YOLO-Helmet: A Novel Algorithm for Detecting Dense Small Safety Helmets in Construction Scenes
Safety helmet wearing is an effective measure for reducing construction safety accidents. However, the current algorithms for detecting helmet-wearing face several challenges, including high missed detection rates and low accuracy in detecting dense small safety helmets. Therefore, this paper propos...
Saved in:
Published in | IEEE access Vol. 12; pp. 107170 - 107180 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Safety helmet wearing is an effective measure for reducing construction safety accidents. However, the current algorithms for detecting helmet-wearing face several challenges, including high missed detection rates and low accuracy in detecting dense small safety helmets. Therefore, this paper proposes a novel algorithm called YOLO-Helmet. Firstly, in order to solve the problem of difficult detection due to the small area of the helmet in the image, a small size detection layer was extended to improve the detection sensitivity of the network to small size targets. Secondly, in order to reduce the influence of occlusion on the accuracy of helmet detection, the C-ELAN module was constructed, and the receptive field is expanded by deformable convolution to provide rich contextual feature information for coordinate attention, so as to improve the accuracy of the network for the discrimination of target position information. Thirdly, CIoU was combined with NWD to reduce the sensitivity of position deviation while retaining the excellent classification ability of CIoU. Finally, in order to facilitate the model deployment, the VoV-DG module based on GSConv was constructed in the neck. The experimental results show that the YOLO-Helmet algorithm achieved an average detection accuracy of 93.1% on the SHWD dataset and is more suitable for the identification of dense small helmets in construction scenes than other mainstream algorithms. |
---|---|
AbstractList | Safety helmet wearing is an effective measure for reducing construction safety accidents. However, the current algorithms for detecting helmet-wearing face several challenges, including high missed detection rates and low accuracy in detecting dense small safety helmets. Therefore, this paper proposes a novel algorithm called YOLO-Helmet. Firstly, in order to solve the problem of difficult detection due to the small area of the helmet in the image, a small size detection layer was extended to improve the detection sensitivity of the network to small size targets. Secondly, in order to reduce the influence of occlusion on the accuracy of helmet detection, the C-ELAN module was constructed, and the receptive field is expanded by deformable convolution to provide rich contextual feature information for coordinate attention, so as to improve the accuracy of the network for the discrimination of target position information. Thirdly, CIoU was combined with NWD to reduce the sensitivity of position deviation while retaining the excellent classification ability of CIoU. Finally, in order to facilitate the model deployment, the VoV-DG module based on GSConv was constructed in the neck. The experimental results show that the YOLO-Helmet algorithm achieved an average detection accuracy of 93.1% on the SHWD dataset and is more suitable for the identification of dense small helmets in construction scenes than other mainstream algorithms. |
Author | Yang, Guoliang Hong, Xinfang Sheng, Yangyang Sun, Liuyan |
Author_xml | – sequence: 1 givenname: Guoliang orcidid: 0000-0003-0408-1453 surname: Yang fullname: Yang, Guoliang organization: School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, China – sequence: 2 givenname: Xinfang surname: Hong fullname: Hong, Xinfang email: 6720210554@mail.jxust.edu.cn organization: School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, China – sequence: 3 givenname: Yangyang orcidid: 0009-0004-3456-8435 surname: Sheng fullname: Sheng, Yangyang organization: School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, China – sequence: 4 givenname: Liuyan surname: Sun fullname: Sun, Liuyan organization: School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou, China |
BookMark | eNpNUUtr3DAQFiWFpml-QXsQ9OzNyHrY7m1x0ySwdA9ODr1UyPJ468UrpZK2kH9fbRxC5jLDMN9j-D6SM-cdEvKZwYoxaK7WbXvddasSSrHigssK4B05L5lqCi65OnszfyCXMe4hV51Xsjonv39tN9viFucDpm90TX_6fzjT9bzzYUp_DnT0gX7HhDZNbpcnF5F2BzPPtDMjpie6QCOdHG29iykc86l3tLPoMH4i70czR7x86Rfk4cf1fXtbbLY3d-16U1gum1T0gykHKwGEHWVjlOIIhqthtAOXUNtsWKre1g1rasWE4TWrQdZsEAgjiIZfkLuFd_Bmrx_DdDDhSXsz6eeFDzttQprsjBr6AXDkomdMiBJ4L8uqkizLK25Q2Mz1deF6DP7vEWPSe38MLtvXnAkla9WokyJfrmzwMQYcX1UZ6FMueslFn3LRL7lk1JcFNSHiG0R-SkHF_wM59YjJ |
CODEN | IAECCG |
Cites_doi | 10.1007/s11554-024-01436-6 10.1007/978-3-319-46448-0_2 10.3390/s23031256 10.3390/s22249843 10.1109/ICCV.2017.322 10.3390/s23041822 10.1007/978-3-030-01264-9_8 10.1109/CVPR.2018.00913 10.1007/978-3-031-72751-1_1 10.1109/TPAMI.2016.2577031 10.1109/WIW.2016.045 10.1155/2015/721380 10.14135/j.cnki.1006-3080.2014.03,018 10.1109/CVPR.2017.690 10.1109/ICCV.2015.169 10.1016/j.compind.2018.03.037 10.1109/ICCV.2017.74 10.3390/s22176702 10.1007/s10489-022-03664-4 10.1109/ICCV.2019.00140 10.1109/CVPR.2017.195 10.1109/CVPR.2016.91 10.1109/ICIP49359.2023.10222202 10.1109/CVPR46437.2021.01350 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3435700 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 107180 |
ExternalDocumentID | oai_doaj_org_article_0bd0ef34b1144203b527751dc563ae4c 10_1109_ACCESS_2024_3435700 10614607 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Technology Program of Jiangxi Provincial Department of Education grantid: GJJ210861 funderid: 10.13039/100015811 – fundername: Science and Technology Project of Jiangxi Education Department grantid: GJJ200879 funderid: 10.13039/100015811 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-bda2dc5004cf59a663e0a36dfcd3508c00056bc89198614a38180581d4e0f0493 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:27:45 EDT 2025 Mon Jun 30 12:59:49 EDT 2025 Tue Jul 01 03:02:44 EDT 2025 Wed Aug 27 02:30:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-bda2dc5004cf59a663e0a36dfcd3508c00056bc89198614a38180581d4e0f0493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0004-3456-8435 0000-0003-0408-1453 |
OpenAccessLink | https://doaj.org/article/0bd0ef34b1144203b527751dc563ae4c |
PQID | 3146586969 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3146586969 crossref_primary_10_1109_ACCESS_2024_3435700 doaj_primary_oai_doaj_org_article_0bd0ef34b1144203b527751dc563ae4c ieee_primary_10614607 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 Wang (ref27) 2021 Liu (ref18) 2024; 1 ref23 ref26 ref20 ref22 ref21 ref28 Wu (ref25) 2024; 1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Mei (ref24) 2023; 38 |
References_xml | – ident: ref26 doi: 10.1007/s11554-024-01436-6 – ident: ref8 doi: 10.1007/978-3-319-46448-0_2 – ident: ref14 doi: 10.3390/s23031256 – ident: ref1 doi: 10.3390/s22249843 – volume: 1 start-page: 1 year: 2024 ident: ref25 article-title: A lightweight detection method for mature yellow flowers based on improved YOLOv5 publication-title: J. Chin. Agricult. Mechanization – ident: ref12 doi: 10.1109/ICCV.2017.322 – ident: ref15 doi: 10.3390/s23041822 – ident: ref23 doi: 10.1007/978-3-030-01264-9_8 – ident: ref17 doi: 10.1109/CVPR.2018.00913 – ident: ref11 doi: 10.1007/978-3-031-72751-1_1 – ident: ref7 doi: 10.1109/TPAMI.2016.2577031 – ident: ref3 doi: 10.1109/WIW.2016.045 – ident: ref4 doi: 10.1155/2015/721380 – ident: ref2 doi: 10.14135/j.cnki.1006-3080.2014.03,018 – ident: ref9 doi: 10.1109/CVPR.2017.690 – ident: ref6 doi: 10.1109/ICCV.2015.169 – year: 2021 ident: ref27 article-title: A normalized Gaussian Wasserstein distance for tiny object detection publication-title: arXiv:2110.13389 – ident: ref5 doi: 10.1016/j.compind.2018.03.037 – ident: ref28 doi: 10.1109/ICCV.2017.74 – ident: ref13 doi: 10.3390/s22176702 – ident: ref16 doi: 10.1007/s10489-022-03664-4 – volume: 1 start-page: 1 year: 2024 ident: ref18 article-title: Improved YOLOv7 method for aerial small target detection publication-title: J. Beijing Univ. Aeronaut. Astronaut. – ident: ref22 doi: 10.1109/ICCV.2019.00140 – volume: 38 start-page: 1032 issue: 6 year: 2023 ident: ref24 article-title: A lightweight fish detection method based on improved YOLOv7 model publication-title: J. Dalian Ocean Univ. – ident: ref21 doi: 10.1109/CVPR.2017.195 – ident: ref10 doi: 10.1109/CVPR.2016.91 – ident: ref19 doi: 10.1109/ICIP49359.2023.10222202 – ident: ref20 doi: 10.1109/CVPR46437.2021.01350 |
SSID | ssj0000816957 |
Score | 2.3069417 |
Snippet | Safety helmet wearing is an effective measure for reducing construction safety accidents. However, the current algorithms for detecting helmet-wearing face... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 107170 |
SubjectTerms | Accuracy Algorithms Construction accidents & safety Convolutional neural networks coordinate attention Feature extraction Formability GSConv Head Head-mounted displays Helmet wearing detection Helmets Modules Neck NWD Object recognition Occlusion Occupational safety Real-time systems Safety Safety helmets Sensitivity Target detection YOLOv7-tiny |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJ3rog1J1W1r5wJEsTvxI3NuyLUJVWQ5bJHqp5ccEELtZxIZK7a9n7GTRqgipN8uxFduf7fnG9swQsheiwaSv6gyQvWaCA2S21CoLueNelYW06VXlyUQdn4lv5_K8N1ZPtjAAkB6fwTAm011-WPi7eFR2kNQXFW3Hn6Hm1hlrPRyoxAgSWpa9Z6Gc6YPReIydQB2wEEOOtKCMZmxr0ic56e-jqjzaipN8OXpJJquWdc9Krod3rRv6v_84bfzvpr8iL3qmSUfd1HhNNqDZJs_X_A--Ib9-nn4_zVDyzKH9TEd0svgNWGN2sbi9ai_nFAkt_QLxmgGLY6pZAp3O7WxGp7aG9g_tqi7pVUNj5M-VL1o69XEL3SFnR19_jI-zPuBC5rnUbeaCLYKXuG58LbVFMgLMchVqHzgSOR8JnnK-0rmusDs2SnsmkfEKYDWqGvwt2WwWDbwjNA-V41yHwJkQskSJAKBRJDrIgytUNSD7KyDMTedXwyR9hGnT4WYibqbHbUAOI1gPRaNT7JSBg2z6NWaYCwxqLhzqeKJg3MmiLGWOPVLcgvADshOBWftfh8mA7K6wN_0KXhqOn2SltNLvn6j2gWzFJnbnMbtkE8cYPiJDad2nNDPvAbIE4K0 priority: 102 providerName: IEEE |
Title | YOLO-Helmet: A Novel Algorithm for Detecting Dense Small Safety Helmets in Construction Scenes |
URI | https://ieeexplore.ieee.org/document/10614607 https://www.proquest.com/docview/3146586969 https://doaj.org/article/0bd0ef34b1144203b527751dc563ae4c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOXi0mjaPNt7WVRHxcVgFvRjymKqw2xV2Efz3TtquFDx48VbahDYz6XzftMk3hByGuGHSF2UCyF4TwQESm2uVhNRxr_JM2npV5e2dunoU10_yqVPqK64Ja-SBG8OdMBcYlFw4JO4iY9zJLM9lGrxU3ILwMfoi5nWSqToGF6nSMm9lhlKmT_qDAY4IE8JMHHPkCHnc09aBolqxvy2x8isu12BzuUpWWpZI-83TrZEFqNbJckc7cIO8PN_f3CeIGmOYndI-vZt8AvYYvU4w3X8bUySj9BziLwJsjkfVFOhwbEcjOrQlzL5o03VK3ysaq3bOdWTp0Mfwt0keLy8eBldJWywh8VzqWeKCzdAoOOd9KbVFIgHMchVKHziSMB_JmXK-0KkuEJJtRGomka0KYCWmCXyLLFaTCrYJTUPhONchcCaEzDGaA2iEMwdpcJkqeuRobjfz0WhimDqXYNo0ZjbRzKY1c4-cRdv-NI2C1vUJdLNp3Wz-cnOPbEbPdO6Hg1As75G9uatM-_ZNDcdLslBa6Z3_uPcuWYrjaT687JFFdAjsIxWZuYN61h3Uuwa_ASbv1zU |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQewAOPIsIFPCBI5t6149d9xYCVYA0PaSVygXLj1moSDaIbCuVX8_Yu6kiEBI3y2trbX-25xvbM0PI6xANJn1VZ4DsNRMcILOlVlnIHfeqLKRNryqPZ2pyJj6ey_PeWD3ZwgBAenwGw5hMd_lh5S_jUdlBUl9UtB3fRcEv885c6-ZIJcaQ0LLsfQvlTB-MxmPsBmqBhRhyJAZlNGTbkj_JTX8fV-WvzThJmKP7ZLZpW_ew5PvwsnVD_-sPt43_3fgH5F7PNemomxwPyS1oHpG7Wx4IH5Mvn0-mJxnKniW0h3REZ6srwBqLr6ufF-23JUVKS99BvGjA4phq1kDnS7tY0Lmtob2mXdU1vWhojP258UZL5z5uonvk7Oj96XiS9SEXMs-lbjMXbBG8xJXja6kt0hFglqtQ-8CRyvlI8ZTzlc51hd2xUd4ziZxXAKtR2eBPyE6zauApoXmoHOc6BM6EkCXKBACNQtFBHlyhqgF5swHC_Og8a5ikkTBtOtxMxM30uA3I2wjWTdHoFjtl4CCbfpUZ5gKDmguHWp4oGHeyKEuZY48UtyD8gOxFYLb-12EyIPsb7E2_hteG4ydZKa30s39Ue0VuT06Pp2b6YfbpObkTm9udzuyTHRxveIF8pXUv0yz9DZOM4_Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-Helmet%3A+A+Novel+Algorithm+for+Detecting+Dense+Small+Safety+Helmets+in+Construction+Scenes&rft.jtitle=IEEE+access&rft.au=Yang%2C+Guoliang&rft.au=Hong%2C+Xinfang&rft.au=Sheng%2C+Yangyang&rft.au=Sun%2C+Liuyan&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=107170&rft.epage=107180&rft_id=info:doi/10.1109%2FACCESS.2024.3435700&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3435700 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |