Joint Deployment Optimization and Flight Trajectory Planning for UAV Assisted IoT Data Collection: A Bilevel Optimization Approach

This work investigates an unmanned aerial vehicle (UAV) assisted IoT system, where a UAV flies to each foothold to collect data from IoT devices, and then return to its start point. For such a system, we aim to minimize the energy consumption by jointly optimizing the deployment and flight trajector...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 23; no. 11; pp. 21492 - 21504
Main Authors Han, Shoufei, Zhu, Kun, Zhou, MengChu, Liu, Xiaojing
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This work investigates an unmanned aerial vehicle (UAV) assisted IoT system, where a UAV flies to each foothold to collect data from IoT devices, and then return to its start point. For such a system, we aim to minimize the energy consumption by jointly optimizing the deployment and flight trajectory of UAV. It is a mixed-integer non-convex and NP-hard problem. In order to address it, a bilevel optimization approach is proposed, where an upper-level method aims to optimize the deployment of UAV and a lower-level one aims to plan UAV flight trajectory. Specifically, the former optimizes the number and locations of footholds of UAV. This work proposes an improved dandelion algorithm with a novel encoding strategy, in which each dandelion represents a foothold of UAV and the entire dandelion population is seen as an entire deployment. Then, two mutation strategies are designed to adjust the number and locations of footholds. Based on the footholds of the UAV provided by the former, the latter transforms flight trajectory planning into a traveling salesman problem (TSP). This work proposes an iterated greedy algorithm to solve it efficiently. The effectiveness of the proposed bilevel optimization approach is verified on ten instances, and the experimental results show that it significantly outperforms other benchmark approaches.
AbstractList This work investigates an unmanned aerial vehicle (UAV) assisted IoT system, where a UAV flies to each foothold to collect data from IoT devices, and then return to its start point. For such a system, we aim to minimize the energy consumption by jointly optimizing the deployment and flight trajectory of UAV. It is a mixed-integer non-convex and NP-hard problem. In order to address it, a bilevel optimization approach is proposed, where an upper-level method aims to optimize the deployment of UAV and a lower-level one aims to plan UAV flight trajectory. Specifically, the former optimizes the number and locations of footholds of UAV. This work proposes an improved dandelion algorithm with a novel encoding strategy, in which each dandelion represents a foothold of UAV and the entire dandelion population is seen as an entire deployment. Then, two mutation strategies are designed to adjust the number and locations of footholds. Based on the footholds of the UAV provided by the former, the latter transforms flight trajectory planning into a traveling salesman problem (TSP). This work proposes an iterated greedy algorithm to solve it efficiently. The effectiveness of the proposed bilevel optimization approach is verified on ten instances, and the experimental results show that it significantly outperforms other benchmark approaches.
Author Zhou, MengChu
Han, Shoufei
Liu, Xiaojing
Zhu, Kun
Author_xml – sequence: 1
  givenname: Shoufei
  orcidid: 0000-0003-3583-7735
  surname: Han
  fullname: Han, Shoufei
  email: hanshoufei@gmail.com
  organization: Collaborative Innovation Center of Novel Software Technology and Industrialization, and the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Kun
  orcidid: 0000-0001-6784-5583
  surname: Zhu
  fullname: Zhu, Kun
  email: zhukun@nuaa.edu.cn
  organization: Collaborative Innovation Center of Novel Software Technology and Industrialization, and the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: MengChu
  orcidid: 0000-0002-5408-8752
  surname: Zhou
  fullname: Zhou, MengChu
  email: zhou@njit.edu
  organization: Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, USA
– sequence: 4
  givenname: Xiaojing
  orcidid: 0000-0002-6873-9667
  surname: Liu
  fullname: Liu, Xiaojing
  email: liuxiaojing@nuaa.edu.cn
  organization: Collaborative Innovation Center of Novel Software Technology and Industrialization, and the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BookMark eNp9UE1rGzEQFSWFJml_QOhFkPO6kna1K-W2sevUweBCN7kuslZKZGRpI8kF99hfHjkOheTQ07wZ3sfwzsCJ804BcIHRBGPEv3WL7teEIEImJWaIMPYBnGJKWYEQrk8OmFQFRxR9AmcxbvK1ohifgr-33rgEZ2q0fr9VGa7GZLbmj0jGOyjcAOfWPDwm2AWxUTL5sIc_rXDOuAeofYB37T1sYzQxqQEufAdnIgk49dZmdva4gi28Nlb9VvatdzuOwQv5-Bl81MJG9eV1noO7-fdu-qNYrm4W03ZZyJLyVKzXDS2ZwkJzjQmuScWo5oxyofPWNFzTQVEmaCP1QBWp6FpqijiqZTNIsS7PweXRN8c-7VRM_cbvgsuRPWnKqmRNSerMao4sGXyMQelemvTycArC2B6j_lB4fyi8PxTevxaelfidcgxmK8L-v5qvR41RSv3jc4ZoTevyGbUPj0Y
CODEN ITISFG
CitedBy_id crossref_primary_10_3390_drones7060373
crossref_primary_10_1109_TCYB_2025_3531393
crossref_primary_10_1109_JIOT_2023_3301088
crossref_primary_10_1109_JIOT_2023_3309705
crossref_primary_10_3390_biomimetics9050298
crossref_primary_10_3390_pr11082447
crossref_primary_10_1109_TMC_2024_3426945
crossref_primary_10_1109_JIOT_2024_3520954
crossref_primary_10_1109_TITS_2024_3384576
crossref_primary_10_3390_math10244668
crossref_primary_10_1109_JSEN_2024_3423835
crossref_primary_10_20965_jaciii_2024_p1195
crossref_primary_10_1109_TITS_2023_3321384
crossref_primary_10_1016_j_vehcom_2025_100885
crossref_primary_10_1109_ACCESS_2023_3339227
crossref_primary_10_1109_TVT_2024_3439335
crossref_primary_10_1109_TITS_2024_3432818
crossref_primary_10_1109_TNSE_2023_3261280
crossref_primary_10_1016_j_comnet_2024_110842
crossref_primary_10_1109_JIOT_2023_3339136
crossref_primary_10_1109_JAS_2023_124008
crossref_primary_10_1371_journal_pone_0297066
crossref_primary_10_1109_JSEN_2023_3253920
crossref_primary_10_3390_drones9030178
crossref_primary_10_1016_j_eswa_2023_123082
crossref_primary_10_1109_ACCESS_2023_3335932
crossref_primary_10_1109_TIV_2023_3307134
crossref_primary_10_1109_JIOT_2023_3299308
crossref_primary_10_1145_3617994
crossref_primary_10_1016_j_asoc_2025_112744
crossref_primary_10_1109_JIOT_2023_3285942
crossref_primary_10_1109_JIOT_2024_3364239
crossref_primary_10_1109_JIOT_2024_3422252
crossref_primary_10_1109_JIOT_2024_3395779
crossref_primary_10_1016_j_comnet_2024_110731
crossref_primary_10_1109_TITS_2023_3237570
crossref_primary_10_1109_JIOT_2023_3282936
crossref_primary_10_1016_j_jag_2024_103708
crossref_primary_10_1109_TWC_2023_3321648
Cites_doi 10.1109/TVT.2018.2867021
10.1109/TSMC.2016.2560128
10.1109/TCOMM.2019.2900630
10.1109/JIOT.2020.3013647
10.1109/TNSE.2020.3017556
10.1109/ACCESS.2019.2960314
10.1109/TSMC.2019.2907649
10.1080/0952813X.2017.1413142
10.1109/GLOCOM.2017.8254949
10.1109/ACCESS.2016.2529723
10.1109/TWC.2022.3150429
10.1016/j.eswa.2020.113803
10.1109/JAS.2021.1004171
10.1109/TSMC.2020.3042898
10.1109/TCOMM.2020.2982152
10.1109/ACCESS.2019.2890862
10.1109/TETCI.2019.2939373
10.1109/TSMC.2019.2956121
10.1109/ACCESS.2019.2935462
10.1109/JSYST.2018.2820085
10.1109/MWC.010.2000528
10.1186/s13638-018-1313-0
10.1109/TVT.2020.3001403
10.1109/ACCESS.2019.2927846
10.1109/TVT.2018.2816244
10.1109/ACCESS.2019.2945570
10.1109/TCOMM.2020.3044599
10.1109/TCE.2010.5505976
10.1155/2017/4523754
10.1109/LCOMM.2017.2772254
10.1016/j.knosys.2020.106282
10.1016/j.asoc.2016.10.022
10.1109/TCOMM.2020.3025910
10.1109/MWC.001.1900085
10.1007/s00500-020-05376-8
10.1109/TWC.2019.2926279
10.1016/j.neucom.2020.04.078
10.1109/JAS.2020.1003120
10.1186/s13638-019-1490-5
10.1109/LWC.2017.2700840
10.1109/TCC.2020.3001051
10.1109/TVT.2020.2972133
10.1109/TITS.2019.2892377
10.1109/TWC.2020.3007648
10.1145/2908961.2931634
10.1016/j.engappai.2020.103922
10.1109/TWC.2017.2751045
10.1109/TVT.2020.2968343
10.1109/TVT.2020.3018265
10.1109/TITS.2020.2972389
10.1109/JAS.2021.1004284
10.1109/JAS.2020.1003291
10.1007/s10462-018-9648-9
10.1109/TETCI.2019.2899604
10.1109/TII.2020.3004816
10.3390/s19224952
10.1109/TCOMM.2018.2792014
10.1109/TITS.2018.2835145
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2022.3180288
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 21504
ExternalDocumentID 10_1109_TITS_2022_3180288
9805656
Genre orig-research
GrantInformation_xml – fundername: Fundo para o Desenvolvimento das Ciencias e da Tecnologia (FDCT)
  grantid: 0047/2021/A1
  funderid: 10.13039/501100006469
– fundername: National Natural Science Foundation of China
  grantid: 62071230; 62061146002
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20211567
  funderid: 10.13039/501100004608
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
RIG
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-bb7538e1af9f12162485f9859af216779f5de58a57cfd5e245bcf50906c7dcab3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 05:01:02 EDT 2025
Tue Jul 01 04:29:10 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Wed Aug 27 02:18:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-bb7538e1af9f12162485f9859af216779f5de58a57cfd5e245bcf50906c7dcab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6873-9667
0000-0002-5408-8752
0000-0001-6784-5583
0000-0003-3583-7735
PQID 2734387326
PQPubID 75735
PageCount 13
ParticipantIDs ieee_primary_9805656
proquest_journals_2734387326
crossref_citationtrail_10_1109_TITS_2022_3180288
crossref_primary_10_1109_TITS_2022_3180288
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
al-hilo (ref26) 2020; 22
du (ref24) 2021; 23
ref23
ref25
ref20
ref22
han (ref53) 2020; 8
ref21
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref35
  doi: 10.1109/TVT.2018.2867021
– ident: ref39
  doi: 10.1109/TSMC.2016.2560128
– ident: ref27
  doi: 10.1109/TCOMM.2019.2900630
– ident: ref21
  doi: 10.1109/JIOT.2020.3013647
– ident: ref32
  doi: 10.1109/TNSE.2020.3017556
– ident: ref14
  doi: 10.1109/ACCESS.2019.2960314
– ident: ref48
  doi: 10.1109/TSMC.2019.2907649
– ident: ref50
  doi: 10.1080/0952813X.2017.1413142
– ident: ref22
  doi: 10.1109/GLOCOM.2017.8254949
– ident: ref31
  doi: 10.1109/ACCESS.2016.2529723
– ident: ref42
  doi: 10.1109/TWC.2022.3150429
– ident: ref45
  doi: 10.1016/j.eswa.2020.113803
– ident: ref10
  doi: 10.1109/JAS.2021.1004171
– ident: ref1
  doi: 10.1109/TSMC.2020.3042898
– ident: ref41
  doi: 10.1109/TCOMM.2020.2982152
– ident: ref36
  doi: 10.1109/ACCESS.2019.2890862
– ident: ref20
  doi: 10.1109/TETCI.2019.2939373
– ident: ref38
  doi: 10.1109/TSMC.2019.2956121
– ident: ref37
  doi: 10.1109/ACCESS.2019.2935462
– volume: 23
  start-page: 1
  year: 2021
  ident: ref24
  article-title: UAV trajectory planning with probabilistic geo-fence via iterative chance-constrained optimization
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref61
  doi: 10.1109/JSYST.2018.2820085
– ident: ref11
  doi: 10.1109/MWC.010.2000528
– ident: ref33
  doi: 10.1186/s13638-018-1313-0
– ident: ref25
  doi: 10.1109/TVT.2020.3001403
– ident: ref47
  doi: 10.1109/ACCESS.2019.2927846
– ident: ref23
  doi: 10.1109/TVT.2018.2816244
– ident: ref56
  doi: 10.1109/ACCESS.2019.2945570
– ident: ref29
  doi: 10.1109/TCOMM.2020.3044599
– ident: ref6
  doi: 10.1109/TCE.2010.5505976
– ident: ref44
  doi: 10.1155/2017/4523754
– ident: ref15
  doi: 10.1109/LCOMM.2017.2772254
– ident: ref46
  doi: 10.1016/j.knosys.2020.106282
– ident: ref52
  doi: 10.1016/j.asoc.2016.10.022
– ident: ref7
  doi: 10.1109/TCOMM.2020.3025910
– ident: ref2
  doi: 10.1109/MWC.001.1900085
– volume: 22
  start-page: 1
  year: 2020
  ident: ref26
  article-title: UAV-assisted content delivery in intelligent transportation systems-joint trajectory planning and cache management
  publication-title: IEEE Trans Intell Transp Syst
– ident: ref55
  doi: 10.1007/s00500-020-05376-8
– ident: ref13
  doi: 10.1109/TWC.2019.2926279
– ident: ref51
  doi: 10.1016/j.neucom.2020.04.078
– ident: ref4
  doi: 10.1109/JAS.2020.1003120
– ident: ref34
  doi: 10.1186/s13638-019-1490-5
– ident: ref16
  doi: 10.1109/LWC.2017.2700840
– ident: ref60
  doi: 10.1109/TCC.2020.3001051
– ident: ref30
  doi: 10.1109/TVT.2020.2972133
– ident: ref58
  doi: 10.1109/TITS.2019.2892377
– ident: ref28
  doi: 10.1109/TWC.2020.3007648
– ident: ref54
  doi: 10.1145/2908961.2931634
– volume: 8
  start-page: 1
  year: 2020
  ident: ref53
  article-title: Information-utilization-method-assisted multimodal multiobjective optimization and application to credit card fraud detection
  publication-title: IEEE Transactions on Computational Social Systems
– ident: ref49
  doi: 10.1016/j.engappai.2020.103922
– ident: ref43
  doi: 10.1109/TWC.2017.2751045
– ident: ref8
  doi: 10.1109/TVT.2020.2968343
– ident: ref17
  doi: 10.1109/TVT.2020.3018265
– ident: ref57
  doi: 10.1109/TITS.2020.2972389
– ident: ref40
  doi: 10.1109/JAS.2021.1004284
– ident: ref12
  doi: 10.1109/JAS.2020.1003291
– ident: ref3
  doi: 10.1007/s10462-018-9648-9
– ident: ref19
  doi: 10.1109/TETCI.2019.2899604
– ident: ref18
  doi: 10.1109/TII.2020.3004816
– ident: ref5
  doi: 10.3390/s19224952
– ident: ref9
  doi: 10.1109/TCOMM.2018.2792014
– ident: ref59
  doi: 10.1109/TITS.2018.2835145
SSID ssj0014511
Score 2.5604377
Snippet This work investigates an unmanned aerial vehicle (UAV) assisted IoT system, where a UAV flies to each foothold to collect data from IoT devices, and then...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 21492
SubjectTerms Autonomous aerial vehicles
Bilevel optimization
dandelion algorithm
Data collection
deployment optimization
Electronic devices
Energy consumption
flight trajectory planning
Greedy algorithms
Internet of Things
iterated greedy algorithm
machine learning
Mixed integer
Mutation
Optimization
Trajectory
Trajectory planning
Traveling salesman problem
UAV
Unmanned aerial vehicles
Title Joint Deployment Optimization and Flight Trajectory Planning for UAV Assisted IoT Data Collection: A Bilevel Optimization Approach
URI https://ieeexplore.ieee.org/document/9805656
https://www.proquest.com/docview/2734387326
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED5Bn8YDsDFEoSA_7GkibX45sXkrsAqQGA9rp75FtuNIQEkRpEjwyF_OnZNUY5umvcWSbVm5s-8-n-87gC-xzoVFw-TpVBsvloHGLZVEXqTzhIpc6VBRcvLl9-RsEl9M-XQFDpe5MNZa9_jM9unTxfLzuVnQVdlACp_8j1VYReBW52otIwbEs-W4UcPYkz5vI5iBLwfj8_EPRIJhiABVoD0V72yQK6ryx0nszMtoAy7bhdWvSm77i0r3zctvnI3_u_JNWG_8TDasFeMjrNjyE6z9wj64Ba8X8-uyYqeWav7SeHaF58ddk5jJVJmz0YywO0ODduNu959ZW-SIobPLJsOfDOVLmpKz8_mYnapKMXcX4dIljtiQHeOx82Rn7-ceNkzmn2Ey-jY-OfOakgyeibisPK0R3ggbqEIWQRgkRIhWSMGlKrCVprLgueVC8dQUObdhzLUp0CfxE5PmRuloGzrlvLQ7wIRMuJYJhekQklqcQeEfihU3SWxjIbvgt0LKTMNXTmUzZpnDLb7MSK4ZyTVr5NqFr8sh9zVZx786b5Gclh0bEXWh12pC1mznx4w4gCKRoqu7-_dRe_CB5q6TFHvQqR4Wdh-9lUofODV9A5Y85og
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lj9MwEB4tywE48FoQhQV8gAtSunk5sZE4FErV7osDKdpb1nYcCSgpYlPQcuR38Ff4b8w4TsUC4rYSt0Syncj-PA-P5xuAR6muhEXFFOhcmyCVkcYtlSVBoquMilzpWFFy8sFhNp2nu0f8aAO-r3NhrLXu8pkd0qOL5VdLs6Kjsh0pQrI__BXKPXv6BR20k2ezMa7m4zievCxeTANfQyAwCZdtoDXa48JGqpZ1FEcZMXjVUnCpanzLc1nzynKheG7qits45drUqETDzOSVUTrBcS_ARbQzeNxlh61jFMTs5dhY4zSQIe9jplEod4pZ8Rp9zzhGl1igBhdntJ4r4_KH7HcKbXINfvRT0d1jeT9ctXpovv7GEvm_ztV1uOotaTbqoH8DNmxzE678wq-4Bd92l2-blo0tVTWm_2WvUEJ-8KmnTDUVmyzodIKhyn7n4henrC_jxNCcZ_PRG4YIpr1QsdmyYGPVKuZOW1xCyFM2Ys9RsH62i7NjjzxX-y2Yn8sk3IbNZtnYO8CEzLiWGQUi0em2OILCFUkVN1lqUyEHEPagKI1nZKfCIIvSeWahLAlHJeGo9DgawJN1l48dHcm_Gm8RLtYNPSQGsN0jr_QC66QklqNE5GjM3_17r4dwaVoc7Jf7s8O9e3CZvtOlZG7DZvtpZe-jbdbqB26LMDg-b5z9BFM6RLs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+Deployment+Optimization+and+Flight+Trajectory+Planning+for+UAV+Assisted+IoT+Data+Collection%3A+A+Bilevel+Optimization+Approach&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Han%2C+Shoufei&rft.au=Zhu%2C+Kun&rft.au=Zhou%2C+MengChu&rft.au=Liu%2C+Xiaojing&rft.date=2022-11-01&rft.pub=IEEE&rft.issn=1524-9050&rft.volume=23&rft.issue=11&rft.spage=21492&rft.epage=21504&rft_id=info:doi/10.1109%2FTITS.2022.3180288&rft.externalDocID=9805656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon