Deep Reinforcement Learning Control for Radar Detection and Tracking in Congested Spectral Environments
This work addresses dynamic non-cooperative coexistence between a cognitive pulsed radar and nearby communications systems by applying nonlinear value function approximation via deep reinforcement learning (Deep RL) to develop a policy for optimal radar performance. The radar learns to vary the band...
Saved in:
Published in | IEEE transactions on cognitive communications and networking Vol. 6; no. 4; pp. 1335 - 1349 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2332-7731 2332-7731 |
DOI | 10.1109/TCCN.2020.3019605 |
Cover
Abstract | This work addresses dynamic non-cooperative coexistence between a cognitive pulsed radar and nearby communications systems by applying nonlinear value function approximation via deep reinforcement learning (Deep RL) to develop a policy for optimal radar performance. The radar learns to vary the bandwidth and center frequency of its linear frequency modulated (LFM) waveforms to mitigate interference with other systems for improved target detection performance while also sufficiently utilizing available frequency bands to achieve a fine range resolution. We demonstrate that this approach, based on the Deep <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Learning (DQL) algorithm, enhances several radar performance metrics more effectively than policy iteration or sense-and-avoid (SAA) approaches in several realistic coexistence environments. The DQL-based approach is also extended to incorporate Double <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-learning and a recurrent neural network to form a Double Deep Recurrent <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Network (DDRQN), which yields favorable performance and stability compared to DQL and policy iteration. The practicality of the proposed scheme is demonstrated through experiments performed on a software defined radar (SDRadar) prototype system. Experimental results indicate that the proposed Deep RL approach significantly improves radar detection performance in congested spectral environments compared to policy iteration and SAA. |
---|---|
AbstractList | This work addresses dynamic non-cooperative coexistence between a cognitive pulsed radar and nearby communications systems by applying nonlinear value function approximation via deep reinforcement learning (Deep RL) to develop a policy for optimal radar performance. The radar learns to vary the bandwidth and center frequency of its linear frequency modulated (LFM) waveforms to mitigate interference with other systems for improved target detection performance while also sufficiently utilizing available frequency bands to achieve a fine range resolution. We demonstrate that this approach, based on the Deep <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Learning (DQL) algorithm, enhances several radar performance metrics more effectively than policy iteration or sense-and-avoid (SAA) approaches in several realistic coexistence environments. The DQL-based approach is also extended to incorporate Double <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-learning and a recurrent neural network to form a Double Deep Recurrent <inline-formula> <tex-math notation="LaTeX">{Q} </tex-math></inline-formula>-Network (DDRQN), which yields favorable performance and stability compared to DQL and policy iteration. The practicality of the proposed scheme is demonstrated through experiments performed on a software defined radar (SDRadar) prototype system. Experimental results indicate that the proposed Deep RL approach significantly improves radar detection performance in congested spectral environments compared to policy iteration and SAA. This work addresses dynamic non-cooperative coexistence between a cognitive pulsed radar and nearby communications systems by applying nonlinear value function approximation via deep reinforcement learning (Deep RL) to develop a policy for optimal radar performance. The radar learns to vary the bandwidth and center frequency of its linear frequency modulated (LFM) waveforms to mitigate interference with other systems for improved target detection performance while also sufficiently utilizing available frequency bands to achieve a fine range resolution. We demonstrate that this approach, based on the Deep [Formula Omitted]-Learning (DQL) algorithm, enhances several radar performance metrics more effectively than policy iteration or sense-and-avoid (SAA) approaches in several realistic coexistence environments. The DQL-based approach is also extended to incorporate Double [Formula Omitted]-learning and a recurrent neural network to form a Double Deep Recurrent [Formula Omitted]-Network (DDRQN), which yields favorable performance and stability compared to DQL and policy iteration. The practicality of the proposed scheme is demonstrated through experiments performed on a software defined radar (SDRadar) prototype system. Experimental results indicate that the proposed Deep RL approach significantly improves radar detection performance in congested spectral environments compared to policy iteration and SAA. |
Author | Thornton, Charles E. Kozy, Mark A. Martone, Anthony F. Buehrer, R. Michael Sherbondy, Kelly D. |
Author_xml | – sequence: 1 givenname: Charles E. orcidid: 0000-0002-2078-6472 surname: Thornton fullname: Thornton, Charles E. email: cthorn14@vt.edu organization: Department of ECE, Wireless@VT, Blacksburg, VA, USA – sequence: 2 givenname: Mark A. surname: Kozy fullname: Kozy, Mark A. organization: Department of ECE, Wireless@VT, Blacksburg, VA, USA – sequence: 3 givenname: R. Michael surname: Buehrer fullname: Buehrer, R. Michael email: buehrer@vt.edu organization: Department of ECE, Wireless@VT, Blacksburg, VA, USA – sequence: 4 givenname: Anthony F. orcidid: 0000-0001-9596-5400 surname: Martone fullname: Martone, Anthony F. organization: Sensors and Electronic Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD, USA – sequence: 5 givenname: Kelly D. surname: Sherbondy fullname: Sherbondy, Kelly D. organization: Sensors and Electronic Devices Directorate, U.S. Army Research Laboratory, Adelphi, MD, USA |
BookMark | eNp9kE1LAzEQhoNUsNb-APES8Lw1H7vJ7lG2fkFRqPUcstlJSd0mNbsV_Pfu0iLiwdMMzPO-M_Oeo5EPHhC6pGRGKSluVmX5PGOEkRkntBAkO0FjxjlLpOR09Ks_Q9O23RBCqGBC5OkYrecAO7wE522IBrbgO7wAHb3za1wG38XQ4H6El7rWEc-hA9O54LH2NV5Fbd4H0PmBXUPbQY1fdz0SdYPv_KeLwQ-e7QU6tbppYXqsE_R2f7cqH5PFy8NTebtIDM-KLqmgqvOKMpKBLYBUGZWMaZtmNMtkIW0FQEWR5paYWotKWsazlElIU2FNbQSfoOuD7y6Gj31_kNqEffT9SsVSkUvRe6c9JQ-UiaFtI1hlXKeHv_rDXaMoUUOwaghWDcGqY7C9kv5R7qLb6vj1r-bqoHEA8MMXVOaccv4NTtuGNg |
CODEN | ITCCG7 |
CitedBy_id | crossref_primary_10_1109_TCSII_2021_3091878 crossref_primary_10_1109_TAES_2024_3382224 crossref_primary_10_1109_TSP_2024_3434979 crossref_primary_10_1109_ACCESS_2021_3119561 crossref_primary_10_1109_TAES_2022_3181554 crossref_primary_10_1109_TAES_2024_3358793 crossref_primary_10_1109_TRS_2025_3542283 crossref_primary_10_3390_rs14040968 crossref_primary_10_1109_TCCN_2023_3306854 crossref_primary_10_1109_TRS_2023_3313624 crossref_primary_10_3390_rs15164046 crossref_primary_10_1109_JSEN_2023_3286893 crossref_primary_10_1109_MAES_2021_3072698 crossref_primary_10_1109_TVT_2022_3197425 crossref_primary_10_3390_rs16213951 crossref_primary_10_1109_TCCN_2023_3304634 crossref_primary_10_1109_TCCN_2024_3435364 crossref_primary_10_1109_MAES_2022_3205568 crossref_primary_10_1109_TAES_2023_3272307 crossref_primary_10_1109_TAES_2023_3275552 crossref_primary_10_1109_JSEN_2023_3333407 crossref_primary_10_1109_TAES_2024_3406671 crossref_primary_10_1109_TGRS_2023_3298355 crossref_primary_10_1109_TAES_2023_3240701 crossref_primary_10_1109_JSEN_2024_3461722 crossref_primary_10_1109_TIM_2025_3550239 crossref_primary_10_1109_ACCESS_2024_3404628 crossref_primary_10_1109_LGRS_2022_3142519 crossref_primary_10_1109_TRS_2024_3353112 crossref_primary_10_1109_LWC_2022_3214071 crossref_primary_10_3390_electronics11030441 crossref_primary_10_1109_ACCESS_2025_3539589 crossref_primary_10_1109_TRS_2023_3306309 crossref_primary_10_1049_rsn2_12694 crossref_primary_10_1109_TCCN_2023_3319543 crossref_primary_10_1109_JSEN_2024_3454121 crossref_primary_10_1016_j_eswa_2024_123957 crossref_primary_10_1109_TVT_2021_3129504 crossref_primary_10_1016_j_dsp_2021_103135 crossref_primary_10_1016_j_sigpro_2023_108965 crossref_primary_10_1109_TAES_2023_3336643 crossref_primary_10_3390_drones7070470 crossref_primary_10_3390_rs14122737 crossref_primary_10_1109_LSP_2021_3122355 crossref_primary_10_1049_sil2_12097 crossref_primary_10_3390_s21134291 crossref_primary_10_1587_transfun_2021EAP1072 crossref_primary_10_1109_JSTARS_2025_3528659 crossref_primary_10_1109_LGRS_2022_3187292 crossref_primary_10_1109_TRS_2024_3518954 crossref_primary_10_3390_rs16122127 crossref_primary_10_1109_TAES_2022_3203689 crossref_primary_10_1016_j_comcom_2022_09_002 crossref_primary_10_1109_JSTSP_2024_3386057 crossref_primary_10_1109_TAES_2024_3410948 crossref_primary_10_1109_TAES_2021_3109110 crossref_primary_10_1109_ACCESS_2023_3339579 crossref_primary_10_1109_TAES_2022_3198038 |
Cites_doi | 10.1109/TAES.2020.2987443 10.1109/MSP.2006.1593335 10.1109/TAES.2017.2735659 10.1049/iet-rsn.2018.5379 10.1162/neco.1997.9.8.1735 10.1038/nature14236 10.1109/RADAR.2019.8835780 10.1109/RADAR42522.2020.9114775 10.1109/JSEN.2018.2873103 10.1155/2013/160718 10.1109/VETECS.2009.5073387 10.1109/TCCN.2017.2666266 10.1109/TAES.2011.5751276 10.1049/iet-rsn.2015.0372 10.1109/MSP.2007.361604 10.1049/el.2019.2650 10.1109/MSP.2017.2743240 10.1109/JSTSP.2015.2465304 10.1109/MSP.2018.2822847 10.1109/TAES.2018.2886614 10.1109/JPROC.2014.2365517 10.1109/ICNSURV.2019.8735219 10.1109/RADAR.2015.7131215 10.1109/TWC.2020.2984227 10.1109/MCOM.2007.358854 10.1109/JSTSP.2015.2467354 10.1023/A:1022140919877 10.1109/TAES.2015.130847 10.1109/RADAR.2011.5960666 10.1109/JSAC.2019.2933778 10.1109/IJCNN.2013.6706713 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TCCN.2020.3019605 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2332-7731 |
EndPage | 1349 |
ExternalDocumentID | 10_1109_TCCN_2020_3019605 9178313 |
Genre | orig-research |
GrantInformation_xml | – fundername: US Army Research Office (ARO) is gratefully acknowledged funderid: 10.13039/100000183 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IES IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c359t-bebd8b1205ef9e0b51722af45155797fbee16948f0cda6b7f235427e446fcdc63 |
IEDL.DBID | RIE |
ISSN | 2332-7731 |
IngestDate | Mon Jun 30 03:10:58 EDT 2025 Tue Jul 01 01:43:25 EDT 2025 Thu Apr 24 23:12:54 EDT 2025 Wed Aug 27 02:33:49 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-bebd8b1205ef9e0b51722af45155797fbee16948f0cda6b7f235427e446fcdc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2078-6472 0000-0001-9596-5400 |
PQID | 2468761204 |
PQPubID | 4437218 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TCCN_2020_3019605 ieee_primary_9178313 crossref_citationtrail_10_1109_TCCN_2020_3019605 proquest_journals_2468761204 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on cognitive communications and networking |
PublicationTitleAbbrev | TCCN |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 skolnik (ref41) 2008 yang (ref36) 2019 ref14 puterman (ref17) 2005 ref31 chollet (ref40) 2015 ref30 ref10 bell (ref15) 1988 ref1 ref39 ref38 ref16 ref19 ref18 van hassel (ref33) 2016 ref46 ref24 ref45 ref23 ref26 martone (ref7) 2014; 2014 ref25 ref20 (ref2) 2019; 84 ref22 ref44 sutton (ref34) 2018 ref21 haenggi (ref42) 2009 ref43 hausknecht (ref32) 2015; 9 goodfellow (ref35) 2015 moo (ref11) 2015 ref28 ref27 ref29 ref8 (ref3) 2019 ref9 ref4 ref6 (ref37) 2019 ref5 |
References_xml | – ident: ref16 doi: 10.1109/TAES.2020.2987443 – ident: ref6 doi: 10.1109/MSP.2006.1593335 – year: 2019 ident: ref3 publication-title: 5G in Release 17-Strong Radio Evolution – ident: ref5 doi: 10.1109/TAES.2017.2735659 – ident: ref13 doi: 10.1049/iet-rsn.2018.5379 – ident: ref38 doi: 10.1162/neco.1997.9.8.1735 – ident: ref31 doi: 10.1038/nature14236 – ident: ref1 doi: 10.1109/RADAR.2019.8835780 – ident: ref45 doi: 10.1109/RADAR42522.2020.9114775 – ident: ref28 doi: 10.1109/JSEN.2018.2873103 – year: 2018 ident: ref34 publication-title: Reinforcement Learning An Introduction – ident: ref27 doi: 10.1155/2013/160718 – ident: ref22 doi: 10.1109/VETECS.2009.5073387 – start-page: 2094 year: 2016 ident: ref33 article-title: Deep reinforcement learning with double Q-learning publication-title: Proc Conf Artif Intell (AAAI) – ident: ref21 doi: 10.1109/TCCN.2017.2666266 – ident: ref25 doi: 10.1109/TAES.2011.5751276 – ident: ref24 doi: 10.1049/iet-rsn.2015.0372 – volume: 9 start-page: 29 year: 2015 ident: ref32 article-title: Deep recurrent Q-learning for partially observable MDPs publication-title: Proc AAAI Fall Symp Series – year: 2008 ident: ref41 publication-title: Radar Handbook – ident: ref23 doi: 10.1109/MSP.2007.361604 – ident: ref43 doi: 10.1049/el.2019.2650 – year: 2015 ident: ref11 publication-title: Adaptive Radar Resource Management – ident: ref18 doi: 10.1109/MSP.2017.2743240 – ident: ref19 doi: 10.1109/JSTSP.2015.2465304 – year: 1988 ident: ref15 article-title: Information theory and radar: Mutual information and the design and analysis of radar waveforms and systems – year: 2019 ident: ref37 publication-title: TensorFlow™ – ident: ref8 doi: 10.1109/MSP.2018.2822847 – volume: 84 year: 2019 ident: ref2 publication-title: Spectrum Horizons – ident: ref14 doi: 10.1109/TAES.2018.2886614 – year: 2005 ident: ref17 publication-title: Markov Decision Processes – year: 2015 ident: ref40 publication-title: Keras – ident: ref4 doi: 10.1109/JPROC.2014.2365517 – year: 2009 ident: ref42 publication-title: Interference in Large Wireless Networks – ident: ref20 doi: 10.1109/ICNSURV.2019.8735219 – ident: ref29 doi: 10.1109/RADAR.2015.7131215 – volume: 2014 start-page: 10 year: 2014 ident: ref7 article-title: Cognitive radar demystified publication-title: USRI Radio Sci Bull – year: 2015 ident: ref35 publication-title: Deep Learning – ident: ref39 doi: 10.1109/TWC.2020.2984227 – ident: ref12 doi: 10.1109/MCOM.2007.358854 – year: 2019 ident: ref36 publication-title: A Theoretical Analysis of Deep Q-Learning – ident: ref10 doi: 10.1109/JSTSP.2015.2467354 – ident: ref46 doi: 10.1023/A:1022140919877 – ident: ref9 doi: 10.1109/TAES.2015.130847 – ident: ref44 doi: 10.1109/RADAR.2011.5960666 – ident: ref30 doi: 10.1109/JSAC.2019.2933778 – ident: ref26 doi: 10.1109/IJCNN.2013.6706713 |
SSID | ssj0001626684 |
Score | 2.4779267 |
Snippet | This work addresses dynamic non-cooperative coexistence between a cognitive pulsed radar and nearby communications systems by applying nonlinear value function... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1335 |
SubjectTerms | Algorithms Cognitive radar Deep learning Deep reinforcement learning Frequencies Interference Iterative methods Machine learning Markov decision process Optimization Performance measurement Radar detection Radar tracking Recurrent neural networks spectrum sharing Target detection Waveforms |
Title | Deep Reinforcement Learning Control for Radar Detection and Tracking in Congested Spectral Environments |
URI | https://ieeexplore.ieee.org/document/9178313 https://www.proquest.com/docview/2468761204 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwHA5zJz34FueLHDyJnX0kWXOUPRiCO4wNditJ-ssQpcrsLv715pd2c6iIt0KTkvKl_T3zfYRcO5OZMMFEEDGlA6wsBVLyOBBcMa2lZkZhoPg4EsMpe5jxWYPcrs_CAIBvPoM2Xvpafv5qlpgqu3OhRZqgRO2W22bVWa2vfIrzzEXK6sJlFMq7Sbc7cgFg7OJSJIFBgboN0-O1VH78gL1VGeyRx9V6qmaS5_ay1G3z8Y2q8b8L3ie7tXtJ76v9cEAaUBySnQ3SwSMy7wG80TF4ylTjs4O0Zlmd027VuU7dLTpWuVrQHpS-W6ugqsipM20Gk-v0qcCxc58tpShijxkT2t84NndMpoP-pDsMarmFwCRcloEGnac6ikMOVkKoufNtYmUZisB0ZMdqgEhIltrQ5Erojo0TzuIOuIDSmtyI5IQ0i9cCTgkFsLnmuYq0BWaRxD5KwAGkQm5EauMWCVdIZKbmIkdJjJfMxyShzBC8DMHLavBa5GY95a0i4vhr8BGCsR5Y49AiFyu4s_pTfc9iJpxFcK_Nzn6fdU628dlVD8sFaZaLJVw6T6TUV34LfgK3Xdv7 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9swGH5VscPgwDY-RFnZfOCESMmH7cbHqYC6jfaAisQtsp3XFQKlCNILv35-nbSrAE27RYqtOHqcvJ9-HoBjbzIzLrmMEq5NRJWlSCmRRlJobowy3GoKFMcTObrhv27FbQdOV2dhEDE0n2GfLkMtv5zbBaXKznxokWckUfvB230umtNafzMq3jeXOW9Ll0mszqbD4cSHgKmPTIkGhiTq1oxPUFN58wsOduXyE4yXK2raSe77i9r07csrssb_XfJn2G4dTPaj2RFfoIPVDmyt0Q7uwuwc8ZFdYyBNtSE_yFqe1RkbNr3rzN9i17rUT-wc69CvVTFdlcwbN0vpdXZX0dhZyJcykrGnnAm7WDs4twc3lxfT4ShqBRcimwlVRwZNmZskjQU6hbER3rtJteMkAzNQA2cQE6l47mJbamkGLs0ETwfoQ0pnSyuzfdio5hUeAEN0pRGlToxD7ojGPsnQA6RjYWXu0i7ESyQK27KRkyjGQxGiklgVBF5B4BUteF04WU15bKg4_jV4l8BYDWxx6EJvCXfRfqzPRcqltwn-tfnh-7O-w8fRdHxVXP2c_P4Km_ScpqOlBxv10wKPvF9Sm29hO_4BYOPfSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Reinforcement+Learning+Control+for+Radar+Detection+and+Tracking+in+Congested+Spectral+Environments&rft.jtitle=IEEE+transactions+on+cognitive+communications+and+networking&rft.au=Thornton%2C+Charles+E.&rft.au=Kozy%2C+Mark+A.&rft.au=Buehrer%2C+R.+Michael&rft.au=Martone%2C+Anthony+F.&rft.date=2020-12-01&rft.pub=IEEE&rft.eissn=2332-7731&rft.volume=6&rft.issue=4&rft.spage=1335&rft.epage=1349&rft_id=info:doi/10.1109%2FTCCN.2020.3019605&rft.externalDocID=9178313 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2332-7731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2332-7731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2332-7731&client=summon |