YOLO-Helmet: A Novel Algorithm for Detecting Dense Small Safety Helmets in Construction Scenes

Safety helmet wearing is an effective measure for reducing construction safety accidents. However, the current algorithms for detecting helmet-wearing face several challenges, including high missed detection rates and low accuracy in detecting dense small safety helmets. Therefore, this paper propos...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 107170 - 107180
Main Authors Yang, Guoliang, Hong, Xinfang, Sheng, Yangyang, Sun, Liuyan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Safety helmet wearing is an effective measure for reducing construction safety accidents. However, the current algorithms for detecting helmet-wearing face several challenges, including high missed detection rates and low accuracy in detecting dense small safety helmets. Therefore, this paper proposes a novel algorithm called YOLO-Helmet. Firstly, in order to solve the problem of difficult detection due to the small area of the helmet in the image, a small size detection layer was extended to improve the detection sensitivity of the network to small size targets. Secondly, in order to reduce the influence of occlusion on the accuracy of helmet detection, the C-ELAN module was constructed, and the receptive field is expanded by deformable convolution to provide rich contextual feature information for coordinate attention, so as to improve the accuracy of the network for the discrimination of target position information. Thirdly, CIoU was combined with NWD to reduce the sensitivity of position deviation while retaining the excellent classification ability of CIoU. Finally, in order to facilitate the model deployment, the VoV-DG module based on GSConv was constructed in the neck. The experimental results show that the YOLO-Helmet algorithm achieved an average detection accuracy of 93.1% on the SHWD dataset and is more suitable for the identification of dense small helmets in construction scenes than other mainstream algorithms.
AbstractList Safety helmet wearing is an effective measure for reducing construction safety accidents. However, the current algorithms for detecting helmet-wearing face several challenges, including high missed detection rates and low accuracy in detecting dense small safety helmets. Therefore, this paper proposes a novel algorithm called YOLO-Helmet. Firstly, in order to solve the problem of difficult detection due to the small area of the helmet in the image, a small size detection layer was extended to improve the detection sensitivity of the network to small size targets. Secondly, in order to reduce the influence of occlusion on the accuracy of helmet detection, the C-ELAN module was constructed, and the receptive field is expanded by deformable convolution to provide rich contextual feature information for coordinate attention, so as to improve the accuracy of the network for the discrimination of target position information. Thirdly, CIoU was combined with NWD to reduce the sensitivity of position deviation while retaining the excellent classification ability of CIoU. Finally, in order to facilitate the model deployment, the VoV-DG module based on GSConv was constructed in the neck. The experimental results show that the YOLO-Helmet algorithm achieved an average detection accuracy of 93.1% on the SHWD dataset and is more suitable for the identification of dense small helmets in construction scenes than other mainstream algorithms.
Author Yang, Guoliang
Hong, Xinfang
Sheng, Yangyang
Sun, Liuyan
Author_xml – sequence: 1
  givenname: Guoliang
  orcidid: 0000-0003-0408-1453
  surname: Yang
  fullname: Yang, Guoliang
  organization: School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, China
– sequence: 2
  givenname: Xinfang
  surname: Hong
  fullname: Hong, Xinfang
  email: 6720210554@mail.jxust.edu.cn
  organization: School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, China
– sequence: 3
  givenname: Yangyang
  orcidid: 0009-0004-3456-8435
  surname: Sheng
  fullname: Sheng, Yangyang
  organization: School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, China
– sequence: 4
  givenname: Liuyan
  surname: Sun
  fullname: Sun, Liuyan
  organization: School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, China
BookMark eNpNUUtr3DAQFiWFpml-QXsQ9OzNyHrY7m1x0ySwdA9ODr1UyPJ468UrpZK2kH9fbRxC5jLDMN9j-D6SM-cdEvKZwYoxaK7WbXvddasSSrHigssK4B05L5lqCi65OnszfyCXMe4hV51Xsjonv39tN9viFucDpm90TX_6fzjT9bzzYUp_DnT0gX7HhDZNbpcnF5F2BzPPtDMjpie6QCOdHG29iykc86l3tLPoMH4i70czR7x86Rfk4cf1fXtbbLY3d-16U1gum1T0gykHKwGEHWVjlOIIhqthtAOXUNtsWKre1g1rasWE4TWrQdZsEAgjiIZfkLuFd_Bmrx_DdDDhSXsz6eeFDzttQprsjBr6AXDkomdMiBJ4L8uqkizLK25Q2Mz1deF6DP7vEWPSe38MLtvXnAkla9WokyJfrmzwMQYcX1UZ6FMueslFn3LRL7lk1JcFNSHiG0R-SkHF_wM59YjJ
CODEN IAECCG
Cites_doi 10.1007/s11554-024-01436-6
10.1007/978-3-319-46448-0_2
10.3390/s23031256
10.3390/s22249843
10.1109/ICCV.2017.322
10.3390/s23041822
10.1007/978-3-030-01264-9_8
10.1109/CVPR.2018.00913
10.1007/978-3-031-72751-1_1
10.1109/TPAMI.2016.2577031
10.1109/WIW.2016.045
10.1155/2015/721380
10.14135/j.cnki.1006-3080.2014.03,018
10.1109/CVPR.2017.690
10.1109/ICCV.2015.169
10.1016/j.compind.2018.03.037
10.1109/ICCV.2017.74
10.3390/s22176702
10.1007/s10489-022-03664-4
10.1109/ICCV.2019.00140
10.1109/CVPR.2017.195
10.1109/CVPR.2016.91
10.1109/ICIP49359.2023.10222202
10.1109/CVPR46437.2021.01350
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3435700
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 107180
ExternalDocumentID oai_doaj_org_article_0bd0ef34b1144203b527751dc563ae4c
10_1109_ACCESS_2024_3435700
10614607
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Program of Jiangxi Provincial Department of Education
  grantid: GJJ210861
  funderid: 10.13039/100015811
– fundername: Science and Technology Project of Jiangxi Education Department
  grantid: GJJ200879
  funderid: 10.13039/100015811
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-bda2dc5004cf59a663e0a36dfcd3508c00056bc89198614a38180581d4e0f0493
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:27:45 EDT 2025
Mon Jun 30 12:59:49 EDT 2025
Tue Jul 01 03:02:44 EDT 2025
Wed Aug 27 02:30:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-bda2dc5004cf59a663e0a36dfcd3508c00056bc89198614a38180581d4e0f0493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-3456-8435
0000-0003-0408-1453
OpenAccessLink https://doaj.org/article/0bd0ef34b1144203b527751dc563ae4c
PQID 3146586969
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_3146586969
crossref_primary_10_1109_ACCESS_2024_3435700
doaj_primary_oai_doaj_org_article_0bd0ef34b1144203b527751dc563ae4c
ieee_primary_10614607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
Wang (ref27) 2021
Liu (ref18) 2024; 1
ref23
ref26
ref20
ref22
ref21
ref28
Wu (ref25) 2024; 1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Mei (ref24) 2023; 38
References_xml – ident: ref26
  doi: 10.1007/s11554-024-01436-6
– ident: ref8
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref14
  doi: 10.3390/s23031256
– ident: ref1
  doi: 10.3390/s22249843
– volume: 1
  start-page: 1
  year: 2024
  ident: ref25
  article-title: A lightweight detection method for mature yellow flowers based on improved YOLOv5
  publication-title: J. Chin. Agricult. Mechanization
– ident: ref12
  doi: 10.1109/ICCV.2017.322
– ident: ref15
  doi: 10.3390/s23041822
– ident: ref23
  doi: 10.1007/978-3-030-01264-9_8
– ident: ref17
  doi: 10.1109/CVPR.2018.00913
– ident: ref11
  doi: 10.1007/978-3-031-72751-1_1
– ident: ref7
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref3
  doi: 10.1109/WIW.2016.045
– ident: ref4
  doi: 10.1155/2015/721380
– ident: ref2
  doi: 10.14135/j.cnki.1006-3080.2014.03,018
– ident: ref9
  doi: 10.1109/CVPR.2017.690
– ident: ref6
  doi: 10.1109/ICCV.2015.169
– year: 2021
  ident: ref27
  article-title: A normalized Gaussian Wasserstein distance for tiny object detection
  publication-title: arXiv:2110.13389
– ident: ref5
  doi: 10.1016/j.compind.2018.03.037
– ident: ref28
  doi: 10.1109/ICCV.2017.74
– ident: ref13
  doi: 10.3390/s22176702
– ident: ref16
  doi: 10.1007/s10489-022-03664-4
– volume: 1
  start-page: 1
  year: 2024
  ident: ref18
  article-title: Improved YOLOv7 method for aerial small target detection
  publication-title: J. Beijing Univ. Aeronaut. Astronaut.
– ident: ref22
  doi: 10.1109/ICCV.2019.00140
– volume: 38
  start-page: 1032
  issue: 6
  year: 2023
  ident: ref24
  article-title: A lightweight fish detection method based on improved YOLOv7 model
  publication-title: J. Dalian Ocean Univ.
– ident: ref21
  doi: 10.1109/CVPR.2017.195
– ident: ref10
  doi: 10.1109/CVPR.2016.91
– ident: ref19
  doi: 10.1109/ICIP49359.2023.10222202
– ident: ref20
  doi: 10.1109/CVPR46437.2021.01350
SSID ssj0000816957
Score 2.3069417
Snippet Safety helmet wearing is an effective measure for reducing construction safety accidents. However, the current algorithms for detecting helmet-wearing face...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 107170
SubjectTerms Accuracy
Algorithms
Construction accidents & safety
Convolutional neural networks
coordinate attention
Feature extraction
Formability
GSConv
Head
Head-mounted displays
Helmet wearing detection
Helmets
Modules
Neck
NWD
Object recognition
Occlusion
Occupational safety
Real-time systems
Safety
Safety helmets
Sensitivity
Target detection
YOLOv7-tiny
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJ3rog1J1W1r5wJEsTvxI3NuyLUJVWQ5bJHqp5ccEELtZxIZK7a9n7GTRqgipN8uxFduf7fnG9swQsheiwaSv6gyQvWaCA2S21CoLueNelYW06VXlyUQdn4lv5_K8N1ZPtjAAkB6fwTAm011-WPi7eFR2kNQXFW3Hn6Hm1hlrPRyoxAgSWpa9Z6Gc6YPReIydQB2wEEOOtKCMZmxr0ic56e-jqjzaipN8OXpJJquWdc9Krod3rRv6v_84bfzvpr8iL3qmSUfd1HhNNqDZJs_X_A--Ib9-nn4_zVDyzKH9TEd0svgNWGN2sbi9ai_nFAkt_QLxmgGLY6pZAp3O7WxGp7aG9g_tqi7pVUNj5M-VL1o69XEL3SFnR19_jI-zPuBC5rnUbeaCLYKXuG58LbVFMgLMchVqHzgSOR8JnnK-0rmusDs2SnsmkfEKYDWqGvwt2WwWDbwjNA-V41yHwJkQskSJAKBRJDrIgytUNSD7KyDMTedXwyR9hGnT4WYibqbHbUAOI1gPRaNT7JSBg2z6NWaYCwxqLhzqeKJg3MmiLGWOPVLcgvADshOBWftfh8mA7K6wN_0KXhqOn2SltNLvn6j2gWzFJnbnMbtkE8cYPiJDad2nNDPvAbIE4K0
  priority: 102
  providerName: IEEE
Title YOLO-Helmet: A Novel Algorithm for Detecting Dense Small Safety Helmets in Construction Scenes
URI https://ieeexplore.ieee.org/document/10614607
https://www.proquest.com/docview/3146586969
https://doaj.org/article/0bd0ef34b1144203b527751dc563ae4c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXi0mjaPNt7WVRHxcVgFvRjymKqw2xV2Efz3TtquFDx48VbahDYz6XzftMk3hByGuGHSF2UCyF4TwQESm2uVhNRxr_JM2npV5e2dunoU10_yqVPqK64Ja-SBG8OdMBcYlFw4JO4iY9zJLM9lGrxU3ILwMfoi5nWSqToGF6nSMm9lhlKmT_qDAY4IE8JMHHPkCHnc09aBolqxvy2x8isu12BzuUpWWpZI-83TrZEFqNbJckc7cIO8PN_f3CeIGmOYndI-vZt8AvYYvU4w3X8bUySj9BziLwJsjkfVFOhwbEcjOrQlzL5o03VK3ysaq3bOdWTp0Mfwt0keLy8eBldJWywh8VzqWeKCzdAoOOd9KbVFIgHMchVKHziSMB_JmXK-0KkuEJJtRGomka0KYCWmCXyLLFaTCrYJTUPhONchcCaEzDGaA2iEMwdpcJkqeuRobjfz0WhimDqXYNo0ZjbRzKY1c4-cRdv-NI2C1vUJdLNp3Wz-cnOPbEbPdO6Hg1As75G9uatM-_ZNDcdLslBa6Z3_uPcuWYrjaT687JFFdAjsIxWZuYN61h3Uuwa_ASbv1zU
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQewAOPIsIFPCBI5t6149d9xYCVYA0PaSVygXLj1moSDaIbCuVX8_Yu6kiEBI3y2trbX-25xvbM0PI6xANJn1VZ4DsNRMcILOlVlnIHfeqLKRNryqPZ2pyJj6ey_PeWD3ZwgBAenwGw5hMd_lh5S_jUdlBUl9UtB3fRcEv885c6-ZIJcaQ0LLsfQvlTB-MxmPsBmqBhRhyJAZlNGTbkj_JTX8fV-WvzThJmKP7ZLZpW_ew5PvwsnVD_-sPt43_3fgH5F7PNemomxwPyS1oHpG7Wx4IH5Mvn0-mJxnKniW0h3REZ6srwBqLr6ufF-23JUVKS99BvGjA4phq1kDnS7tY0Lmtob2mXdU1vWhojP258UZL5z5uonvk7Oj96XiS9SEXMs-lbjMXbBG8xJXja6kt0hFglqtQ-8CRyvlI8ZTzlc51hd2xUd4ziZxXAKtR2eBPyE6zauApoXmoHOc6BM6EkCXKBACNQtFBHlyhqgF5swHC_Og8a5ikkTBtOtxMxM30uA3I2wjWTdHoFjtl4CCbfpUZ5gKDmguHWp4oGHeyKEuZY48UtyD8gOxFYLb-12EyIPsb7E2_hteG4ydZKa30s39Ue0VuT06Pp2b6YfbpObkTm9udzuyTHRxveIF8pXUv0yz9DZOM4_Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-Helmet%3A+A+Novel+Algorithm+for+Detecting+Dense+Small+Safety+Helmets+in+Construction+Scenes&rft.jtitle=IEEE+access&rft.au=Yang%2C+Guoliang&rft.au=Hong%2C+Xinfang&rft.au=Sheng%2C+Yangyang&rft.au=Sun%2C+Liuyan&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=107170&rft.epage=107180&rft_id=info:doi/10.1109%2FACCESS.2024.3435700&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3435700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon