Deep Reinforcement Learning Control for Radar Detection and Tracking in Congested Spectral Environments

This work addresses dynamic non-cooperative coexistence between a cognitive pulsed radar and nearby communications systems by applying nonlinear value function approximation via deep reinforcement learning (Deep RL) to develop a policy for optimal radar performance. The radar learns to vary the band...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cognitive communications and networking Vol. 6; no. 4; pp. 1335 - 1349
Main Authors Thornton, Charles E., Kozy, Mark A., Buehrer, R. Michael, Martone, Anthony F., Sherbondy, Kelly D.
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2332-7731
2332-7731
DOI10.1109/TCCN.2020.3019605

Cover

Abstract This work addresses dynamic non-cooperative coexistence between a cognitive pulsed radar and nearby communications systems by applying nonlinear value function approximation via deep reinforcement learning (Deep RL) to develop a policy for optimal radar performance. The radar learns to vary the bandwidth and center frequency of its linear frequency modulated (LFM) waveforms to mitigate interference with other systems for improved target detection performance while also sufficiently utilizing available frequency bands to achieve a fine range resolution. We demonstrate that this approach, based on the Deep <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Learning (DQL) algorithm, enhances several radar performance metrics more effectively than policy iteration or sense-and-avoid (SAA) approaches in several realistic coexistence environments. The DQL-based approach is also extended to incorporate Double <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-learning and a recurrent neural network to form a Double Deep Recurrent <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Network (DDRQN), which yields favorable performance and stability compared to DQL and policy iteration. The practicality of the proposed scheme is demonstrated through experiments performed on a software defined radar (SDRadar) prototype system. Experimental results indicate that the proposed Deep RL approach significantly improves radar detection performance in congested spectral environments compared to policy iteration and SAA.
AbstractList This work addresses dynamic non-cooperative coexistence between a cognitive pulsed radar and nearby communications systems by applying nonlinear value function approximation via deep reinforcement learning (Deep RL) to develop a policy for optimal radar performance. The radar learns to vary the bandwidth and center frequency of its linear frequency modulated (LFM) waveforms to mitigate interference with other systems for improved target detection performance while also sufficiently utilizing available frequency bands to achieve a fine range resolution. We demonstrate that this approach, based on the Deep <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Learning (DQL) algorithm, enhances several radar performance metrics more effectively than policy iteration or sense-and-avoid (SAA) approaches in several realistic coexistence environments. The DQL-based approach is also extended to incorporate Double <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-learning and a recurrent neural network to form a Double Deep Recurrent <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Network (DDRQN), which yields favorable performance and stability compared to DQL and policy iteration. The practicality of the proposed scheme is demonstrated through experiments performed on a software defined radar (SDRadar) prototype system. Experimental results indicate that the proposed Deep RL approach significantly improves radar detection performance in congested spectral environments compared to policy iteration and SAA.
This work addresses dynamic non-cooperative coexistence between a cognitive pulsed radar and nearby communications systems by applying nonlinear value function approximation via deep reinforcement learning (Deep RL) to develop a policy for optimal radar performance. The radar learns to vary the bandwidth and center frequency of its linear frequency modulated (LFM) waveforms to mitigate interference with other systems for improved target detection performance while also sufficiently utilizing available frequency bands to achieve a fine range resolution. We demonstrate that this approach, based on the Deep [Formula Omitted]-Learning (DQL) algorithm, enhances several radar performance metrics more effectively than policy iteration or sense-and-avoid (SAA) approaches in several realistic coexistence environments. The DQL-based approach is also extended to incorporate Double [Formula Omitted]-learning and a recurrent neural network to form a Double Deep Recurrent [Formula Omitted]-Network (DDRQN), which yields favorable performance and stability compared to DQL and policy iteration. The practicality of the proposed scheme is demonstrated through experiments performed on a software defined radar (SDRadar) prototype system. Experimental results indicate that the proposed Deep RL approach significantly improves radar detection performance in congested spectral environments compared to policy iteration and SAA.
Author Thornton, Charles E.
Kozy, Mark A.
Martone, Anthony F.
Buehrer, R. Michael
Sherbondy, Kelly D.
Author_xml – sequence: 1
  givenname: Charles E.
  orcidid: 0000-0002-2078-6472
  surname: Thornton
  fullname: Thornton, Charles E.
  email: cthorn14@vt.edu
  organization: Department of ECE, Wireless@VT, Blacksburg, VA, USA
– sequence: 2
  givenname: Mark A.
  surname: Kozy
  fullname: Kozy, Mark A.
  organization: Department of ECE, Wireless@VT, Blacksburg, VA, USA
– sequence: 3
  givenname: R. Michael
  surname: Buehrer
  fullname: Buehrer, R. Michael
  email: buehrer@vt.edu
  organization: Department of ECE, Wireless@VT, Blacksburg, VA, USA
– sequence: 4
  givenname: Anthony F.
  orcidid: 0000-0001-9596-5400
  surname: Martone
  fullname: Martone, Anthony F.
  organization: Sensors and Electronic Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD, USA
– sequence: 5
  givenname: Kelly D.
  surname: Sherbondy
  fullname: Sherbondy, Kelly D.
  organization: Sensors and Electronic Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD, USA
BookMark eNp9kE1LAzEQhoNUsNb-APES8Lw1H7vJ7lG2fkFRqPUcstlJSd0mNbsV_Pfu0iLiwdMMzPO-M_Oeo5EPHhC6pGRGKSluVmX5PGOEkRkntBAkO0FjxjlLpOR09Ks_Q9O23RBCqGBC5OkYrecAO7wE522IBrbgO7wAHb3za1wG38XQ4H6El7rWEc-hA9O54LH2NV5Fbd4H0PmBXUPbQY1fdz0SdYPv_KeLwQ-e7QU6tbppYXqsE_R2f7cqH5PFy8NTebtIDM-KLqmgqvOKMpKBLYBUGZWMaZtmNMtkIW0FQEWR5paYWotKWsazlElIU2FNbQSfoOuD7y6Gj31_kNqEffT9SsVSkUvRe6c9JQ-UiaFtI1hlXKeHv_rDXaMoUUOwaghWDcGqY7C9kv5R7qLb6vj1r-bqoHEA8MMXVOaccv4NTtuGNg
CODEN ITCCG7
CitedBy_id crossref_primary_10_1109_TCSII_2021_3091878
crossref_primary_10_1109_TAES_2024_3382224
crossref_primary_10_1109_TSP_2024_3434979
crossref_primary_10_1109_ACCESS_2021_3119561
crossref_primary_10_1109_TAES_2022_3181554
crossref_primary_10_1109_TAES_2024_3358793
crossref_primary_10_1109_TRS_2025_3542283
crossref_primary_10_3390_rs14040968
crossref_primary_10_1109_TCCN_2023_3306854
crossref_primary_10_1109_TRS_2023_3313624
crossref_primary_10_3390_rs15164046
crossref_primary_10_1109_JSEN_2023_3286893
crossref_primary_10_1109_MAES_2021_3072698
crossref_primary_10_1109_TVT_2022_3197425
crossref_primary_10_3390_rs16213951
crossref_primary_10_1109_TCCN_2023_3304634
crossref_primary_10_1109_TCCN_2024_3435364
crossref_primary_10_1109_MAES_2022_3205568
crossref_primary_10_1109_TAES_2023_3272307
crossref_primary_10_1109_TAES_2023_3275552
crossref_primary_10_1109_JSEN_2023_3333407
crossref_primary_10_1109_TAES_2024_3406671
crossref_primary_10_1109_TGRS_2023_3298355
crossref_primary_10_1109_TAES_2023_3240701
crossref_primary_10_1109_JSEN_2024_3461722
crossref_primary_10_1109_TIM_2025_3550239
crossref_primary_10_1109_ACCESS_2024_3404628
crossref_primary_10_1109_LGRS_2022_3142519
crossref_primary_10_1109_TRS_2024_3353112
crossref_primary_10_1109_LWC_2022_3214071
crossref_primary_10_3390_electronics11030441
crossref_primary_10_1109_ACCESS_2025_3539589
crossref_primary_10_1109_TRS_2023_3306309
crossref_primary_10_1049_rsn2_12694
crossref_primary_10_1109_TCCN_2023_3319543
crossref_primary_10_1109_JSEN_2024_3454121
crossref_primary_10_1016_j_eswa_2024_123957
crossref_primary_10_1109_TVT_2021_3129504
crossref_primary_10_1016_j_dsp_2021_103135
crossref_primary_10_1016_j_sigpro_2023_108965
crossref_primary_10_1109_TAES_2023_3336643
crossref_primary_10_3390_drones7070470
crossref_primary_10_3390_rs14122737
crossref_primary_10_1109_LSP_2021_3122355
crossref_primary_10_1049_sil2_12097
crossref_primary_10_3390_s21134291
crossref_primary_10_1587_transfun_2021EAP1072
crossref_primary_10_1109_JSTARS_2025_3528659
crossref_primary_10_1109_LGRS_2022_3187292
crossref_primary_10_1109_TRS_2024_3518954
crossref_primary_10_3390_rs16122127
crossref_primary_10_1109_TAES_2022_3203689
crossref_primary_10_1016_j_comcom_2022_09_002
crossref_primary_10_1109_JSTSP_2024_3386057
crossref_primary_10_1109_TAES_2024_3410948
crossref_primary_10_1109_TAES_2021_3109110
crossref_primary_10_1109_ACCESS_2023_3339579
crossref_primary_10_1109_TAES_2022_3198038
Cites_doi 10.1109/TAES.2020.2987443
10.1109/MSP.2006.1593335
10.1109/TAES.2017.2735659
10.1049/iet-rsn.2018.5379
10.1162/neco.1997.9.8.1735
10.1038/nature14236
10.1109/RADAR.2019.8835780
10.1109/RADAR42522.2020.9114775
10.1109/JSEN.2018.2873103
10.1155/2013/160718
10.1109/VETECS.2009.5073387
10.1109/TCCN.2017.2666266
10.1109/TAES.2011.5751276
10.1049/iet-rsn.2015.0372
10.1109/MSP.2007.361604
10.1049/el.2019.2650
10.1109/MSP.2017.2743240
10.1109/JSTSP.2015.2465304
10.1109/MSP.2018.2822847
10.1109/TAES.2018.2886614
10.1109/JPROC.2014.2365517
10.1109/ICNSURV.2019.8735219
10.1109/RADAR.2015.7131215
10.1109/TWC.2020.2984227
10.1109/MCOM.2007.358854
10.1109/JSTSP.2015.2467354
10.1023/A:1022140919877
10.1109/TAES.2015.130847
10.1109/RADAR.2011.5960666
10.1109/JSAC.2019.2933778
10.1109/IJCNN.2013.6706713
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCCN.2020.3019605
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2332-7731
EndPage 1349
ExternalDocumentID 10_1109_TCCN_2020_3019605
9178313
Genre orig-research
GrantInformation_xml – fundername: US Army Research Office (ARO) is gratefully acknowledged
  funderid: 10.13039/100000183
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IES
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c359t-bebd8b1205ef9e0b51722af45155797fbee16948f0cda6b7f235427e446fcdc63
IEDL.DBID RIE
ISSN 2332-7731
IngestDate Mon Jun 30 03:10:58 EDT 2025
Tue Jul 01 01:43:25 EDT 2025
Thu Apr 24 23:12:54 EDT 2025
Wed Aug 27 02:33:49 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-bebd8b1205ef9e0b51722af45155797fbee16948f0cda6b7f235427e446fcdc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2078-6472
0000-0001-9596-5400
PQID 2468761204
PQPubID 4437218
PageCount 15
ParticipantIDs crossref_primary_10_1109_TCCN_2020_3019605
ieee_primary_9178313
crossref_citationtrail_10_1109_TCCN_2020_3019605
proquest_journals_2468761204
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cognitive communications and networking
PublicationTitleAbbrev TCCN
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
skolnik (ref41) 2008
yang (ref36) 2019
ref14
puterman (ref17) 2005
ref31
chollet (ref40) 2015
ref30
ref10
bell (ref15) 1988
ref1
ref39
ref38
ref16
ref19
ref18
van hassel (ref33) 2016
ref46
ref24
ref45
ref23
ref26
martone (ref7) 2014; 2014
ref25
ref20
(ref2) 2019; 84
ref22
ref44
sutton (ref34) 2018
ref21
haenggi (ref42) 2009
ref43
hausknecht (ref32) 2015; 9
goodfellow (ref35) 2015
moo (ref11) 2015
ref28
ref27
ref29
ref8
(ref3) 2019
ref9
ref4
ref6
(ref37) 2019
ref5
References_xml – ident: ref16
  doi: 10.1109/TAES.2020.2987443
– ident: ref6
  doi: 10.1109/MSP.2006.1593335
– year: 2019
  ident: ref3
  publication-title: 5G in Release 17-Strong Radio Evolution
– ident: ref5
  doi: 10.1109/TAES.2017.2735659
– ident: ref13
  doi: 10.1049/iet-rsn.2018.5379
– ident: ref38
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref31
  doi: 10.1038/nature14236
– ident: ref1
  doi: 10.1109/RADAR.2019.8835780
– ident: ref45
  doi: 10.1109/RADAR42522.2020.9114775
– ident: ref28
  doi: 10.1109/JSEN.2018.2873103
– year: 2018
  ident: ref34
  publication-title: Reinforcement Learning An Introduction
– ident: ref27
  doi: 10.1155/2013/160718
– ident: ref22
  doi: 10.1109/VETECS.2009.5073387
– start-page: 2094
  year: 2016
  ident: ref33
  article-title: Deep reinforcement learning with double Q-learning
  publication-title: Proc Conf Artif Intell (AAAI)
– ident: ref21
  doi: 10.1109/TCCN.2017.2666266
– ident: ref25
  doi: 10.1109/TAES.2011.5751276
– ident: ref24
  doi: 10.1049/iet-rsn.2015.0372
– volume: 9
  start-page: 29
  year: 2015
  ident: ref32
  article-title: Deep recurrent Q-learning for partially observable MDPs
  publication-title: Proc AAAI Fall Symp Series
– year: 2008
  ident: ref41
  publication-title: Radar Handbook
– ident: ref23
  doi: 10.1109/MSP.2007.361604
– ident: ref43
  doi: 10.1049/el.2019.2650
– year: 2015
  ident: ref11
  publication-title: Adaptive Radar Resource Management
– ident: ref18
  doi: 10.1109/MSP.2017.2743240
– ident: ref19
  doi: 10.1109/JSTSP.2015.2465304
– year: 1988
  ident: ref15
  article-title: Information theory and radar: Mutual information and the design and analysis of radar waveforms and systems
– year: 2019
  ident: ref37
  publication-title: TensorFlow™
– ident: ref8
  doi: 10.1109/MSP.2018.2822847
– volume: 84
  year: 2019
  ident: ref2
  publication-title: Spectrum Horizons
– ident: ref14
  doi: 10.1109/TAES.2018.2886614
– year: 2005
  ident: ref17
  publication-title: Markov Decision Processes
– year: 2015
  ident: ref40
  publication-title: Keras
– ident: ref4
  doi: 10.1109/JPROC.2014.2365517
– year: 2009
  ident: ref42
  publication-title: Interference in Large Wireless Networks
– ident: ref20
  doi: 10.1109/ICNSURV.2019.8735219
– ident: ref29
  doi: 10.1109/RADAR.2015.7131215
– volume: 2014
  start-page: 10
  year: 2014
  ident: ref7
  article-title: Cognitive radar demystified
  publication-title: USRI Radio Sci Bull
– year: 2015
  ident: ref35
  publication-title: Deep Learning
– ident: ref39
  doi: 10.1109/TWC.2020.2984227
– ident: ref12
  doi: 10.1109/MCOM.2007.358854
– year: 2019
  ident: ref36
  publication-title: A Theoretical Analysis of Deep Q-Learning
– ident: ref10
  doi: 10.1109/JSTSP.2015.2467354
– ident: ref46
  doi: 10.1023/A:1022140919877
– ident: ref9
  doi: 10.1109/TAES.2015.130847
– ident: ref44
  doi: 10.1109/RADAR.2011.5960666
– ident: ref30
  doi: 10.1109/JSAC.2019.2933778
– ident: ref26
  doi: 10.1109/IJCNN.2013.6706713
SSID ssj0001626684
Score 2.4779267
Snippet This work addresses dynamic non-cooperative coexistence between a cognitive pulsed radar and nearby communications systems by applying nonlinear value function...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1335
SubjectTerms Algorithms
Cognitive radar
Deep learning
Deep reinforcement learning
Frequencies
Interference
Iterative methods
Machine learning
Markov decision process
Optimization
Performance measurement
Radar detection
Radar tracking
Recurrent neural networks
spectrum sharing
Target detection
Waveforms
Title Deep Reinforcement Learning Control for Radar Detection and Tracking in Congested Spectral Environments
URI https://ieeexplore.ieee.org/document/9178313
https://www.proquest.com/docview/2468761204
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwHA5zJz34FueLHDyJnX0kWXOUPRiCO4wNditJ-ssQpcrsLv715pd2c6iIt0KTkvKl_T3zfYRcO5OZMMFEEDGlA6wsBVLyOBBcMa2lZkZhoPg4EsMpe5jxWYPcrs_CAIBvPoM2Xvpafv5qlpgqu3OhRZqgRO2W22bVWa2vfIrzzEXK6sJlFMq7Sbc7cgFg7OJSJIFBgboN0-O1VH78gL1VGeyRx9V6qmaS5_ay1G3z8Y2q8b8L3ie7tXtJ76v9cEAaUBySnQ3SwSMy7wG80TF4ylTjs4O0Zlmd027VuU7dLTpWuVrQHpS-W6ugqsipM20Gk-v0qcCxc58tpShijxkT2t84NndMpoP-pDsMarmFwCRcloEGnac6ikMOVkKoufNtYmUZisB0ZMdqgEhIltrQ5Erojo0TzuIOuIDSmtyI5IQ0i9cCTgkFsLnmuYq0BWaRxD5KwAGkQm5EauMWCVdIZKbmIkdJjJfMxyShzBC8DMHLavBa5GY95a0i4vhr8BGCsR5Y49AiFyu4s_pTfc9iJpxFcK_Nzn6fdU628dlVD8sFaZaLJVw6T6TUV34LfgK3Xdv7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9swGH5VscPgwDY-RFnZfOCESMmH7cbHqYC6jfaAisQtsp3XFQKlCNILv35-nbSrAE27RYqtOHqcvJ9-HoBjbzIzLrmMEq5NRJWlSCmRRlJobowy3GoKFMcTObrhv27FbQdOV2dhEDE0n2GfLkMtv5zbBaXKznxokWckUfvB230umtNafzMq3jeXOW9Ll0mszqbD4cSHgKmPTIkGhiTq1oxPUFN58wsOduXyE4yXK2raSe77i9r07csrssb_XfJn2G4dTPaj2RFfoIPVDmyt0Q7uwuwc8ZFdYyBNtSE_yFqe1RkbNr3rzN9i17rUT-wc69CvVTFdlcwbN0vpdXZX0dhZyJcykrGnnAm7WDs4twc3lxfT4ShqBRcimwlVRwZNmZskjQU6hbER3rtJteMkAzNQA2cQE6l47mJbamkGLs0ETwfoQ0pnSyuzfdio5hUeAEN0pRGlToxD7ojGPsnQA6RjYWXu0i7ESyQK27KRkyjGQxGiklgVBF5B4BUteF04WU15bKg4_jV4l8BYDWxx6EJvCXfRfqzPRcqltwn-tfnh-7O-w8fRdHxVXP2c_P4Km_ScpqOlBxv10wKPvF9Sm29hO_4BYOPfSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+Control+for+Radar+Detection+and+Tracking+in+Congested+Spectral+Environments&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Thornton%2C+Charles+E.&rft.au=Kozy%2C+Mark+A.&rft.au=Buehrer%2C+R.+Michael&rft.au=Martone%2C+Anthony+F.&rft.date=2020-12-01&rft.pub=IEEE&rft.eissn=2332-7731&rft.volume=6&rft.issue=4&rft.spage=1335&rft.epage=1349&rft_id=info:doi/10.1109%2FTCCN.2020.3019605&rft.externalDocID=9178313
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon