An Invariant Geometric Feature for Inter-Subject Lumbar Curve Alignment to Detect Spondylolisthesis

Spondylolisthesis classification commonly relies on the shift distance (SD) feature. This feature measures the displacement between vertebrae but is sensitive to variations in size and rotational alignment of the vertebrae. This study introduces a new diagonal ratio (DR) feature to overcome these li...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 5092 - 5111
Main Authors Klinwichit, Podchara, Yookwan, Watcharaphong, Onuean, Athita, Horkaew, Paramate, Limchareon, Sornsupha, Jang, Jun-Su, Rasmequan, Suwanna, Chinnasarn, Krisana
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Spondylolisthesis classification commonly relies on the shift distance (SD) feature. This feature measures the displacement between vertebrae but is sensitive to variations in size and rotational alignment of the vertebrae. This study introduces a new diagonal ratio (DR) feature to overcome these limitations. The DR feature, defined as the ratio of the difference in diagonal lengths to the width of the lower vertebra, is robust against variations in vertebral size and effectively detects displacement in curved lumbar spines. The Bhattacharyya coefficients for the DR feature are significantly lower than those for the SD feature, highlighting its superior ability to distinguish between spondylolisthesis classes. Additionally, single-feature classification using Naive Bayes, based on corner points detected by ResNet, achieved its highest accuracy of 83.56% for the anterior-posterior (AP) view and 67.09% for the lateral (LA) view with the proposed DR feature. Factor analysis revealed that the DR feature contributed most significantly, with an average factor loading of 32.1% for the AP view, where the second highest factor loading was 22.4% by ASD, and 42.3% for the LA view, where the second highest factor loading was 24.0% by SDR, across three classifiers-Support Vector Classifier (SVC), Random Forest Classifier (RF), and Gradient Boosting Classifier (GB). These findings underscore our DR feature's potential to overcome size variation and rotational alignment challenges.
AbstractList Spondylolisthesis classification commonly relies on the shift distance (SD) feature. This feature measures the displacement between vertebrae but is sensitive to variations in size and rotational alignment of the vertebrae. This study introduces a new diagonal ratio (DR) feature to overcome these limitations. The DR feature, defined as the ratio of the difference in diagonal lengths to the width of the lower vertebra, is robust against variations in vertebral size and effectively detects displacement in curved lumbar spines. The Bhattacharyya coefficients for the DR feature are significantly lower than those for the SD feature, highlighting its superior ability to distinguish between spondylolisthesis classes. Additionally, single-feature classification using Naive Bayes, based on corner points detected by ResNet, achieved its highest accuracy of 83.56% for the anterior-posterior (AP) view and 67.09% for the lateral (LA) view with the proposed DR feature. Factor analysis revealed that the DR feature contributed most significantly, with an average factor loading of 32.1% for the AP view, where the second highest factor loading was 22.4% by ASD, and 42.3% for the LA view, where the second highest factor loading was 24.0% by SDR, across three classifiers-Support Vector Classifier (SVC), Random Forest Classifier (RF), and Gradient Boosting Classifier (GB). These findings underscore our DR feature's potential to overcome size variation and rotational alignment challenges.
Author Chinnasarn, Krisana
Rasmequan, Suwanna
Limchareon, Sornsupha
Yookwan, Watcharaphong
Klinwichit, Podchara
Jang, Jun-Su
Onuean, Athita
Horkaew, Paramate
Author_xml – sequence: 1
  givenname: Podchara
  surname: Klinwichit
  fullname: Klinwichit, Podchara
  organization: Faculty of Informatics, Burapha University, Saen Suk, Chonburi, Thailand
– sequence: 2
  givenname: Watcharaphong
  surname: Yookwan
  fullname: Yookwan, Watcharaphong
  organization: Faculty of Informatics, Burapha University, Saen Suk, Chonburi, Thailand
– sequence: 3
  givenname: Athita
  orcidid: 0000-0001-7366-5626
  surname: Onuean
  fullname: Onuean, Athita
  organization: Faculty of Informatics, Burapha University, Saen Suk, Chonburi, Thailand
– sequence: 4
  givenname: Paramate
  orcidid: 0000-0003-0879-7125
  surname: Horkaew
  fullname: Horkaew, Paramate
  email: phorkaew@sut.ac.th
  organization: School of Computer Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand
– sequence: 5
  givenname: Sornsupha
  orcidid: 0000-0001-8570-7379
  surname: Limchareon
  fullname: Limchareon, Sornsupha
  organization: Faculty of Medicine, Burapha University, Saen Suk, Chonburi, Thailand
– sequence: 6
  givenname: Jun-Su
  orcidid: 0000-0002-7639-5884
  surname: Jang
  fullname: Jang, Jun-Su
  organization: Digital Health Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, Republic of Korea
– sequence: 7
  givenname: Suwanna
  surname: Rasmequan
  fullname: Rasmequan, Suwanna
  organization: Faculty of Informatics, Burapha University, Saen Suk, Chonburi, Thailand
– sequence: 8
  givenname: Krisana
  orcidid: 0000-0003-1335-0942
  surname: Chinnasarn
  fullname: Chinnasarn, Krisana
  email: krisana@buu.ac.th
  organization: Faculty of Informatics, Burapha University, Saen Suk, Chonburi, Thailand
BookMark eNpNkU9r3DAQxUVJoWmaT9AeDD17q3-WpePiJunCQg_bnsVYHqdavNZWkgP59tHWoUSHkZh572ng95FczWFGQj4zumGMmm_brrs7HDaccrkRDeempe_INWfK1KIR6urN-wO5TelIy9Gl1bTXxG3najc_QfQw5-oBwwlz9K66R8hLxGoMscwzxvqw9Ed0udovpx5i1S3xCavt5B_nExZrDtV3zBfB4Rzm4XkKk0_5DyafPpH3I0wJb1_vG_L7_u5X96Pe_3zYddt97URjct1rhb3uzQiOi7IctKVyoAMYrlQDnAKqvkiBaRypc06YQY6OITKt217ckN2aOwQ42nP0J4jPNoC3_xohPlqI2bsJrRmo7I1p-QhSDkaA1I1uW0nVyJmUumR9XbPOMfxdMGV7DEucy_pWsEYYxpTiRSVWlYshpYjj_18ZtRc4doVjL3DsK5zi-rK6PCK-cRQmklHxAvkMjI4
CODEN IAECCG
Cites_doi 10.1016/j.nec.2019.02.003
10.1016/j.crad.2004.02.019
10.1016/j.spinee.2022.06.108
10.1109/IDAP.2019.8875988
10.1007/s10278-015-9803-7
10.1016/j.spinee.2024.01.001
10.1016/j.bspc.2020.102371
10.1109/CVPR.2016.90
10.1038/s41598-020-63784-0
10.1016/j.nec.2019.02.002
10.1016/j.wneu.2024.04.025
10.1109/JCSSE58229.2023.10201937
10.1117/12.2254072
10.1109/ICMLANT59547.2023.10372991
10.1016/S0031-3203(98)00178-2
10.1016/j.heliyon.2024.e37418
10.1109/INCET57972.2023.10170564
10.1016/j.bspc.2021.103230
10.1007/978-3-319-59713-3_24
10.1097/brs.0000000000004483
10.7717/peerj-cs.547
10.1016/j.jocn.2021.06.020
10.1371/journal.pone.0267851
10.1148/radiol.2493071999
10.1097/BRS.0000000000002986
10.3390/app13158646
10.1109/TMI.2016.2523452
10.7717/peerj-cs.1280
10.1016/j.spinee.2016.08.034
10.3171/2013.1.SPINE12537
10.1016/j.media.2019.101533
10.3389/fbioe.2023.1194009
10.1016/j.semss.2020.100802
10.1038/s41598-023-31224-4
10.1007/s10278-020-00402-5
10.3390/jcm11185450
10.1155/2022/7459260
10.1016/j.wneu.2023.11.017
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3522970
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 5111
ExternalDocumentID oai_doaj_org_article_9d04b9972fa44d93a485877406f21448
10_1109_ACCESS_2024_3522970
10816410
Genre orig-research
GrantInformation_xml – fundername: Korea Institute of Oriental Medicine
  grantid: KSN1823130; KSN1922110
  funderid: 10.13039/501100003718
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-b86eb8b9fac23957a73952a0da92665a20ae6b359a18ef0ccc39d4fc1ee1887b3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:28:58 EDT 2025
Mon Jun 30 13:20:16 EDT 2025
Tue Jul 01 03:03:02 EDT 2025
Wed Aug 27 01:58:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-b86eb8b9fac23957a73952a0da92665a20ae6b359a18ef0ccc39d4fc1ee1887b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7639-5884
0000-0001-7366-5626
0000-0003-1335-0942
0000-0003-0879-7125
0000-0001-8570-7379
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10816410
PQID 3153911662
PQPubID 4845423
PageCount 20
ParticipantIDs proquest_journals_3153911662
ieee_primary_10816410
doaj_primary_oai_doaj_org_article_9d04b9972fa44d93a485877406f21448
crossref_primary_10_1109_ACCESS_2024_3522970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Kang (ref39) 2015
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref4
  doi: 10.1016/j.nec.2019.02.003
– ident: ref34
  doi: 10.1016/j.crad.2004.02.019
– ident: ref5
  doi: 10.1016/j.spinee.2022.06.108
– ident: ref23
  doi: 10.1109/IDAP.2019.8875988
– ident: ref37
  doi: 10.1007/s10278-015-9803-7
– ident: ref20
  doi: 10.1016/j.spinee.2024.01.001
– ident: ref17
  doi: 10.1016/j.bspc.2020.102371
– ident: ref38
  doi: 10.1109/CVPR.2016.90
– ident: ref36
  doi: 10.1038/s41598-020-63784-0
– ident: ref1
  doi: 10.1016/j.nec.2019.02.002
– ident: ref28
  doi: 10.1016/j.wneu.2024.04.025
– ident: ref12
  doi: 10.1109/JCSSE58229.2023.10201937
– ident: ref15
  doi: 10.1117/12.2254072
– ident: ref29
  doi: 10.1109/ICMLANT59547.2023.10372991
– ident: ref31
  doi: 10.1016/S0031-3203(98)00178-2
– ident: ref18
  doi: 10.1016/j.heliyon.2024.e37418
– ident: ref30
  doi: 10.1109/INCET57972.2023.10170564
– ident: ref11
  doi: 10.1016/j.bspc.2021.103230
– ident: ref10
  doi: 10.1007/978-3-319-59713-3_24
– ident: ref21
  doi: 10.1097/brs.0000000000004483
– ident: ref7
  doi: 10.7717/peerj-cs.547
– ident: ref35
  doi: 10.1016/j.jocn.2021.06.020
– year: 2015
  ident: ref39
  article-title: The n-distribution Bhattacharyya coefficient
– ident: ref26
  doi: 10.1371/journal.pone.0267851
– ident: ref2
  doi: 10.1148/radiol.2493071999
– ident: ref3
  doi: 10.1097/BRS.0000000000002986
– ident: ref33
  doi: 10.3390/app13158646
– ident: ref16
  doi: 10.1109/TMI.2016.2523452
– ident: ref22
  doi: 10.7717/peerj-cs.1280
– ident: ref32
  doi: 10.1016/j.spinee.2016.08.034
– ident: ref8
  doi: 10.3171/2013.1.SPINE12537
– ident: ref14
  doi: 10.1016/j.media.2019.101533
– ident: ref25
  doi: 10.3389/fbioe.2023.1194009
– ident: ref6
  doi: 10.1016/j.semss.2020.100802
– ident: ref19
  doi: 10.1038/s41598-023-31224-4
– ident: ref24
  doi: 10.1007/s10278-020-00402-5
– ident: ref13
  doi: 10.3390/jcm11185450
– ident: ref27
  doi: 10.1155/2022/7459260
– ident: ref9
  doi: 10.1016/j.wneu.2023.11.017
SSID ssj0000816957
Score 2.3340404
Snippet Spondylolisthesis classification commonly relies on the shift distance (SD) feature. This feature measures the displacement between vertebrae but is sensitive...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 5092
SubjectTerms Accuracy
affine transformations
Alignment
Classification
Deep learning
Factor analysis
Feature extraction
geometric feature
Loading
Location awareness
lumbar
Pain
radiograph
Rotation measurement
Spine
Spondylolisthesis
Translation
Vectors
Vertebrae
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBIwEkc1x5LeQtYAInNsh0bKrUp6oPfz52TokgMLKyR8_q-5O47n31HyEkqBJcWlJtjnGOA0kuUMkBI4WRhDDOhwL3Dj0_i9pXfvxVvrVZfuCasLg9cA3euSsYt7u4MhvNS5YbLQoJmYSJgta-4zRd8XiuYijZYpkIVvabMUMrUeX8wgDeCgDDjZyg6FLYnbrmiWLG_abHyyy5HZ3O9QdYblUj79dNtkhVfbZG1Vu3AbeL6Fb2rviDUBWzojZ-MsTeWo6jpFlNPQYzSON2XgG3AyRb6sBhbM6WDxfTL0_5o-B4XAtD5hF56TCXQ589JVUIAPwLqP_xsONshr9dXL4PbpOmYkLi8UPPESuGttCoYl2ECzmAaLjOsNAoccWEyZrywMNSk0gfmnMtVyYNLvU_B2th8l3SqSeX3COWYE3Uq68GJPAB_mQuyhGBRhDSUknfJ6RI8_VkXxtAxoGBK11hrxFo3WHfJBQL8MxSrWscDwLVuuNZ_cd0lO0hP635AM0_h4odLvnTzC850DrYcLLkQ2f5_3PuArGbY-jfOvhySzny68EegR-b2OH563zKX1_Y
  priority: 102
  providerName: Directory of Open Access Journals
Title An Invariant Geometric Feature for Inter-Subject Lumbar Curve Alignment to Detect Spondylolisthesis
URI https://ieeexplore.ieee.org/document/10816410
https://www.proquest.com/docview/3153911662
https://doaj.org/article/9d04b9972fa44d93a485877406f21448
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJzhQHkUsfcgHjmRxEsdrH5elpSDoBSr1ZtnOGCq2SbWbVGp_PTNOtlqBkLhFiaM8vrHnmxnPDGNvcqWk9sjcgpCSDJRZZoxDQKqgK-eEixXlDn89U6fn8vNFdTEmq6dcGABIm89gSocpll-3oSdXGc5wjeyeEqoeouU2JGvdO1TomqlmY2WhXJh388UCPwJtwEJOiWcY6ki8pX1Skf6xq8pfS3HSLye77GzzZsO2kl_TvvPTcPdH0cb_fvWn7MnINPl8EI1n7AE0z9njrfqDL1iYN_xTc4PmMv5f_hHaK-qvFTjxwn4FHAktTy7DDNcXctjwL_2Vdyu-6Fc3wOfLyx9pMwHvWv4BKBzBv123TX27bJcoPj9hfbneY-cnx98Xp9nYdSELZWW6zGsFXnsTXSgoiOcolFc4UTuDyrxyhXCgPA51uYYoQgilqWUMOUCOK5YvX7Kdpm3gFeOS4qrBFDO8UUaUgSJEXaPBqWIeay0n7O0GDXs9FNewySgRxg7gWQLPjuBN2HtC7H4oVcZOJ_BP23GiWVML6SkbODopa1M6qSuNHFeoSNXh9ITtETpbzxuAmbCDjQDYcRqvbYn6ALWBUsXrf9y2zx4V1BE4OWUO2E636uEQaUrnj5J5f5SE9Dd0KOR4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOQAHnkUsLeADR7I4ie21j8tC2cJ2L7RSb5bt2FCxTardpFL59cw42WoFQuIWJY7y-Maeb2Y8M4S8zaXkygFz84xzNFAmmdYWABFeCWuZjQJzh0-Wcn7Gv5yL8yFZPeXChBDS5rMwxsMUy68a36GrDGa4AnaPCVV3QfGLvE_XunWp4FUtJkNtoZzp99PZDD4DrMCCj5FpaOxJvKN_Upn-oa_KX4tx0jBHj8hy-279xpKf4651Y__rj7KN__3yj8nDgWvSaS8cT8idUD8lD3YqED4jflrT4_oaDGb4w_RzaC6xw5anyAy7daBAaWlyGmawwqDLhi66S2fXdNatrwOdri6-p-0EtG3ox4ABCfrtqqmrm1WzAgH6ETYXm31ydvTpdDbPhr4LmS-FbjOnZHDK6Wh9gWE8i8G8wrLKalDnwhbMBulgqM1ViMx7X-qKR5-HkMOa5crnZK9u6vCCUI6RVa-LCdzII0hB4aOqwOSUMY-V4iPybouGuerLa5hkljBtevAMgmcG8EbkAyJ2OxRrY6cT8KfNMNWMrhh3mA8cLeeVLi1XQgHLZTJifTg1IvuIzs7zemBG5HArAGaYyBtTgkYAfSBl8fIft70h9-anJwuzOF5-PSD3C-wPnFw0h2SvXXfhFZCW1r1OovobISXmzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Invariant+Geometric+Feature+for+Inter-Subject+Lumbar+Curve+Alignment+to+Detect+Spondylolisthesis&rft.jtitle=IEEE+access&rft.au=Klinwichit%2C+Podchara&rft.au=Yookwan%2C+Watcharaphong&rft.au=Onuean%2C+Athita&rft.au=Horkaew%2C+Paramate&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=5092&rft.epage=5111&rft_id=info:doi/10.1109%2FACCESS.2024.3522970&rft.externalDocID=10816410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon