An Invariant Geometric Feature for Inter-Subject Lumbar Curve Alignment to Detect Spondylolisthesis
Spondylolisthesis classification commonly relies on the shift distance (SD) feature. This feature measures the displacement between vertebrae but is sensitive to variations in size and rotational alignment of the vertebrae. This study introduces a new diagonal ratio (DR) feature to overcome these li...
Saved in:
Published in | IEEE access Vol. 13; pp. 5092 - 5111 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Spondylolisthesis classification commonly relies on the shift distance (SD) feature. This feature measures the displacement between vertebrae but is sensitive to variations in size and rotational alignment of the vertebrae. This study introduces a new diagonal ratio (DR) feature to overcome these limitations. The DR feature, defined as the ratio of the difference in diagonal lengths to the width of the lower vertebra, is robust against variations in vertebral size and effectively detects displacement in curved lumbar spines. The Bhattacharyya coefficients for the DR feature are significantly lower than those for the SD feature, highlighting its superior ability to distinguish between spondylolisthesis classes. Additionally, single-feature classification using Naive Bayes, based on corner points detected by ResNet, achieved its highest accuracy of 83.56% for the anterior-posterior (AP) view and 67.09% for the lateral (LA) view with the proposed DR feature. Factor analysis revealed that the DR feature contributed most significantly, with an average factor loading of 32.1% for the AP view, where the second highest factor loading was 22.4% by ASD, and 42.3% for the LA view, where the second highest factor loading was 24.0% by SDR, across three classifiers-Support Vector Classifier (SVC), Random Forest Classifier (RF), and Gradient Boosting Classifier (GB). These findings underscore our DR feature's potential to overcome size variation and rotational alignment challenges. |
---|---|
AbstractList | Spondylolisthesis classification commonly relies on the shift distance (SD) feature. This feature measures the displacement between vertebrae but is sensitive to variations in size and rotational alignment of the vertebrae. This study introduces a new diagonal ratio (DR) feature to overcome these limitations. The DR feature, defined as the ratio of the difference in diagonal lengths to the width of the lower vertebra, is robust against variations in vertebral size and effectively detects displacement in curved lumbar spines. The Bhattacharyya coefficients for the DR feature are significantly lower than those for the SD feature, highlighting its superior ability to distinguish between spondylolisthesis classes. Additionally, single-feature classification using Naive Bayes, based on corner points detected by ResNet, achieved its highest accuracy of 83.56% for the anterior-posterior (AP) view and 67.09% for the lateral (LA) view with the proposed DR feature. Factor analysis revealed that the DR feature contributed most significantly, with an average factor loading of 32.1% for the AP view, where the second highest factor loading was 22.4% by ASD, and 42.3% for the LA view, where the second highest factor loading was 24.0% by SDR, across three classifiers-Support Vector Classifier (SVC), Random Forest Classifier (RF), and Gradient Boosting Classifier (GB). These findings underscore our DR feature's potential to overcome size variation and rotational alignment challenges. |
Author | Chinnasarn, Krisana Rasmequan, Suwanna Limchareon, Sornsupha Yookwan, Watcharaphong Klinwichit, Podchara Jang, Jun-Su Onuean, Athita Horkaew, Paramate |
Author_xml | – sequence: 1 givenname: Podchara surname: Klinwichit fullname: Klinwichit, Podchara organization: Faculty of Informatics, Burapha University, Saen Suk, Chonburi, Thailand – sequence: 2 givenname: Watcharaphong surname: Yookwan fullname: Yookwan, Watcharaphong organization: Faculty of Informatics, Burapha University, Saen Suk, Chonburi, Thailand – sequence: 3 givenname: Athita orcidid: 0000-0001-7366-5626 surname: Onuean fullname: Onuean, Athita organization: Faculty of Informatics, Burapha University, Saen Suk, Chonburi, Thailand – sequence: 4 givenname: Paramate orcidid: 0000-0003-0879-7125 surname: Horkaew fullname: Horkaew, Paramate email: phorkaew@sut.ac.th organization: School of Computer Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand – sequence: 5 givenname: Sornsupha orcidid: 0000-0001-8570-7379 surname: Limchareon fullname: Limchareon, Sornsupha organization: Faculty of Medicine, Burapha University, Saen Suk, Chonburi, Thailand – sequence: 6 givenname: Jun-Su orcidid: 0000-0002-7639-5884 surname: Jang fullname: Jang, Jun-Su organization: Digital Health Research Division, Korea Institute of Oriental Medicine, Yuseong-gu, Daejeon, Republic of Korea – sequence: 7 givenname: Suwanna surname: Rasmequan fullname: Rasmequan, Suwanna organization: Faculty of Informatics, Burapha University, Saen Suk, Chonburi, Thailand – sequence: 8 givenname: Krisana orcidid: 0000-0003-1335-0942 surname: Chinnasarn fullname: Chinnasarn, Krisana email: krisana@buu.ac.th organization: Faculty of Informatics, Burapha University, Saen Suk, Chonburi, Thailand |
BookMark | eNpNkU9r3DAQxUVJoWmaT9AeDD17q3-WpePiJunCQg_bnsVYHqdavNZWkgP59tHWoUSHkZh572ng95FczWFGQj4zumGMmm_brrs7HDaccrkRDeempe_INWfK1KIR6urN-wO5TelIy9Gl1bTXxG3najc_QfQw5-oBwwlz9K66R8hLxGoMscwzxvqw9Ed0udovpx5i1S3xCavt5B_nExZrDtV3zBfB4Rzm4XkKk0_5DyafPpH3I0wJb1_vG_L7_u5X96Pe_3zYddt97URjct1rhb3uzQiOi7IctKVyoAMYrlQDnAKqvkiBaRypc06YQY6OITKt217ckN2aOwQ42nP0J4jPNoC3_xohPlqI2bsJrRmo7I1p-QhSDkaA1I1uW0nVyJmUumR9XbPOMfxdMGV7DEucy_pWsEYYxpTiRSVWlYshpYjj_18ZtRc4doVjL3DsK5zi-rK6PCK-cRQmklHxAvkMjI4 |
CODEN | IAECCG |
Cites_doi | 10.1016/j.nec.2019.02.003 10.1016/j.crad.2004.02.019 10.1016/j.spinee.2022.06.108 10.1109/IDAP.2019.8875988 10.1007/s10278-015-9803-7 10.1016/j.spinee.2024.01.001 10.1016/j.bspc.2020.102371 10.1109/CVPR.2016.90 10.1038/s41598-020-63784-0 10.1016/j.nec.2019.02.002 10.1016/j.wneu.2024.04.025 10.1109/JCSSE58229.2023.10201937 10.1117/12.2254072 10.1109/ICMLANT59547.2023.10372991 10.1016/S0031-3203(98)00178-2 10.1016/j.heliyon.2024.e37418 10.1109/INCET57972.2023.10170564 10.1016/j.bspc.2021.103230 10.1007/978-3-319-59713-3_24 10.1097/brs.0000000000004483 10.7717/peerj-cs.547 10.1016/j.jocn.2021.06.020 10.1371/journal.pone.0267851 10.1148/radiol.2493071999 10.1097/BRS.0000000000002986 10.3390/app13158646 10.1109/TMI.2016.2523452 10.7717/peerj-cs.1280 10.1016/j.spinee.2016.08.034 10.3171/2013.1.SPINE12537 10.1016/j.media.2019.101533 10.3389/fbioe.2023.1194009 10.1016/j.semss.2020.100802 10.1038/s41598-023-31224-4 10.1007/s10278-020-00402-5 10.3390/jcm11185450 10.1155/2022/7459260 10.1016/j.wneu.2023.11.017 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3522970 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 5111 |
ExternalDocumentID | oai_doaj_org_article_9d04b9972fa44d93a485877406f21448 10_1109_ACCESS_2024_3522970 10816410 |
Genre | orig-research |
GrantInformation_xml | – fundername: Korea Institute of Oriental Medicine grantid: KSN1823130; KSN1922110 funderid: 10.13039/501100003718 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-b86eb8b9fac23957a73952a0da92665a20ae6b359a18ef0ccc39d4fc1ee1887b3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:28:58 EDT 2025 Mon Jun 30 13:20:16 EDT 2025 Tue Jul 01 03:03:02 EDT 2025 Wed Aug 27 01:58:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-b86eb8b9fac23957a73952a0da92665a20ae6b359a18ef0ccc39d4fc1ee1887b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7639-5884 0000-0001-7366-5626 0000-0003-1335-0942 0000-0003-0879-7125 0000-0001-8570-7379 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10816410 |
PQID | 3153911662 |
PQPubID | 4845423 |
PageCount | 20 |
ParticipantIDs | proquest_journals_3153911662 ieee_primary_10816410 doaj_primary_oai_doaj_org_article_9d04b9972fa44d93a485877406f21448 crossref_primary_10_1109_ACCESS_2024_3522970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Kang (ref39) 2015 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref4 doi: 10.1016/j.nec.2019.02.003 – ident: ref34 doi: 10.1016/j.crad.2004.02.019 – ident: ref5 doi: 10.1016/j.spinee.2022.06.108 – ident: ref23 doi: 10.1109/IDAP.2019.8875988 – ident: ref37 doi: 10.1007/s10278-015-9803-7 – ident: ref20 doi: 10.1016/j.spinee.2024.01.001 – ident: ref17 doi: 10.1016/j.bspc.2020.102371 – ident: ref38 doi: 10.1109/CVPR.2016.90 – ident: ref36 doi: 10.1038/s41598-020-63784-0 – ident: ref1 doi: 10.1016/j.nec.2019.02.002 – ident: ref28 doi: 10.1016/j.wneu.2024.04.025 – ident: ref12 doi: 10.1109/JCSSE58229.2023.10201937 – ident: ref15 doi: 10.1117/12.2254072 – ident: ref29 doi: 10.1109/ICMLANT59547.2023.10372991 – ident: ref31 doi: 10.1016/S0031-3203(98)00178-2 – ident: ref18 doi: 10.1016/j.heliyon.2024.e37418 – ident: ref30 doi: 10.1109/INCET57972.2023.10170564 – ident: ref11 doi: 10.1016/j.bspc.2021.103230 – ident: ref10 doi: 10.1007/978-3-319-59713-3_24 – ident: ref21 doi: 10.1097/brs.0000000000004483 – ident: ref7 doi: 10.7717/peerj-cs.547 – ident: ref35 doi: 10.1016/j.jocn.2021.06.020 – year: 2015 ident: ref39 article-title: The n-distribution Bhattacharyya coefficient – ident: ref26 doi: 10.1371/journal.pone.0267851 – ident: ref2 doi: 10.1148/radiol.2493071999 – ident: ref3 doi: 10.1097/BRS.0000000000002986 – ident: ref33 doi: 10.3390/app13158646 – ident: ref16 doi: 10.1109/TMI.2016.2523452 – ident: ref22 doi: 10.7717/peerj-cs.1280 – ident: ref32 doi: 10.1016/j.spinee.2016.08.034 – ident: ref8 doi: 10.3171/2013.1.SPINE12537 – ident: ref14 doi: 10.1016/j.media.2019.101533 – ident: ref25 doi: 10.3389/fbioe.2023.1194009 – ident: ref6 doi: 10.1016/j.semss.2020.100802 – ident: ref19 doi: 10.1038/s41598-023-31224-4 – ident: ref24 doi: 10.1007/s10278-020-00402-5 – ident: ref13 doi: 10.3390/jcm11185450 – ident: ref27 doi: 10.1155/2022/7459260 – ident: ref9 doi: 10.1016/j.wneu.2023.11.017 |
SSID | ssj0000816957 |
Score | 2.3340404 |
Snippet | Spondylolisthesis classification commonly relies on the shift distance (SD) feature. This feature measures the displacement between vertebrae but is sensitive... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 5092 |
SubjectTerms | Accuracy affine transformations Alignment Classification Deep learning Factor analysis Feature extraction geometric feature Loading Location awareness lumbar Pain radiograph Rotation measurement Spine Spondylolisthesis Translation Vectors Vertebrae |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sBIwEkc1x5LeQtYAInNsh0bKrUp6oPfz52TokgMLKyR8_q-5O47n31HyEkqBJcWlJtjnGOA0kuUMkBI4WRhDDOhwL3Dj0_i9pXfvxVvrVZfuCasLg9cA3euSsYt7u4MhvNS5YbLQoJmYSJgta-4zRd8XiuYijZYpkIVvabMUMrUeX8wgDeCgDDjZyg6FLYnbrmiWLG_abHyyy5HZ3O9QdYblUj79dNtkhVfbZG1Vu3AbeL6Fb2rviDUBWzojZ-MsTeWo6jpFlNPQYzSON2XgG3AyRb6sBhbM6WDxfTL0_5o-B4XAtD5hF56TCXQ589JVUIAPwLqP_xsONshr9dXL4PbpOmYkLi8UPPESuGttCoYl2ECzmAaLjOsNAoccWEyZrywMNSk0gfmnMtVyYNLvU_B2th8l3SqSeX3COWYE3Uq68GJPAB_mQuyhGBRhDSUknfJ6RI8_VkXxtAxoGBK11hrxFo3WHfJBQL8MxSrWscDwLVuuNZ_cd0lO0hP635AM0_h4odLvnTzC850DrYcLLkQ2f5_3PuArGbY-jfOvhySzny68EegR-b2OH563zKX1_Y priority: 102 providerName: Directory of Open Access Journals |
Title | An Invariant Geometric Feature for Inter-Subject Lumbar Curve Alignment to Detect Spondylolisthesis |
URI | https://ieeexplore.ieee.org/document/10816410 https://www.proquest.com/docview/3153911662 https://doaj.org/article/9d04b9972fa44d93a485877406f21448 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJzhQHkUsfcgHjmRxEsdrH5elpSDoBSr1ZtnOGCq2SbWbVGp_PTNOtlqBkLhFiaM8vrHnmxnPDGNvcqWk9sjcgpCSDJRZZoxDQKqgK-eEixXlDn89U6fn8vNFdTEmq6dcGABIm89gSocpll-3oSdXGc5wjeyeEqoeouU2JGvdO1TomqlmY2WhXJh388UCPwJtwEJOiWcY6ki8pX1Skf6xq8pfS3HSLye77GzzZsO2kl_TvvPTcPdH0cb_fvWn7MnINPl8EI1n7AE0z9njrfqDL1iYN_xTc4PmMv5f_hHaK-qvFTjxwn4FHAktTy7DDNcXctjwL_2Vdyu-6Fc3wOfLyx9pMwHvWv4BKBzBv123TX27bJcoPj9hfbneY-cnx98Xp9nYdSELZWW6zGsFXnsTXSgoiOcolFc4UTuDyrxyhXCgPA51uYYoQgilqWUMOUCOK5YvX7Kdpm3gFeOS4qrBFDO8UUaUgSJEXaPBqWIeay0n7O0GDXs9FNewySgRxg7gWQLPjuBN2HtC7H4oVcZOJ_BP23GiWVML6SkbODopa1M6qSuNHFeoSNXh9ITtETpbzxuAmbCDjQDYcRqvbYn6ALWBUsXrf9y2zx4V1BE4OWUO2E636uEQaUrnj5J5f5SE9Dd0KOR4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQOQAHnkUsLeADR7I4ie21j8tC2cJ2L7RSb5bt2FCxTardpFL59cw42WoFQuIWJY7y-Maeb2Y8M4S8zaXkygFz84xzNFAmmdYWABFeCWuZjQJzh0-Wcn7Gv5yL8yFZPeXChBDS5rMwxsMUy68a36GrDGa4AnaPCVV3QfGLvE_XunWp4FUtJkNtoZzp99PZDD4DrMCCj5FpaOxJvKN_Upn-oa_KX4tx0jBHj8hy-279xpKf4651Y__rj7KN__3yj8nDgWvSaS8cT8idUD8lD3YqED4jflrT4_oaDGb4w_RzaC6xw5anyAy7daBAaWlyGmawwqDLhi66S2fXdNatrwOdri6-p-0EtG3ox4ABCfrtqqmrm1WzAgH6ETYXm31ydvTpdDbPhr4LmS-FbjOnZHDK6Wh9gWE8i8G8wrLKalDnwhbMBulgqM1ViMx7X-qKR5-HkMOa5crnZK9u6vCCUI6RVa-LCdzII0hB4aOqwOSUMY-V4iPybouGuerLa5hkljBtevAMgmcG8EbkAyJ2OxRrY6cT8KfNMNWMrhh3mA8cLeeVLi1XQgHLZTJifTg1IvuIzs7zemBG5HArAGaYyBtTgkYAfSBl8fIft70h9-anJwuzOF5-PSD3C-wPnFw0h2SvXXfhFZCW1r1OovobISXmzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Invariant+Geometric+Feature+for+Inter-Subject+Lumbar+Curve+Alignment+to+Detect+Spondylolisthesis&rft.jtitle=IEEE+access&rft.au=Klinwichit%2C+Podchara&rft.au=Yookwan%2C+Watcharaphong&rft.au=Onuean%2C+Athita&rft.au=Horkaew%2C+Paramate&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=5092&rft.epage=5111&rft_id=info:doi/10.1109%2FACCESS.2024.3522970&rft.externalDocID=10816410 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |