Joint Deployment Optimization and Flight Trajectory Planning for UAV Assisted IoT Data Collection: A Bilevel Optimization Approach
This work investigates an unmanned aerial vehicle (UAV) assisted IoT system, where a UAV flies to each foothold to collect data from IoT devices, and then return to its start point. For such a system, we aim to minimize the energy consumption by jointly optimizing the deployment and flight trajector...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 23; no. 11; pp. 21492 - 21504 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This work investigates an unmanned aerial vehicle (UAV) assisted IoT system, where a UAV flies to each foothold to collect data from IoT devices, and then return to its start point. For such a system, we aim to minimize the energy consumption by jointly optimizing the deployment and flight trajectory of UAV. It is a mixed-integer non-convex and NP-hard problem. In order to address it, a bilevel optimization approach is proposed, where an upper-level method aims to optimize the deployment of UAV and a lower-level one aims to plan UAV flight trajectory. Specifically, the former optimizes the number and locations of footholds of UAV. This work proposes an improved dandelion algorithm with a novel encoding strategy, in which each dandelion represents a foothold of UAV and the entire dandelion population is seen as an entire deployment. Then, two mutation strategies are designed to adjust the number and locations of footholds. Based on the footholds of the UAV provided by the former, the latter transforms flight trajectory planning into a traveling salesman problem (TSP). This work proposes an iterated greedy algorithm to solve it efficiently. The effectiveness of the proposed bilevel optimization approach is verified on ten instances, and the experimental results show that it significantly outperforms other benchmark approaches. |
---|---|
AbstractList | This work investigates an unmanned aerial vehicle (UAV) assisted IoT system, where a UAV flies to each foothold to collect data from IoT devices, and then return to its start point. For such a system, we aim to minimize the energy consumption by jointly optimizing the deployment and flight trajectory of UAV. It is a mixed-integer non-convex and NP-hard problem. In order to address it, a bilevel optimization approach is proposed, where an upper-level method aims to optimize the deployment of UAV and a lower-level one aims to plan UAV flight trajectory. Specifically, the former optimizes the number and locations of footholds of UAV. This work proposes an improved dandelion algorithm with a novel encoding strategy, in which each dandelion represents a foothold of UAV and the entire dandelion population is seen as an entire deployment. Then, two mutation strategies are designed to adjust the number and locations of footholds. Based on the footholds of the UAV provided by the former, the latter transforms flight trajectory planning into a traveling salesman problem (TSP). This work proposes an iterated greedy algorithm to solve it efficiently. The effectiveness of the proposed bilevel optimization approach is verified on ten instances, and the experimental results show that it significantly outperforms other benchmark approaches. |
Author | Zhou, MengChu Han, Shoufei Liu, Xiaojing Zhu, Kun |
Author_xml | – sequence: 1 givenname: Shoufei orcidid: 0000-0003-3583-7735 surname: Han fullname: Han, Shoufei email: hanshoufei@gmail.com organization: Collaborative Innovation Center of Novel Software Technology and Industrialization, and the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 2 givenname: Kun orcidid: 0000-0001-6784-5583 surname: Zhu fullname: Zhu, Kun email: zhukun@nuaa.edu.cn organization: Collaborative Innovation Center of Novel Software Technology and Industrialization, and the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: MengChu orcidid: 0000-0002-5408-8752 surname: Zhou fullname: Zhou, MengChu email: zhou@njit.edu organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA – sequence: 4 givenname: Xiaojing orcidid: 0000-0002-6873-9667 surname: Liu fullname: Liu, Xiaojing email: liuxiaojing@nuaa.edu.cn organization: Collaborative Innovation Center of Novel Software Technology and Industrialization, and the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
BookMark | eNp9UE1rGzEQFSWFJml_QOhFkPO6kna1K-W2sevUweBCN7kuslZKZGRpI8kF99hfHjkOheTQ07wZ3sfwzsCJ804BcIHRBGPEv3WL7teEIEImJWaIMPYBnGJKWYEQrk8OmFQFRxR9AmcxbvK1ohifgr-33rgEZ2q0fr9VGa7GZLbmj0jGOyjcAOfWPDwm2AWxUTL5sIc_rXDOuAeofYB37T1sYzQxqQEufAdnIgk49dZmdva4gi28Nlb9VvatdzuOwQv5-Bl81MJG9eV1noO7-fdu-qNYrm4W03ZZyJLyVKzXDS2ZwkJzjQmuScWo5oxyofPWNFzTQVEmaCP1QBWp6FpqijiqZTNIsS7PweXRN8c-7VRM_cbvgsuRPWnKqmRNSerMao4sGXyMQelemvTycArC2B6j_lB4fyi8PxTevxaelfidcgxmK8L-v5qvR41RSv3jc4ZoTevyGbUPj0Y |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_3390_drones7060373 crossref_primary_10_1109_TCYB_2025_3531393 crossref_primary_10_1109_JIOT_2023_3301088 crossref_primary_10_1109_JIOT_2023_3309705 crossref_primary_10_3390_biomimetics9050298 crossref_primary_10_3390_pr11082447 crossref_primary_10_1109_TMC_2024_3426945 crossref_primary_10_1109_JIOT_2024_3520954 crossref_primary_10_1109_TITS_2024_3384576 crossref_primary_10_3390_math10244668 crossref_primary_10_1109_JSEN_2024_3423835 crossref_primary_10_20965_jaciii_2024_p1195 crossref_primary_10_1109_TITS_2023_3321384 crossref_primary_10_1016_j_vehcom_2025_100885 crossref_primary_10_1109_ACCESS_2023_3339227 crossref_primary_10_1109_TVT_2024_3439335 crossref_primary_10_1109_TITS_2024_3432818 crossref_primary_10_1109_TNSE_2023_3261280 crossref_primary_10_1016_j_comnet_2024_110842 crossref_primary_10_1109_JIOT_2023_3339136 crossref_primary_10_1109_JAS_2023_124008 crossref_primary_10_1371_journal_pone_0297066 crossref_primary_10_1109_JSEN_2023_3253920 crossref_primary_10_3390_drones9030178 crossref_primary_10_1016_j_eswa_2023_123082 crossref_primary_10_1109_ACCESS_2023_3335932 crossref_primary_10_1109_TIV_2023_3307134 crossref_primary_10_1109_JIOT_2023_3299308 crossref_primary_10_1145_3617994 crossref_primary_10_1016_j_asoc_2025_112744 crossref_primary_10_1109_JIOT_2023_3285942 crossref_primary_10_1109_JIOT_2024_3364239 crossref_primary_10_1109_JIOT_2024_3422252 crossref_primary_10_1109_JIOT_2024_3395779 crossref_primary_10_1016_j_comnet_2024_110731 crossref_primary_10_1109_TITS_2023_3237570 crossref_primary_10_1109_JIOT_2023_3282936 crossref_primary_10_1016_j_jag_2024_103708 crossref_primary_10_1109_TWC_2023_3321648 |
Cites_doi | 10.1109/TVT.2018.2867021 10.1109/TSMC.2016.2560128 10.1109/TCOMM.2019.2900630 10.1109/JIOT.2020.3013647 10.1109/TNSE.2020.3017556 10.1109/ACCESS.2019.2960314 10.1109/TSMC.2019.2907649 10.1080/0952813X.2017.1413142 10.1109/GLOCOM.2017.8254949 10.1109/ACCESS.2016.2529723 10.1109/TWC.2022.3150429 10.1016/j.eswa.2020.113803 10.1109/JAS.2021.1004171 10.1109/TSMC.2020.3042898 10.1109/TCOMM.2020.2982152 10.1109/ACCESS.2019.2890862 10.1109/TETCI.2019.2939373 10.1109/TSMC.2019.2956121 10.1109/ACCESS.2019.2935462 10.1109/JSYST.2018.2820085 10.1109/MWC.010.2000528 10.1186/s13638-018-1313-0 10.1109/TVT.2020.3001403 10.1109/ACCESS.2019.2927846 10.1109/TVT.2018.2816244 10.1109/ACCESS.2019.2945570 10.1109/TCOMM.2020.3044599 10.1109/TCE.2010.5505976 10.1155/2017/4523754 10.1109/LCOMM.2017.2772254 10.1016/j.knosys.2020.106282 10.1016/j.asoc.2016.10.022 10.1109/TCOMM.2020.3025910 10.1109/MWC.001.1900085 10.1007/s00500-020-05376-8 10.1109/TWC.2019.2926279 10.1016/j.neucom.2020.04.078 10.1109/JAS.2020.1003120 10.1186/s13638-019-1490-5 10.1109/LWC.2017.2700840 10.1109/TCC.2020.3001051 10.1109/TVT.2020.2972133 10.1109/TITS.2019.2892377 10.1109/TWC.2020.3007648 10.1145/2908961.2931634 10.1016/j.engappai.2020.103922 10.1109/TWC.2017.2751045 10.1109/TVT.2020.2968343 10.1109/TVT.2020.3018265 10.1109/TITS.2020.2972389 10.1109/JAS.2021.1004284 10.1109/JAS.2020.1003291 10.1007/s10462-018-9648-9 10.1109/TETCI.2019.2899604 10.1109/TII.2020.3004816 10.3390/s19224952 10.1109/TCOMM.2018.2792014 10.1109/TITS.2018.2835145 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TITS.2022.3180288 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 21504 |
ExternalDocumentID | 10_1109_TITS_2022_3180288 9805656 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundo para o Desenvolvimento das Ciencias e da Tecnologia (FDCT) grantid: 0047/2021/A1 funderid: 10.13039/501100006469 – fundername: National Natural Science Foundation of China grantid: 62071230; 62061146002 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20211567 funderid: 10.13039/501100004608 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION RIG 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-bb7538e1af9f12162485f9859af216779f5de58a57cfd5e245bcf50906c7dcab3 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Mon Jun 30 05:01:02 EDT 2025 Tue Jul 01 04:29:10 EDT 2025 Thu Apr 24 22:54:17 EDT 2025 Wed Aug 27 02:18:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-bb7538e1af9f12162485f9859af216779f5de58a57cfd5e245bcf50906c7dcab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6873-9667 0000-0002-5408-8752 0000-0001-6784-5583 0000-0003-3583-7735 |
PQID | 2734387326 |
PQPubID | 75735 |
PageCount | 13 |
ParticipantIDs | ieee_primary_9805656 proquest_journals_2734387326 crossref_citationtrail_10_1109_TITS_2022_3180288 crossref_primary_10_1109_TITS_2022_3180288 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 al-hilo (ref26) 2020; 22 du (ref24) 2021; 23 ref23 ref25 ref20 ref22 han (ref53) 2020; 8 ref21 ref28 ref27 ref29 ref60 ref61 |
References_xml | – ident: ref35 doi: 10.1109/TVT.2018.2867021 – ident: ref39 doi: 10.1109/TSMC.2016.2560128 – ident: ref27 doi: 10.1109/TCOMM.2019.2900630 – ident: ref21 doi: 10.1109/JIOT.2020.3013647 – ident: ref32 doi: 10.1109/TNSE.2020.3017556 – ident: ref14 doi: 10.1109/ACCESS.2019.2960314 – ident: ref48 doi: 10.1109/TSMC.2019.2907649 – ident: ref50 doi: 10.1080/0952813X.2017.1413142 – ident: ref22 doi: 10.1109/GLOCOM.2017.8254949 – ident: ref31 doi: 10.1109/ACCESS.2016.2529723 – ident: ref42 doi: 10.1109/TWC.2022.3150429 – ident: ref45 doi: 10.1016/j.eswa.2020.113803 – ident: ref10 doi: 10.1109/JAS.2021.1004171 – ident: ref1 doi: 10.1109/TSMC.2020.3042898 – ident: ref41 doi: 10.1109/TCOMM.2020.2982152 – ident: ref36 doi: 10.1109/ACCESS.2019.2890862 – ident: ref20 doi: 10.1109/TETCI.2019.2939373 – ident: ref38 doi: 10.1109/TSMC.2019.2956121 – ident: ref37 doi: 10.1109/ACCESS.2019.2935462 – volume: 23 start-page: 1 year: 2021 ident: ref24 article-title: UAV trajectory planning with probabilistic geo-fence via iterative chance-constrained optimization publication-title: IEEE Trans Intell Transp Syst – ident: ref61 doi: 10.1109/JSYST.2018.2820085 – ident: ref11 doi: 10.1109/MWC.010.2000528 – ident: ref33 doi: 10.1186/s13638-018-1313-0 – ident: ref25 doi: 10.1109/TVT.2020.3001403 – ident: ref47 doi: 10.1109/ACCESS.2019.2927846 – ident: ref23 doi: 10.1109/TVT.2018.2816244 – ident: ref56 doi: 10.1109/ACCESS.2019.2945570 – ident: ref29 doi: 10.1109/TCOMM.2020.3044599 – ident: ref6 doi: 10.1109/TCE.2010.5505976 – ident: ref44 doi: 10.1155/2017/4523754 – ident: ref15 doi: 10.1109/LCOMM.2017.2772254 – ident: ref46 doi: 10.1016/j.knosys.2020.106282 – ident: ref52 doi: 10.1016/j.asoc.2016.10.022 – ident: ref7 doi: 10.1109/TCOMM.2020.3025910 – ident: ref2 doi: 10.1109/MWC.001.1900085 – volume: 22 start-page: 1 year: 2020 ident: ref26 article-title: UAV-assisted content delivery in intelligent transportation systems-joint trajectory planning and cache management publication-title: IEEE Trans Intell Transp Syst – ident: ref55 doi: 10.1007/s00500-020-05376-8 – ident: ref13 doi: 10.1109/TWC.2019.2926279 – ident: ref51 doi: 10.1016/j.neucom.2020.04.078 – ident: ref4 doi: 10.1109/JAS.2020.1003120 – ident: ref34 doi: 10.1186/s13638-019-1490-5 – ident: ref16 doi: 10.1109/LWC.2017.2700840 – ident: ref60 doi: 10.1109/TCC.2020.3001051 – ident: ref30 doi: 10.1109/TVT.2020.2972133 – ident: ref58 doi: 10.1109/TITS.2019.2892377 – ident: ref28 doi: 10.1109/TWC.2020.3007648 – ident: ref54 doi: 10.1145/2908961.2931634 – volume: 8 start-page: 1 year: 2020 ident: ref53 article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection publication-title: IEEE Transactions on Computational Social Systems – ident: ref49 doi: 10.1016/j.engappai.2020.103922 – ident: ref43 doi: 10.1109/TWC.2017.2751045 – ident: ref8 doi: 10.1109/TVT.2020.2968343 – ident: ref17 doi: 10.1109/TVT.2020.3018265 – ident: ref57 doi: 10.1109/TITS.2020.2972389 – ident: ref40 doi: 10.1109/JAS.2021.1004284 – ident: ref12 doi: 10.1109/JAS.2020.1003291 – ident: ref3 doi: 10.1007/s10462-018-9648-9 – ident: ref19 doi: 10.1109/TETCI.2019.2899604 – ident: ref18 doi: 10.1109/TII.2020.3004816 – ident: ref5 doi: 10.3390/s19224952 – ident: ref9 doi: 10.1109/TCOMM.2018.2792014 – ident: ref59 doi: 10.1109/TITS.2018.2835145 |
SSID | ssj0014511 |
Score | 2.5604377 |
Snippet | This work investigates an unmanned aerial vehicle (UAV) assisted IoT system, where a UAV flies to each foothold to collect data from IoT devices, and then... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 21492 |
SubjectTerms | Autonomous aerial vehicles Bilevel optimization dandelion algorithm Data collection deployment optimization Electronic devices Energy consumption flight trajectory planning Greedy algorithms Internet of Things iterated greedy algorithm machine learning Mixed integer Mutation Optimization Trajectory Trajectory planning Traveling salesman problem UAV Unmanned aerial vehicles |
Title | Joint Deployment Optimization and Flight Trajectory Planning for UAV Assisted IoT Data Collection: A Bilevel Optimization Approach |
URI | https://ieeexplore.ieee.org/document/9805656 https://www.proquest.com/docview/2734387326 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5Bn8YDsDFEoSA_7GkibX45sXkrsAqQGA9rp75FtuNIQEkRpEjwyF_OnZNUY5umvcWSbVm5s-8-n-87gC-xzoVFw-TpVBsvloHGLZVEXqTzhIpc6VBRcvLl9-RsEl9M-XQFDpe5MNZa9_jM9unTxfLzuVnQVdlACp_8j1VYReBW52otIwbEs-W4UcPYkz5vI5iBLwfj8_EPRIJhiABVoD0V72yQK6ryx0nszMtoAy7bhdWvSm77i0r3zctvnI3_u_JNWG_8TDasFeMjrNjyE6z9wj64Ba8X8-uyYqeWav7SeHaF58ddk5jJVJmz0YywO0ODduNu959ZW-SIobPLJsOfDOVLmpKz8_mYnapKMXcX4dIljtiQHeOx82Rn7-ceNkzmn2Ey-jY-OfOakgyeibisPK0R3ggbqEIWQRgkRIhWSMGlKrCVprLgueVC8dQUObdhzLUp0CfxE5PmRuloGzrlvLQ7wIRMuJYJhekQklqcQeEfihU3SWxjIbvgt0LKTMNXTmUzZpnDLb7MSK4ZyTVr5NqFr8sh9zVZx786b5Gclh0bEXWh12pC1mznx4w4gCKRoqu7-_dRe_CB5q6TFHvQqR4Wdh-9lUofODV9A5Y85og |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lj9MwEB4tywE48FoQhQV8gAtSunk5sZE4FErV7osDKdpb1nYcCSgpYlPQcuR38Ff4b8w4TsUC4rYSt0Syncj-PA-P5xuAR6muhEXFFOhcmyCVkcYtlSVBoquMilzpWFFy8sFhNp2nu0f8aAO-r3NhrLXu8pkd0qOL5VdLs6Kjsh0pQrI__BXKPXv6BR20k2ezMa7m4zievCxeTANfQyAwCZdtoDXa48JGqpZ1FEcZMXjVUnCpanzLc1nzynKheG7qits45drUqETDzOSVUTrBcS_ARbQzeNxlh61jFMTs5dhY4zSQIe9jplEod4pZ8Rp9zzhGl1igBhdntJ4r4_KH7HcKbXINfvRT0d1jeT9ctXpovv7GEvm_ztV1uOotaTbqoH8DNmxzE678wq-4Bd92l2-blo0tVTWm_2WvUEJ-8KmnTDUVmyzodIKhyn7n4henrC_jxNCcZ_PRG4YIpr1QsdmyYGPVKuZOW1xCyFM2Ys9RsH62i7NjjzxX-y2Yn8sk3IbNZtnYO8CEzLiWGQUi0em2OILCFUkVN1lqUyEHEPagKI1nZKfCIIvSeWahLAlHJeGo9DgawJN1l48dHcm_Gm8RLtYNPSQGsN0jr_QC66QklqNE5GjM3_17r4dwaVoc7Jf7s8O9e3CZvtOlZG7DZvtpZe-jbdbqB26LMDg-b5z9BFM6RLs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Deployment+Optimization+and+Flight+Trajectory+Planning+for+UAV+Assisted+IoT+Data+Collection%3A+A+Bilevel+Optimization+Approach&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Han%2C+Shoufei&rft.au=Zhu%2C+Kun&rft.au=Zhou%2C+MengChu&rft.au=Liu%2C+Xiaojing&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=11&rft.spage=21492&rft.epage=21504&rft_id=info:doi/10.1109%2FTITS.2022.3180288&rft.externalDocID=9805656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |