The final ZTD predictions were obtained by combining the modified LSTM ZTD residual forecast component with the ZTD periodic component. Our results demonstrate that the average root-mean-square error (RMSE) of the modified LSTM-ZTD model in 2020 was 1.44 cm. In addition, the average RMSE of the forecasted ZTD during spring, summer, autumn, and winter was found to be 1.43 cm, 1.47 cm, 1.56 cm, and 1.36 cm, respectively. Through the integration of the LSTM neural network and the ZTD periodic signal extracted using a physical algorithm, this work has successfully enhanced the accuracy and time span of ZTD forecasts on a global scale. |
---|---|
AbstractList | Zenith tropospheric delay (ZTD), consisting of zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD), is a significant contributor to errors in precise positioning using the global navigation satellite system (GNSS) precise point positioning (PPP) and real-time kinematic techniques. Accurate and timely predictions of ZTD on a global scale are crucial for enhancing GNSS positioning accuracy and expediting convergence. This study proposes an innovative global tropospheric prediction model that leverages long short-term memory (LSTM) neural networks, aiming to achieve both high precision and long-term prediction capability for ZTD. The experimental data utilized were sourced from the Vienna Mapping Functions 3-Optimized zenith total delay (ZTD) dataset. This study delves further into the analysis of ZTD residuals by extracting periodic signals. The ZTD residuals were then utilized to train a modified LSTM neural network model, enabling the prediction of global residuals. The final ZTD predictions were obtained by combining the modified LSTM ZTD residual forecast component with the ZTD periodic component. Our results demonstrate that the average root-mean-square error (RMSE) of the modified LSTM-ZTD model in 2020 was 1.44 cm. In addition, the average RMSE of the forecasted ZTD during spring, summer, autumn, and winter was found to be 1.43 cm, 1.47 cm, 1.56 cm, and 1.36 cm, respectively. Through the integration of the LSTM neural network and the ZTD periodic signal extracted using a physical algorithm, this work has successfully enhanced the accuracy and time span of ZTD forecasts on a global scale. |
Author | Yao, Yibin Tang, Feifei He, Lin Liu, Zhuoya Xu, Chaoqian Huan, Zhang Wu, Wentan Ji, Changquan |
Author_xml | – sequence: 1 givenname: Lin orcidid: 0009-0005-4817-7248 surname: He fullname: He, Lin email: hunter5288@163.com organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China – sequence: 2 givenname: Yibin orcidid: 0000-0002-7723-4601 surname: Yao fullname: Yao, Yibin email: ybyao@whu.edu.cn organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China – sequence: 3 givenname: Chaoqian orcidid: 0000-0001-8316-2600 surname: Xu fullname: Xu, Chaoqian email: cqxu@whu.edu.cn organization: Hubei Luojia Laboratory, Wuhan, China – sequence: 4 givenname: Zhang orcidid: 0009-0005-3267-1612 surname: Huan fullname: Huan, Zhang email: johnhuan@whu.edu.cn organization: China Merchants Chongqing Communications Research and Design Institute, Company Ltd., Chongqing, China – sequence: 5 givenname: Feifei surname: Tang fullname: Tang, Feifei email: fftang80@126.com organization: Chongqing Jiaotong University, Chongqing, China – sequence: 6 givenname: Changquan surname: Ji fullname: Ji, Changquan organization: Chongqing Jiaotong University, Chongqing, China – sequence: 7 givenname: Zhuoya surname: Liu fullname: Liu, Zhuoya email: liuzhuoya_scu@163.com organization: Electrical Science Institute of Guizhou Power Grid, Company Ltd., CSG, Guiyang, China – sequence: 8 givenname: Wentan surname: Wu fullname: Wu, Wentan email: 568511035@qq.com organization: Natural Resources Archives of Hebei Province, Shijiazuang, China |
BookMark | eNpNkE9PwzAMxSMEEmPwCeBQiXNHEqdpcxz_hzaQ2LhwiZLGQRtlgbQD8e0JFCFOtqz3e7bfHtlehzUScsjoiDGqTm7mi_H9fMQpFyMAxSrOtsiAs4LlrIBimwyYApUzQcUu2WvbFaWSlwoG5GKc3eJHdtUEa5rscXGeXYaItWm7bBYcNtmpadFlYZ1NXl5jeE_9dL6YJWgTE3CL3UeIz_tkx5umxYPfOiQPlxeLs-t8enc1ORtP8xoK1eXWg1PMcBBUQQXeKSuqUoA3FaC0taPoC8ZkaeqSgUBhrDPGcclR-DKNhmTS-7pgVvo1Ll9M_NTBLPXPIMQnbWK3rBvUFrxUHC2vuRSSUiXRCWM89dY6amXyOu690ltvG2w7vQqbuE7na6AFcFUxrpIKelUdQ9tG9H9bGdXf2es-e_2dvf7NPlFHPbVExH9EQWUhKXwBNmCAGw |
CODEN | IJSTHZ |
Cites_doi | 10.3390/s20113167 10.1007/s10291-013-0316-x 10.3390/s20082343 10.1016/S1464-1895(01)00087-4 10.1029/97GL03312 10.1017/S0373463300001107 10.1029/92JD01517 10.1016/j.asr.2010.04.017 10.1016/j.eswa.2014.09.029 10.1007/s00190-007-0135-3 10.1109/TGRS.2018.2812850 10.1007/s11434-012-5010-9 10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2 10.1038/srep10273 10.1007/s00190-007-0170-0 10.1109/LGRS.2020.2992633 10.1016/j.jastp.2020.105202 10.1016/j.jastp.2021.105612 10.1007/1345_2015_157 10.5194/npg-23-127-2016 10.3390/rs14235921 10.1029/2005JB003629 10.1029/2020SW002501 10.1029/95JB03048 10.1007/s00190-008-0264-3 10.1029/RS022i003p00379 10.1007/s10291-014-0403-7 10.1179/1752270615Y.0000000034 10.1029/93GL02935 10.1109/CPGPS.2017.8075104 10.5081/jgps.3.1.95 10.1007/BF02521844 10.1002/grl.50288 10.1029/JC074i018p04487 10.1007/s00190-014-0761-5 10.1179/1752270614Y.0000000130 10.1029/JB083iB04p01825 10.1109/tgrs.2023.3338777 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2024.3391821 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 9614 |
ExternalDocumentID | oai_doaj_org_article_b3f692eb2c26460096ed4aaf0fbbd0b6 10_1109_JSTARS_2024_3391821 10506560 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42388102 funderid: 10.13039/501100001809 – fundername: Special Key Project for Technological Innovation and Application Development in Chongqing grantid: CSTB2022TIAD-KPX0098; CSTB2022TIAD-CUX0016 – fundername: Chongqing Natural Science Foundation Innovation and Development Joint grantid: Z2302230017 – fundername: Chongqing Jiaotong University Talent grantid: F1230102 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR ACIWK AENEX AETIX AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RIG RNS AAYXX AFPKN CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c359t-bf3d91a23409383fd9b48743fa83e6bcd0ef51167ac7134e4abdaad262e4f7713 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Tue Oct 22 15:04:11 EDT 2024 Thu Oct 10 18:27:15 EDT 2024 Fri Aug 23 03:07:12 EDT 2024 Mon Nov 04 12:00:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-bf3d91a23409383fd9b48743fa83e6bcd0ef51167ac7134e4abdaad262e4f7713 |
ORCID | 0000-0002-7723-4601 0009-0005-4817-7248 0000-0001-8316-2600 0009-0005-3267-1612 |
OpenAccessLink | https://doaj.org/article/b3f692eb2c26460096ed4aaf0fbbd0b6 |
PQID | 3053298129 |
PQPubID | 75722 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b3f692eb2c26460096ed4aaf0fbbd0b6 crossref_primary_10_1109_JSTARS_2024_3391821 proquest_journals_3053298129 ieee_primary_10506560 |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref11 ref10 ref16 ref19 ref18 Pikridas (ref32) 2010; 88 Xu (ref41) Callahan (ref8) 1973 ref46 ref45 ref48 Ifadis (ref17) 1986 ref47 ref42 ref43 ref49 ref7 ref4 ref3 ref6 ref5 Krueger (ref20) ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref2 ref39 ref38 Yao (ref44) 2013; 56 Xiao (ref40) 2018; 61 Altiner (ref1) ref24 ref23 ref26 Leandro (ref22) ref25 ref21 ref28 ref27 Collins (ref9) 1997 ref29 Herring (ref15) 1992 |
References_xml | – ident: ref23 doi: 10.3390/s20113167 – ident: ref38 doi: 10.1007/s10291-013-0316-x – ident: ref48 doi: 10.3390/s20082343 – ident: ref29 doi: 10.1016/S1464-1895(01)00087-4 – ident: ref33 doi: 10.1029/97GL03312 – ident: ref31 doi: 10.1017/S0373463300001107 – volume-title: Proceedirws of Refraction of Transatmospheric Simals in Geodesy year: 1992 ident: ref15 article-title: Modeling atmospheric delays in the analysis of space geodetic data contributor: fullname: Herring – ident: ref3 doi: 10.1029/92JD01517 – ident: ref35 doi: 10.1016/j.asr.2010.04.017 – volume-title: Proc. EGU Gen. Assem. Conf. Abstr. ident: ref1 article-title: Real-time PPP results from global orbit and clock corrections contributor: fullname: Altiner – ident: ref39 doi: 10.1016/j.eswa.2014.09.029 – ident: ref6 doi: 10.1007/s00190-007-0135-3 – ident: ref25 doi: 10.1109/TGRS.2018.2812850 – ident: ref26 doi: 10.1007/s11434-012-5010-9 – ident: ref13 doi: 10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2 – ident: ref46 doi: 10.1038/srep10273 – ident: ref19 doi: 10.1007/s00190-007-0170-0 – start-page: 1 volume-title: Proc. Nat. Tech. Meeting Inst. Navigation ident: ref22 article-title: UNB neutral atmosphere models: Development and performance contributor: fullname: Leandro – ident: ref36 doi: 10.1109/LGRS.2020.2992633 – start-page: 1 volume-title: Proc. EGU Gen. Assem. Conf. Abstr. ident: ref41 article-title: Zenith troposphere delay prediction based on BP neural network and least squares support vector machine contributor: fullname: Xu – ident: ref12 doi: 10.1016/j.jastp.2020.105202 – ident: ref28 doi: 10.1016/j.jastp.2021.105612 – ident: ref11 doi: 10.1007/1345_2015_157 – ident: ref45 doi: 10.5194/npg-23-127-2016 – volume: 88 start-page: 1803 issue: 24 year: 2010 ident: ref32 article-title: Predicting zenith tropospheric delay using the artificial neural network technique. application to selected EPN stations publication-title: J. Nat. Cancer Inst. contributor: fullname: Pikridas – ident: ref47 doi: 10.3390/rs14235921 – ident: ref5 doi: 10.1029/2005JB003629 – ident: ref27 doi: 10.1029/2020SW002501 – ident: ref30 doi: 10.1029/95JB03048 – ident: ref18 doi: 10.1007/s00190-008-0264-3 – ident: ref2 doi: 10.1029/RS022i003p00379 – ident: ref7 doi: 10.1007/s10291-014-0403-7 – year: 1973 ident: ref8 article-title: Prediction of tropospheric wet-component range error from surface measurements contributor: fullname: Callahan – volume: 61 start-page: 3139 issue: 8 year: 2018 ident: ref40 article-title: Construction of a regional precise tropospheric delay model based on improved BP neural network publication-title: Chin. J. Geophys. contributor: fullname: Xiao – ident: ref10 doi: 10.1179/1752270615Y.0000000034 – ident: ref34 doi: 10.1029/93GL02935 – start-page: 23 volume-title: Proc. Gen. Assem. URSI ident: ref20 article-title: The standard tropospheric correction model for the European satellite navigation system Galileo contributor: fullname: Krueger – year: 1986 ident: ref17 article-title: The atmospheric delay of radio waves: Modelling the elevation dependence on a global scale contributor: fullname: Ifadis – ident: ref42 doi: 10.1109/CPGPS.2017.8075104 – year: 1997 ident: ref9 article-title: A tropospheric delay model for the user of the wide area augmentation system contributor: fullname: Collins – ident: ref14 doi: 10.5081/jgps.3.1.95 – ident: ref37 doi: 10.1007/BF02521844 – ident: ref21 doi: 10.1002/grl.50288 – ident: ref16 doi: 10.1029/JC074i018p04487 – ident: ref24 doi: 10.1007/s00190-014-0761-5 – volume: 56 start-page: 2218 issue: 7 year: 2013 ident: ref44 article-title: A new global zenith tropospheric delay model GZTD publication-title: Chin. J. Geophys. contributor: fullname: Yao – ident: ref49 doi: 10.1179/1752270614Y.0000000130 – ident: ref4 doi: 10.1029/JB083iB04p01825 – ident: ref43 doi: 10.1109/tgrs.2023.3338777 |
SSID | ssj0062793 |
Score | 2.395086 |
Snippet | Zenith tropospheric delay (ZTD), consisting of zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD), is a significant contributor to errors in precise... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 9606 |
SubjectTerms | Accuracy Adaptation models Algorithms Atmospheric modeling Data models Delay Delays Forecasting models Global navigation satellite system Global navigation satellite system (GNSS) Kinematics Long short-term memory long short-term memory (LSTM) Mathematical models Navigation Navigation satellites Navigation systems Navigational satellites Neural networks Numerical models Prediction models Predictive models Root-mean-square errors Satellites Troposphere Zenith zenith tropospheric delay |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sIHjxLdYXOXh063aTzTbH-qgi2oNWEC8hz4vSim4P-uudJFvxgeBtCRs2O4_MTDLzDcAB8z73FVeZKUqaMVpVmXaizJxBZeqZHnoRMdtiyC_u2OV9ed8Uq8daGOdcTD5znfAY7_LtxEzDURlqeJkHsJgWtCohUrHWbNvlRRURdtEhEVnAjGkghrq5OEIZ79_cYjBYsA6lAl3q7jczFNH6m_Yqv_bkaGgGyzCcLTHllzx2prXumPcf6I3__ocVWGpcTtJPMrIKc268BgvnsaXv2zqc9QnudCSB_5OH0SkJ7TqNeq1JaJT2RI7R0FkyGZN0AIHPV7ejaxJgPXDCMOWRb8Dd4Gx0cpE1zRUyQ0tRZ9pTK7qqoBjgYZTqrdAYuzDqVY86ro3NnS_DJY0yodzUMaWtUrbghWO-wqFNmB9Pxm4LiPYeFds4NHaaMZ_rrqkESgbnlppc9NpwOKO1fE4YGjLGHrmQiTUysEY2rGnDceDH56sBADsOIB1lo09SU89F4XRh0KPjIRBzlimFgqe1zTVvw0ag_ZfvJbK3YXfGXtlo66ukoT2GQFdHbP8xbQcWwxLT2csuzNcvU7eH3kit96MUfgBetNkI priority: 102 providerName: IEEE |
Title | A New Global ZTD Forecast Model Based on Improved LSTM Neural Network |
URI | https://ieeexplore.ieee.org/document/10506560 https://www.proquest.com/docview/3053298129 https://doaj.org/article/b3f692eb2c26460096ed4aaf0fbbd0b6 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJSQWxKOIQKk8MBKaxo4Tjy20VAg60FaqWCw_J9QiGgb-PWc7RSAGFrbIcuTkO9t358f3IXRJnctcyWSq84KklJRlqiwvUqthMFW6giginLaYssmC3i-L5TepL38mLNIDR-B6ijjGc8j_NLhu5iNua6iU0IJSJlORbDvj22QqzsEsLwPdLkQnPPUEMg3fEFTsQYcfPM0gM8zpNSEc4uv-D58UqPsbrZVfE3TwOuMDtN-Ei3gQP_MQ7djVEdq9C3K8H8doNMAwS-FI3I-f57fYS21quamxFzl7wUNwUgavVzguHsDzw2z-iD0lB7wwjWfA22gxHs1vJmkjjJBqUvA6VY4Y3pc5geQMMkxnuIK8gxInK2KZ0iazrvAbLFL7q6KWSmWkNDnLLXUlFJ2g1mq9sqcIK-dgUGoLjkpR6jLV1yUHqzJmiM54laCrLTTiNfJfiJA3ZFxEJIVHUjRIJmjo4fuq6smrQwGYVDQmFX-ZNEFtD_639orMcwQlqLO1hmhG2kYQL23BIUzhZ__R9jna8_8TF1k6qFW_vdsLCDtq1Q09rBtuCH4C8ejRLA |
link.rule.ids | 315,783,787,799,867,2109,4031,27935,27936,27937,55086 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4VEIJLoRREysuHHrvpZu31ro_hmdKQQwkS6sXy8wJKULM5lF_P2N5UQIXEbWWttd55eGbsmW8AvjLvc19xlZmipBmjVZVpJ8rMGVSm2tToRcRsixEf3LDL2_K2LVaPtTDOuZh85rrhMd7l26mZh6My1PAyD2AxS7CCjnXNU7nWYuPlRRUxdtElEVlAjWlBhnq5-I5S3v91jeFgwbqUCnSqey8MUcTrbxus_LcrR1NzvgGjxSJThsldd97ornl8hd_47r_YhI-t00n6SUo-wQc32YLVi9jU9-9nOOsT3OtIgv8nv8enJDTsNGrWkNAq7Z4co6mzZDoh6QgCn4fX4ysSgD1wwihlkm_DzfnZ-GSQte0VMkNL0WTaUyt6qqAY4mGc6q3QGL0w6lVNHdfG5s6X4ZpGmVBw6pjSVilb8MIxX-HQDixPphO3C0R7j6ptHJo7zZjPdc9UAmWDc0tNLuoOfFvQWj4kFA0Zo49cyMQaGVgjW9Z04Djw49-rAQI7DiAdZatRUlPPReF0YdCn4yEUc5YphaKntc0178B2oP2z7yWyd2B_wV7Z6utM0tAgQ6CzI768Me0I1gbjq6Ec_hj93IP1sNx0ErMPy82fuTtA36TRh1EinwDi6NxT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Global+ZTD+Forecast+Model+Based+on+Improved+LSTM+Neural+Network&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=He%2C+Lin&rft.au=Yao%2C+Yibin&rft.au=Xu%2C+Chaoqian&rft.au=Huan%2C+Zhang&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=9606&rft.epage=9614&rft_id=info:doi/10.1109%2FJSTARS.2024.3391821&rft.externalDocID=10506560 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |