A New Global ZTD Forecast Model Based on Improved LSTM Neural Network

Zenith tropospheric delay (ZTD), consisting of zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD), is a significant contributor to errors in precise positioning using the global navigation satellite system (GNSS) precise point positioning (PPP) and real-time kinematic techniques. Accurate and...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 9606 - 9614
Main Authors He, Lin, Yao, Yibin, Xu, Chaoqian, Huan, Zhang, Tang, Feifei, Ji, Changquan, Liu, Zhuoya, Wu, Wentan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Zenith tropospheric delay (ZTD), consisting of zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD), is a significant contributor to errors in precise positioning using the global navigation satellite system (GNSS) precise point positioning (PPP) and real-time kinematic techniques. Accurate and timely predictions of ZTD on a global scale are crucial for enhancing GNSS positioning accuracy and expediting convergence. This study proposes an innovative global tropospheric prediction model that leverages long short-term memory (LSTM) neural networks, aiming to achieve both high precision and long-term prediction capability for ZTD. The experimental data utilized were sourced from the Vienna Mapping Functions 3-Optimized zenith total delay (ZTD) dataset. This study delves further into the analysis of ZTD residuals by extracting periodic signals. The ZTD residuals were then utilized to train a modified LSTM neural network model, enabling the prediction of global residuals. The final ZTD predictions were obtained by combining the modified LSTM ZTD residual forecast component with the ZTD periodic component. Our results demonstrate that the average root-mean-square error (RMSE) of the modified LSTM-ZTD model in 2020 was 1.44 cm. In addition, the average RMSE of the forecasted ZTD during spring, summer, autumn, and winter was found to be 1.43 cm, 1.47 cm, 1.56 cm, and 1.36 cm, respectively. Through the integration of the LSTM neural network and the ZTD periodic signal extracted using a physical algorithm, this work has successfully enhanced the accuracy and time span of ZTD forecasts on a global scale.
AbstractList Zenith tropospheric delay (ZTD), consisting of zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD), is a significant contributor to errors in precise positioning using the global navigation satellite system (GNSS) precise point positioning (PPP) and real-time kinematic techniques. Accurate and timely predictions of ZTD on a global scale are crucial for enhancing GNSS positioning accuracy and expediting convergence. This study proposes an innovative global tropospheric prediction model that leverages long short-term memory (LSTM) neural networks, aiming to achieve both high precision and long-term prediction capability for ZTD. The experimental data utilized were sourced from the Vienna Mapping Functions 3-Optimized zenith total delay (ZTD) dataset. This study delves further into the analysis of ZTD residuals by extracting periodic signals. The ZTD residuals were then utilized to train a modified LSTM neural network model, enabling the prediction of global residuals. The final ZTD predictions were obtained by combining the modified LSTM ZTD residual forecast component with the ZTD periodic component. Our results demonstrate that the average root-mean-square error (RMSE) of the modified LSTM-ZTD model in 2020 was 1.44 cm. In addition, the average RMSE of the forecasted ZTD during spring, summer, autumn, and winter was found to be 1.43 cm, 1.47 cm, 1.56 cm, and 1.36 cm, respectively. Through the integration of the LSTM neural network and the ZTD periodic signal extracted using a physical algorithm, this work has successfully enhanced the accuracy and time span of ZTD forecasts on a global scale.
Author Yao, Yibin
Tang, Feifei
He, Lin
Liu, Zhuoya
Xu, Chaoqian
Huan, Zhang
Wu, Wentan
Ji, Changquan
Author_xml – sequence: 1
  givenname: Lin
  orcidid: 0009-0005-4817-7248
  surname: He
  fullname: He, Lin
  email: hunter5288@163.com
  organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Yibin
  orcidid: 0000-0002-7723-4601
  surname: Yao
  fullname: Yao, Yibin
  email: ybyao@whu.edu.cn
  organization: School of Geodesy and Geomatics, Wuhan University, Wuhan, China
– sequence: 3
  givenname: Chaoqian
  orcidid: 0000-0001-8316-2600
  surname: Xu
  fullname: Xu, Chaoqian
  email: cqxu@whu.edu.cn
  organization: Hubei Luojia Laboratory, Wuhan, China
– sequence: 4
  givenname: Zhang
  orcidid: 0009-0005-3267-1612
  surname: Huan
  fullname: Huan, Zhang
  email: johnhuan@whu.edu.cn
  organization: China Merchants Chongqing Communications Research and Design Institute, Company Ltd., Chongqing, China
– sequence: 5
  givenname: Feifei
  surname: Tang
  fullname: Tang, Feifei
  email: fftang80@126.com
  organization: Chongqing Jiaotong University, Chongqing, China
– sequence: 6
  givenname: Changquan
  surname: Ji
  fullname: Ji, Changquan
  organization: Chongqing Jiaotong University, Chongqing, China
– sequence: 7
  givenname: Zhuoya
  surname: Liu
  fullname: Liu, Zhuoya
  email: liuzhuoya_scu@163.com
  organization: Electrical Science Institute of Guizhou Power Grid, Company Ltd., CSG, Guiyang, China
– sequence: 8
  givenname: Wentan
  surname: Wu
  fullname: Wu, Wentan
  email: 568511035@qq.com
  organization: Natural Resources Archives of Hebei Province, Shijiazuang, China
BookMark eNpNkE9PwzAMxSMEEmPwCeBQiXNHEqdpcxz_hzaQ2LhwiZLGQRtlgbQD8e0JFCFOtqz3e7bfHtlehzUScsjoiDGqTm7mi_H9fMQpFyMAxSrOtsiAs4LlrIBimwyYApUzQcUu2WvbFaWSlwoG5GKc3eJHdtUEa5rscXGeXYaItWm7bBYcNtmpadFlYZ1NXl5jeE_9dL6YJWgTE3CL3UeIz_tkx5umxYPfOiQPlxeLs-t8enc1ORtP8xoK1eXWg1PMcBBUQQXeKSuqUoA3FaC0taPoC8ZkaeqSgUBhrDPGcclR-DKNhmTS-7pgVvo1Ll9M_NTBLPXPIMQnbWK3rBvUFrxUHC2vuRSSUiXRCWM89dY6amXyOu690ltvG2w7vQqbuE7na6AFcFUxrpIKelUdQ9tG9H9bGdXf2es-e_2dvf7NPlFHPbVExH9EQWUhKXwBNmCAGw
CODEN IJSTHZ
Cites_doi 10.3390/s20113167
10.1007/s10291-013-0316-x
10.3390/s20082343
10.1016/S1464-1895(01)00087-4
10.1029/97GL03312
10.1017/S0373463300001107
10.1029/92JD01517
10.1016/j.asr.2010.04.017
10.1016/j.eswa.2014.09.029
10.1007/s00190-007-0135-3
10.1109/TGRS.2018.2812850
10.1007/s11434-012-5010-9
10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2
10.1038/srep10273
10.1007/s00190-007-0170-0
10.1109/LGRS.2020.2992633
10.1016/j.jastp.2020.105202
10.1016/j.jastp.2021.105612
10.1007/1345_2015_157
10.5194/npg-23-127-2016
10.3390/rs14235921
10.1029/2005JB003629
10.1029/2020SW002501
10.1029/95JB03048
10.1007/s00190-008-0264-3
10.1029/RS022i003p00379
10.1007/s10291-014-0403-7
10.1179/1752270615Y.0000000034
10.1029/93GL02935
10.1109/CPGPS.2017.8075104
10.5081/jgps.3.1.95
10.1007/BF02521844
10.1002/grl.50288
10.1029/JC074i018p04487
10.1007/s00190-014-0761-5
10.1179/1752270614Y.0000000130
10.1029/JB083iB04p01825
10.1109/tgrs.2023.3338777
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2024.3391821
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 9614
ExternalDocumentID oai_doaj_org_article_b3f692eb2c26460096ed4aaf0fbbd0b6
10_1109_JSTARS_2024_3391821
10506560
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42388102
  funderid: 10.13039/501100001809
– fundername: Special Key Project for Technological Innovation and Application Development in Chongqing
  grantid: CSTB2022TIAD-KPX0098; CSTB2022TIAD-CUX0016
– fundername: Chongqing Natural Science Foundation Innovation and Development Joint
  grantid: Z2302230017
– fundername: Chongqing Jiaotong University Talent
  grantid: F1230102
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
ACIWK
AENEX
AETIX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RIG
RNS
AAYXX
AFPKN
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c359t-bf3d91a23409383fd9b48743fa83e6bcd0ef51167ac7134e4abdaad262e4f7713
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Tue Oct 22 15:04:11 EDT 2024
Thu Oct 10 18:27:15 EDT 2024
Fri Aug 23 03:07:12 EDT 2024
Mon Nov 04 12:00:19 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-bf3d91a23409383fd9b48743fa83e6bcd0ef51167ac7134e4abdaad262e4f7713
ORCID 0000-0002-7723-4601
0009-0005-4817-7248
0000-0001-8316-2600
0009-0005-3267-1612
OpenAccessLink https://doaj.org/article/b3f692eb2c26460096ed4aaf0fbbd0b6
PQID 3053298129
PQPubID 75722
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_b3f692eb2c26460096ed4aaf0fbbd0b6
crossref_primary_10_1109_JSTARS_2024_3391821
proquest_journals_3053298129
ieee_primary_10506560
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref16
ref19
ref18
Pikridas (ref32) 2010; 88
Xu (ref41)
Callahan (ref8) 1973
ref46
ref45
ref48
Ifadis (ref17) 1986
ref47
ref42
ref43
ref49
ref7
ref4
ref3
ref6
ref5
Krueger (ref20)
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref39
ref38
Yao (ref44) 2013; 56
Xiao (ref40) 2018; 61
Altiner (ref1)
ref24
ref23
ref26
Leandro (ref22)
ref25
ref21
ref28
ref27
Collins (ref9) 1997
ref29
Herring (ref15) 1992
References_xml – ident: ref23
  doi: 10.3390/s20113167
– ident: ref38
  doi: 10.1007/s10291-013-0316-x
– ident: ref48
  doi: 10.3390/s20082343
– ident: ref29
  doi: 10.1016/S1464-1895(01)00087-4
– ident: ref33
  doi: 10.1029/97GL03312
– ident: ref31
  doi: 10.1017/S0373463300001107
– volume-title: Proceedirws of Refraction of Transatmospheric Simals in Geodesy
  year: 1992
  ident: ref15
  article-title: Modeling atmospheric delays in the analysis of space geodetic data
  contributor:
    fullname: Herring
– ident: ref3
  doi: 10.1029/92JD01517
– ident: ref35
  doi: 10.1016/j.asr.2010.04.017
– volume-title: Proc. EGU Gen. Assem. Conf. Abstr.
  ident: ref1
  article-title: Real-time PPP results from global orbit and clock corrections
  contributor:
    fullname: Altiner
– ident: ref39
  doi: 10.1016/j.eswa.2014.09.029
– ident: ref6
  doi: 10.1007/s00190-007-0135-3
– ident: ref25
  doi: 10.1109/TGRS.2018.2812850
– ident: ref26
  doi: 10.1007/s11434-012-5010-9
– ident: ref13
  doi: 10.1175/1520-0450(1996)035<0830:GMDEOT>2.0.CO;2
– ident: ref46
  doi: 10.1038/srep10273
– ident: ref19
  doi: 10.1007/s00190-007-0170-0
– start-page: 1
  volume-title: Proc. Nat. Tech. Meeting Inst. Navigation
  ident: ref22
  article-title: UNB neutral atmosphere models: Development and performance
  contributor:
    fullname: Leandro
– ident: ref36
  doi: 10.1109/LGRS.2020.2992633
– start-page: 1
  volume-title: Proc. EGU Gen. Assem. Conf. Abstr.
  ident: ref41
  article-title: Zenith troposphere delay prediction based on BP neural network and least squares support vector machine
  contributor:
    fullname: Xu
– ident: ref12
  doi: 10.1016/j.jastp.2020.105202
– ident: ref28
  doi: 10.1016/j.jastp.2021.105612
– ident: ref11
  doi: 10.1007/1345_2015_157
– ident: ref45
  doi: 10.5194/npg-23-127-2016
– volume: 88
  start-page: 1803
  issue: 24
  year: 2010
  ident: ref32
  article-title: Predicting zenith tropospheric delay using the artificial neural network technique. application to selected EPN stations
  publication-title: J. Nat. Cancer Inst.
  contributor:
    fullname: Pikridas
– ident: ref47
  doi: 10.3390/rs14235921
– ident: ref5
  doi: 10.1029/2005JB003629
– ident: ref27
  doi: 10.1029/2020SW002501
– ident: ref30
  doi: 10.1029/95JB03048
– ident: ref18
  doi: 10.1007/s00190-008-0264-3
– ident: ref2
  doi: 10.1029/RS022i003p00379
– ident: ref7
  doi: 10.1007/s10291-014-0403-7
– year: 1973
  ident: ref8
  article-title: Prediction of tropospheric wet-component range error from surface measurements
  contributor:
    fullname: Callahan
– volume: 61
  start-page: 3139
  issue: 8
  year: 2018
  ident: ref40
  article-title: Construction of a regional precise tropospheric delay model based on improved BP neural network
  publication-title: Chin. J. Geophys.
  contributor:
    fullname: Xiao
– ident: ref10
  doi: 10.1179/1752270615Y.0000000034
– ident: ref34
  doi: 10.1029/93GL02935
– start-page: 23
  volume-title: Proc. Gen. Assem. URSI
  ident: ref20
  article-title: The standard tropospheric correction model for the European satellite navigation system Galileo
  contributor:
    fullname: Krueger
– year: 1986
  ident: ref17
  article-title: The atmospheric delay of radio waves: Modelling the elevation dependence on a global scale
  contributor:
    fullname: Ifadis
– ident: ref42
  doi: 10.1109/CPGPS.2017.8075104
– year: 1997
  ident: ref9
  article-title: A tropospheric delay model for the user of the wide area augmentation system
  contributor:
    fullname: Collins
– ident: ref14
  doi: 10.5081/jgps.3.1.95
– ident: ref37
  doi: 10.1007/BF02521844
– ident: ref21
  doi: 10.1002/grl.50288
– ident: ref16
  doi: 10.1029/JC074i018p04487
– ident: ref24
  doi: 10.1007/s00190-014-0761-5
– volume: 56
  start-page: 2218
  issue: 7
  year: 2013
  ident: ref44
  article-title: A new global zenith tropospheric delay model GZTD
  publication-title: Chin. J. Geophys.
  contributor:
    fullname: Yao
– ident: ref49
  doi: 10.1179/1752270614Y.0000000130
– ident: ref4
  doi: 10.1029/JB083iB04p01825
– ident: ref43
  doi: 10.1109/tgrs.2023.3338777
SSID ssj0062793
Score 2.395086
Snippet Zenith tropospheric delay (ZTD), consisting of zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD), is a significant contributor to errors in precise...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 9606
SubjectTerms Accuracy
Adaptation models
Algorithms
Atmospheric modeling
Data models
Delay
Delays
Forecasting models
Global navigation satellite system
Global navigation satellite system (GNSS)
Kinematics
Long short-term memory
long short-term memory (LSTM)
Mathematical models
Navigation
Navigation satellites
Navigation systems
Navigational satellites
Neural networks
Numerical models
Prediction models
Predictive models
Root-mean-square errors
Satellites
Troposphere
Zenith
zenith tropospheric delay
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB6sIHjxLdYXOXh063aTzTbH-qgi2oNWEC8hz4vSim4P-uudJFvxgeBtCRs2O4_MTDLzDcAB8z73FVeZKUqaMVpVmXaizJxBZeqZHnoRMdtiyC_u2OV9ed8Uq8daGOdcTD5znfAY7_LtxEzDURlqeJkHsJgWtCohUrHWbNvlRRURdtEhEVnAjGkghrq5OEIZ79_cYjBYsA6lAl3q7jczFNH6m_Yqv_bkaGgGyzCcLTHllzx2prXumPcf6I3__ocVWGpcTtJPMrIKc268BgvnsaXv2zqc9QnudCSB_5OH0SkJ7TqNeq1JaJT2RI7R0FkyGZN0AIHPV7ejaxJgPXDCMOWRb8Dd4Gx0cpE1zRUyQ0tRZ9pTK7qqoBjgYZTqrdAYuzDqVY86ro3NnS_DJY0yodzUMaWtUrbghWO-wqFNmB9Pxm4LiPYeFds4NHaaMZ_rrqkESgbnlppc9NpwOKO1fE4YGjLGHrmQiTUysEY2rGnDceDH56sBADsOIB1lo09SU89F4XRh0KPjIRBzlimFgqe1zTVvw0ag_ZfvJbK3YXfGXtlo66ukoT2GQFdHbP8xbQcWwxLT2csuzNcvU7eH3kit96MUfgBetNkI
  priority: 102
  providerName: IEEE
Title A New Global ZTD Forecast Model Based on Improved LSTM Neural Network
URI https://ieeexplore.ieee.org/document/10506560
https://www.proquest.com/docview/3053298129
https://doaj.org/article/b3f692eb2c26460096ed4aaf0fbbd0b6
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJSQWxKOIQKk8MBKaxo4Tjy20VAg60FaqWCw_J9QiGgb-PWc7RSAGFrbIcuTkO9t358f3IXRJnctcyWSq84KklJRlqiwvUqthMFW6giginLaYssmC3i-L5TepL38mLNIDR-B6ijjGc8j_NLhu5iNua6iU0IJSJlORbDvj22QqzsEsLwPdLkQnPPUEMg3fEFTsQYcfPM0gM8zpNSEc4uv-D58UqPsbrZVfE3TwOuMDtN-Ei3gQP_MQ7djVEdq9C3K8H8doNMAwS-FI3I-f57fYS21quamxFzl7wUNwUgavVzguHsDzw2z-iD0lB7wwjWfA22gxHs1vJmkjjJBqUvA6VY4Y3pc5geQMMkxnuIK8gxInK2KZ0iazrvAbLFL7q6KWSmWkNDnLLXUlFJ2g1mq9sqcIK-dgUGoLjkpR6jLV1yUHqzJmiM54laCrLTTiNfJfiJA3ZFxEJIVHUjRIJmjo4fuq6smrQwGYVDQmFX-ZNEFtD_639orMcwQlqLO1hmhG2kYQL23BIUzhZ__R9jna8_8TF1k6qFW_vdsLCDtq1Q09rBtuCH4C8ejRLA
link.rule.ids 315,783,787,799,867,2109,4031,27935,27936,27937,55086
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4VEIJLoRREysuHHrvpZu31ro_hmdKQQwkS6sXy8wJKULM5lF_P2N5UQIXEbWWttd55eGbsmW8AvjLvc19xlZmipBmjVZVpJ8rMGVSm2tToRcRsixEf3LDL2_K2LVaPtTDOuZh85rrhMd7l26mZh6My1PAyD2AxS7CCjnXNU7nWYuPlRRUxdtElEVlAjWlBhnq5-I5S3v91jeFgwbqUCnSqey8MUcTrbxus_LcrR1NzvgGjxSJThsldd97ornl8hd_47r_YhI-t00n6SUo-wQc32YLVi9jU9-9nOOsT3OtIgv8nv8enJDTsNGrWkNAq7Z4co6mzZDoh6QgCn4fX4ysSgD1wwihlkm_DzfnZ-GSQte0VMkNL0WTaUyt6qqAY4mGc6q3QGL0w6lVNHdfG5s6X4ZpGmVBw6pjSVilb8MIxX-HQDixPphO3C0R7j6ptHJo7zZjPdc9UAmWDc0tNLuoOfFvQWj4kFA0Zo49cyMQaGVgjW9Z04Djw49-rAQI7DiAdZatRUlPPReF0YdCn4yEUc5YphaKntc0178B2oP2z7yWyd2B_wV7Z6utM0tAgQ6CzI768Me0I1gbjq6Ec_hj93IP1sNx0ErMPy82fuTtA36TRh1EinwDi6NxT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Global+ZTD+Forecast+Model+Based+on+Improved+LSTM+Neural+Network&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=He%2C+Lin&rft.au=Yao%2C+Yibin&rft.au=Xu%2C+Chaoqian&rft.au=Huan%2C+Zhang&rft.date=2024&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=17&rft.spage=9606&rft.epage=9614&rft_id=info:doi/10.1109%2FJSTARS.2024.3391821&rft.externalDocID=10506560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon