ContractWard: Automated Vulnerability Detection Models for Ethereum Smart Contracts
Smart contracts are decentralized applications running on Blockchain. A very large number of smart contracts has been deployed on Ethereum. Meanwhile, security flaws of contracts have led to huge pecuniary losses and destroyed the ecological stability of contract layer on Blockchain. It is thus an e...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 8; no. 2; pp. 1133 - 1144 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Smart contracts are decentralized applications running on Blockchain. A very large number of smart contracts has been deployed on Ethereum. Meanwhile, security flaws of contracts have led to huge pecuniary losses and destroyed the ecological stability of contract layer on Blockchain. It is thus an emerging yet crucial issue to effectively and efficiently detect vulnerabilities in contracts. Existing detection methods like Oyente and Securify are mainly based on symbolic execution or analysis. These methods are very time-consuming, as the symbolic execution requires the exploration of all executable paths or the analysis of dependency graphs in a contract. In this work, we propose ContractWard to detect vulnerabilities in smart contracts with machine learning techniques. First, we extract bigram features from simplified operation codes of smart contracts. Second, we employ five machine learning algorithms and two sampling algorithms to build the models. ContractWard is evaluated with 49502 real-world smart contracts running on Ethereum. The experimental results demonstrate the effectiveness and efficiency of ContractWard. The predictive Micro-F1 and Macro-F1 of ContractWard are over 96% and the average detection time is 4 seconds on each smart contract when we use XGBoost for training the models and SMOTETomek for balancing the training sets. |
---|---|
AbstractList | Smart contracts are decentralized applications running on Blockchain. A very large number of smart contracts has been deployed on Ethereum. Meanwhile, security flaws of contracts have led to huge pecuniary losses and destroyed the ecological stability of contract layer on Blockchain. It is thus an emerging yet crucial issue to effectively and efficiently detect vulnerabilities in contracts. Existing detection methods like Oyente and Securify are mainly based on symbolic execution or analysis. These methods are very time-consuming, as the symbolic execution requires the exploration of all executable paths or the analysis of dependency graphs in a contract. In this work, we propose ContractWard to detect vulnerabilities in smart contracts with machine learning techniques. First, we extract bigram features from simplified operation codes of smart contracts. Second, we employ five machine learning algorithms and two sampling algorithms to build the models. ContractWard is evaluated with 49502 real-world smart contracts running on Ethereum. The experimental results demonstrate the effectiveness and efficiency of ContractWard. The predictive Micro-F1 and Macro-F1 of ContractWard are over 96% and the average detection time is 4 seconds on each smart contract when we use XGBoost for training the models and SMOTETomek for balancing the training sets. |
Author | Xu, Guangquan Wang, Wei Li, Yidong Su, Chunhua Song, Jingjing Wang, Hao |
Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-5974-1589 surname: Wang fullname: Wang, Wei email: wangwei1@bjtu.edu.cn organization: Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing, China – sequence: 2 givenname: Jingjing orcidid: 0000-0002-1098-0511 surname: Song fullname: Song, Jingjing email: 17120479@bjtu.edu.cn organization: Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing, China – sequence: 3 givenname: Guangquan orcidid: 0000-0001-8701-3944 surname: Xu fullname: Xu, Guangquan email: losin@tju.edu.cn organization: Tianjin Key Laboratory of Advanced Networking, College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 4 givenname: Yidong orcidid: 0000-0003-2965-6196 surname: Li fullname: Li, Yidong email: ydli@bjtu.edu.cn organization: Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing, China – sequence: 5 givenname: Hao orcidid: 0000-0001-9301-5989 surname: Wang fullname: Wang, Hao email: hawa@ntnu.no organization: Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, Norway – sequence: 6 givenname: Chunhua orcidid: 0000-0002-6461-9684 surname: Su fullname: Su, Chunhua email: suchunhua@gmail.com organization: Division of Computer Science, University of Aizu, Aizu-Wakamatsu, Japan |
BookMark | eNp9kDtPwzAUhS0EEqX0ByAWS8wpfsSOzVaV8pAKDC2PLXLtG5EqjYvjDP33JGphYGC6d7jnnHu-M3Rc-xoQuqBkTCnR18vnxWzMCCNjpqUSRByhAeM8TTjTH8f9zrIklTo7RaOmWRNCKFOScz5Ai6mvYzA2vpvgbvCkjX5jIjj81lY1BLMqqzLu8C1EsLH0NX7yDqoGFz7gWfyEAO0GLzYmRPzj1Jyjk8JUDYwOc4he72bL6UMyf7l_nE7mieVCx2SVGkOtdI4DWON4kWUrRjQ4bmRBnVCFNqmzQgnBjeYrmqZWWsWJzQgnUvMhutr7boP_aqGJ-dq3oe4icyZSpZVUknZXdH9lg2-aAEW-DWX38C6nJO_x5T2-vMeXH_B1muyPxpbR9P27hmX1r_JyrywB4DdJaZkRIvk3dNp_3w |
CODEN | ITNSD5 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3378736 crossref_primary_10_32604_cmes_2024_054820 crossref_primary_10_1186_s13677_023_00459_x crossref_primary_10_1016_j_suscom_2025_101099 crossref_primary_10_1109_TSE_2021_3116808 crossref_primary_10_1007_s10618_023_00981_1 crossref_primary_10_1007_s10664_024_10446_8 crossref_primary_10_1016_j_jss_2024_112160 crossref_primary_10_1109_TCSS_2022_3228122 crossref_primary_10_3390_electronics12102327 crossref_primary_10_1016_j_dajour_2022_100122 crossref_primary_10_1145_3703462 crossref_primary_10_1109_TVT_2021_3063783 crossref_primary_10_1177_15501477211033765 crossref_primary_10_1109_TIFS_2024_3349852 crossref_primary_10_32604_csse_2023_027680 crossref_primary_10_1145_3719004 crossref_primary_10_1109_ACCESS_2022_3162065 crossref_primary_10_1016_j_bcra_2022_100101 crossref_primary_10_1109_TSE_2023_3317209 crossref_primary_10_1016_j_scico_2023_103076 crossref_primary_10_1007_s10515_024_00418_z crossref_primary_10_32604_cmes_2023_026627 crossref_primary_10_1109_TC_2022_3157996 crossref_primary_10_1109_TNSM_2023_3278311 crossref_primary_10_1007_s12083_023_01554_1 crossref_primary_10_3390_app13106027 crossref_primary_10_33317_ssurj_421 crossref_primary_10_3390_cryptography7030034 crossref_primary_10_1109_TSE_2024_3400294 crossref_primary_10_32604_cmes_2024_046758 crossref_primary_10_1007_s12652_023_04577_x crossref_primary_10_1186_s13638_021_01953_z crossref_primary_10_1007_s11571_025_10221_5 crossref_primary_10_3390_s22051829 crossref_primary_10_1109_ACCESS_2024_3364351 crossref_primary_10_1016_j_jisa_2025_103987 crossref_primary_10_1016_j_cose_2024_104059 crossref_primary_10_1007_s10207_024_00965_2 crossref_primary_10_1007_s10922_024_09832_w crossref_primary_10_1016_j_comcom_2024_03_016 crossref_primary_10_1016_j_jii_2024_100713 crossref_primary_10_1155_2023_9212269 crossref_primary_10_1145_3643895 crossref_primary_10_1002_stvr_1867 crossref_primary_10_1109_TDSC_2023_3264567 crossref_primary_10_1016_j_heliyon_2023_e15353 crossref_primary_10_48084_etasr_6641 crossref_primary_10_1002_spe_3163 crossref_primary_10_1016_j_jnca_2024_103882 crossref_primary_10_1109_ACCESS_2023_3298048 crossref_primary_10_4018_IJDWM_320473 crossref_primary_10_1016_j_jisa_2023_103555 crossref_primary_10_1145_3695864 crossref_primary_10_1109_ACCESS_2022_3174052 crossref_primary_10_1155_2022_8021267 crossref_primary_10_1109_MNET_001_1900656 crossref_primary_10_3390_electronics13183786 crossref_primary_10_1016_j_asoc_2024_111698 crossref_primary_10_3390_app13137721 crossref_primary_10_1109_ACCESS_2021_3140091 crossref_primary_10_1109_JIOT_2023_3241544 crossref_primary_10_1016_j_compeleceng_2024_109682 crossref_primary_10_1109_JIOT_2024_3434627 crossref_primary_10_1109_ACCESS_2025_3530269 crossref_primary_10_1109_TR_2022_3173025 crossref_primary_10_1109_ACCESS_2025_3532326 crossref_primary_10_3934_era_2023036 crossref_primary_10_1016_j_comnet_2024_110959 crossref_primary_10_1109_TDSC_2022_3228302 crossref_primary_10_1016_j_jnca_2025_104142 crossref_primary_10_1016_j_comnet_2022_109289 crossref_primary_10_1109_TBDATA_2024_3403376 crossref_primary_10_1002_smr_2712 crossref_primary_10_1587_transinf_2024EDL8004 crossref_primary_10_1016_j_comnet_2023_109604 crossref_primary_10_1007_s10207_023_00752_5 crossref_primary_10_1515_jisys_2023_0038 crossref_primary_10_3390_electronics13193942 crossref_primary_10_1587_transinf_2021BCP0014 crossref_primary_10_3390_s22124621 crossref_primary_10_7717_peerj_cs_2320 crossref_primary_10_1049_2023_6631967 crossref_primary_10_1016_j_dcan_2023_07_009 crossref_primary_10_1142_S0218194023410061 crossref_primary_10_1007_s11042_023_15042_4 crossref_primary_10_1109_TNSE_2020_3024557 crossref_primary_10_3390_electronics13122295 crossref_primary_10_1002_int_23053 crossref_primary_10_1109_ACCESS_2020_2976745 crossref_primary_10_1016_j_jnca_2024_103858 crossref_primary_10_1016_j_jksuci_2022_10_004 crossref_primary_10_1016_j_jss_2024_112118 crossref_primary_10_3390_jcp2020019 crossref_primary_10_1002_spy2_430 crossref_primary_10_1016_j_scico_2024_103211 crossref_primary_10_1016_j_eswa_2024_126353 crossref_primary_10_1109_TNSE_2024_3470788 crossref_primary_10_1049_blc2_12072 crossref_primary_10_1109_ACCESS_2022_3169902 crossref_primary_10_1109_TKDE_2021_3095196 crossref_primary_10_1016_j_compeleceng_2025_110096 crossref_primary_10_3390_electronics11193260 crossref_primary_10_1109_TITS_2021_3135197 crossref_primary_10_1155_2022_7357820 crossref_primary_10_1186_s42400_021_00105_6 crossref_primary_10_1109_TCSS_2022_3189368 crossref_primary_10_1109_TKDE_2023_3333371 crossref_primary_10_1080_09540091_2024_2313853 crossref_primary_10_1007_s11227_025_06951_2 crossref_primary_10_1109_TSE_2023_3271417 crossref_primary_10_1002_ett_4675 crossref_primary_10_1145_3641846 crossref_primary_10_1186_s42400_024_00245_5 crossref_primary_10_1016_j_sysarc_2023_102897 crossref_primary_10_1093_comjnl_bxac124 crossref_primary_10_2478_jsiot_2022_0010 crossref_primary_10_1016_j_jnca_2022_103486 crossref_primary_10_1007_s11276_024_03755_9 crossref_primary_10_1016_j_infsof_2023_107221 crossref_primary_10_1007_s12083_021_01268_2 crossref_primary_10_1007_s10586_024_04857_x crossref_primary_10_1109_JAS_2023_123642 |
Cites_doi | 10.1145/2939672.2939785 10.1109/TIT.1967.1053964 10.1145/2976749.2978309 10.1145/3243734.3243780 10.1016/j.ins.2019.09.024 10.1145/2993600.2993611 10.1016/j.comcom.2007.10.010 10.1109/ACCESS.2019.2918139 10.1109/Cybermatics_2018.2018.00232 10.1145/3238147.3238177 10.1007/978-3-319-89722-6_10 10.23919/MIPRO.2018.8400278 10.1109/TMC.2019.2903186 10.1023/A:1010933404324 10.1023/A:1018628609742 10.1109/CSF.2018.00022 10.14722/ndss.2018.23082 10.1006/jcss.1997.1504 10.1016/j.future.2018.12.044 10.1109/ARES.2006.73 10.1007/s11280-017-0446-0 10.1109/TIFS.2014.2353996 10.1214/aos/1016218223 10.1007/978-1-4842-2535-6 10.1016/j.future.2017.01.019 10.1007/978-3-662-54455-6_8 10.1007/978-3-030-36938-5_26 10.1007/978-3-319-70278-0_33 10.1093/ijlit/eaz008 10.1016/j.future.2017.04.041 10.1007/s12652-018-0803-6 10.1109/ACCESS.2016.2566339 10.1016/j.cose.2006.05.005 10.1109/TITS.2017.2777990 10.1007/978-3-540-28648-6_105 10.1145/1007730.1007735 10.1613/jair.953 10.1016/j.knosys.2018.05.037 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNSE.2020.2968505 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2334-329X |
EndPage | 1144 |
ExternalDocumentID | 10_1109_TNSE_2020_2968505 8967006 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFB0802805 funderid: 10.13039/501100012166 – fundername: Natural Science Foundation of China grantid: U1736114 – fundername: JSPS Kiban(B) grantid: 18H03240 – fundername: JSPS Kiban(C) grantid: 18K11298 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-b4aa1c6dd3eecad3f77b209ed3a6f1d58f9a4dc58553a93b144c6c830c7030693 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Mon Jun 30 09:48:34 EDT 2025 Tue Jul 01 03:10:41 EDT 2025 Thu Apr 24 22:57:30 EDT 2025 Wed Aug 27 02:26:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-b4aa1c6dd3eecad3f77b209ed3a6f1d58f9a4dc58553a93b144c6c830c7030693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1098-0511 0000-0002-5974-1589 0000-0001-9301-5989 0000-0001-8701-3944 0000-0003-2965-6196 0000-0002-6461-9684 |
PQID | 2548986861 |
PQPubID | 2040409 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2548986861 crossref_primary_10_1109_TNSE_2020_2968505 crossref_citationtrail_10_1109_TNSE_2020_2968505 ieee_primary_8967006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref56 ref15 ref52 ref55 ref11 ref16 ref18 cavnar (ref54) 0 scott (ref12) 2016 ref51 ref46 ref45 ref48 ref47 ref42 ref41 wood (ref50) 2014; 151 ref44 ref43 nakamoto (ref2) 2008 ref49 (ref17) 0 (ref30) 0 ref7 ref9 ref3 suiche (ref22) 2017; 25 ref5 ref40 ekblaw (ref8) 0; 13 ref35 ref34 ref37 ref31 ref33 zhang (ref6) 2017; 43 ref32 ref39 ref38 (ref53) 0 castillo (ref14) 0 ref24 ref23 szabo (ref1) 1996 ref26 nikoli? (ref36) 0 ref25 ref20 lin (ref13) 2017; 19 ref28 ref27 (ref19) 0 ref29 buterin (ref4) 2014; 3 (ref21) 0 rahman (ref10) 2020 |
References_xml | – ident: ref25 doi: 10.1145/2939672.2939785 – volume: 25 start-page: 11 year: 2017 ident: ref22 article-title: Porosity: A decompiler for blockchain-based smart contracts bytecode publication-title: DEF CON – ident: ref29 doi: 10.1109/TIT.1967.1053964 – ident: ref18 doi: 10.1145/2976749.2978309 – ident: ref20 doi: 10.1145/3243734.3243780 – year: 0 ident: ref21 article-title: Ethereum virtual machine operation codes – start-page: 1 year: 2020 ident: ref10 article-title: Accountable cross-border data sharing using blockchain under relaxed trust assumption publication-title: IEEE Trans Eng Manage – ident: ref46 doi: 10.1016/j.ins.2019.09.024 – ident: ref24 doi: 10.1145/2993600.2993611 – volume: 151 start-page: 1 year: 2014 ident: ref50 article-title: Ethereum: A secure decentralised generalised transaction ledger publication-title: Ethereum Project Yellow Paper – year: 0 ident: ref30 article-title: Ethereum official website – ident: ref47 doi: 10.1016/j.comcom.2007.10.010 – ident: ref38 doi: 10.1109/ACCESS.2019.2918139 – year: 1996 ident: ref1 article-title: Smart contracts: Building blocks for digital markets – volume: 43 start-page: 1544 year: 2017 ident: ref6 article-title: Distributed electrical energy systems: Needs, concepts, approaches and vision publication-title: ACTA Automatica Sinica – ident: ref5 doi: 10.1109/Cybermatics_2018.2018.00232 – year: 0 ident: ref54 article-title: N-gram-based text categorization publication-title: Proc SDAIR-94 3rd Annu Symp Document Anal Inf Retrieval – year: 0 ident: ref53 article-title: Oyente project – ident: ref35 doi: 10.1145/3238147.3238177 – ident: ref32 doi: 10.1007/978-3-319-89722-6_10 – ident: ref51 doi: 10.23919/MIPRO.2018.8400278 – ident: ref43 doi: 10.1109/TMC.2019.2903186 – ident: ref27 doi: 10.1023/A:1010933404324 – ident: ref28 doi: 10.1023/A:1018628609742 – ident: ref33 doi: 10.1109/CSF.2018.00022 – volume: 13 start-page: 13 year: 0 ident: ref8 article-title: A case study for blockchain in healthcare: "MEDREC" prototype for electronic health records and medical research data publication-title: Proc IEEE Open Big Data Conf – year: 0 ident: ref19 article-title: Mythril project – volume: 19 start-page: 653 year: 2017 ident: ref13 article-title: A survey of blockchain security issues and challenges publication-title: IJ Netw Secur – ident: ref34 doi: 10.14722/ndss.2018.23082 – ident: ref26 doi: 10.1006/jcss.1997.1504 – ident: ref9 doi: 10.1016/j.future.2018.12.044 – ident: ref48 doi: 10.1109/ARES.2006.73 – volume: 3 start-page: 37 year: 2014 ident: ref4 article-title: A next-generation smart contract and decentralized application platform – start-page: 653 year: 0 ident: ref36 article-title: Finding the greedy, prodigal, and suicidal contracts at scale publication-title: Proc 34th Annu Comput Secur Appl Conf – ident: ref45 doi: 10.1007/s11280-017-0446-0 – ident: ref39 doi: 10.1109/TIFS.2014.2353996 – ident: ref56 doi: 10.1214/aos/1016218223 – ident: ref3 doi: 10.1007/978-1-4842-2535-6 – ident: ref40 doi: 10.1016/j.future.2017.01.019 – start-page: 1 year: 2016 ident: ref12 article-title: How can cryptocurrency and blockchain technology play a role in building social and solidarity finance – year: 0 ident: ref14 article-title: The dao attacked: Code issue leads to $60 million ether theft – year: 0 ident: ref17 article-title: A Lottery Contract Example – ident: ref16 doi: 10.1007/978-3-662-54455-6_8 – ident: ref37 doi: 10.1007/978-3-030-36938-5_26 – year: 2008 ident: ref2 article-title: Bitcoin: A peer-to-peer electronic cash system – ident: ref31 doi: 10.1007/978-3-319-70278-0_33 – ident: ref15 doi: 10.1093/ijlit/eaz008 – ident: ref42 doi: 10.1016/j.future.2017.04.041 – ident: ref41 doi: 10.1007/s12652-018-0803-6 – ident: ref7 doi: 10.1109/ACCESS.2016.2566339 – ident: ref44 doi: 10.1016/j.cose.2006.05.005 – ident: ref11 doi: 10.1109/TITS.2017.2777990 – ident: ref49 doi: 10.1007/978-3-540-28648-6_105 – ident: ref55 doi: 10.1145/1007730.1007735 – ident: ref23 doi: 10.1613/jair.953 – ident: ref52 doi: 10.1016/j.knosys.2018.05.037 |
SSID | ssj0001286333 |
Score | 2.5994442 |
Snippet | Smart contracts are decentralized applications running on Blockchain. A very large number of smart contracts has been deployed on Ethereum. Meanwhile, security... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1133 |
SubjectTerms | Algorithms Blockchain Contracts Cryptography Feature extraction Flaw detection Machine learning Machine learning algorithms Security Smart contracts Training vulnerability detection |
Title | ContractWard: Automated Vulnerability Detection Models for Ethereum Smart Contracts |
URI | https://ieeexplore.ieee.org/document/8967006 https://www.proquest.com/docview/2548986861 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD0yIlCR-xGaroBVCgqW8tsixnYU-EE0G-PX43LSqACG2DHZk-c5399l33wGcSundcpnoqNAsjZgr_ZHKJPeYx1rmA1peaASKd_fi5pHdvvCXJTif18I450LymWvjZ3jLt2NT41XZhVRYVCKWYdkDt2mt1sJ9ihSU0ubhMonVxcN9v-sBYBq3UyUkxwZ1C64n9FL5YYCDV-ltwN1sPdNkktd2XRVt8_mNqvG_C96E9Sa8JJ2pPmzBkhttw9oC6eAO9JGQCmujnr1yXJJOXY191OoseaoHSEEdsmU_yLWrQpbWiGC7tMGE-OiWdDFcdPWQ9Ide5cjsT5NdeOx1H65uoqa1QmQoV1VUMK0TI6ylzhltaZllRRorZ6kWZWK5LJVm1ngswalWtPCwywgjaWzQQghF92BlNB65fSAe4WaCp4Zzq5l03van1CasyGKG_E62BfFs13PT8I5j-4tBHvBHrHIUVI6CyhtBteBsPuVtSrrx1-Ad3Pj5wGbPW3A0E23eHMtJ7tGwVFJIkRz8PusQVlNMWgmpOUewUr3X7thHHVVxEtTtC-_T1Lk |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB1V5QAc-CqIlAI-wAVp011_rReJQ0VTpbTNJSn0tnht74U0Qc2uUPkt_BX-GzPOJooAcavEbQ_2SrafPfPsmTcAr4xBs1xnNqms5IkMNW6p3CjkPN5LdGhVZYkono308Fx-uFAXW_BjnQsTQojBZ6FPn_Et389dS1dl-6agpBLdhVCehOtvSNAW744PcTVfc340mLwfJl0NgcQJVTRJJa3NnPZehOCsF3WeVzwtghdW15lXpi6s9A6dZiVsISrkF047I1JHW0GT1BIe8LdwQIovs8M2bnCMFkJ0T6VZWuxPRuMBUk6e9nmhjaKSeBvGLlZv-ePIj3bs6D78XM3AMnzlS79tqr77_ps45P86RQ_gXudAs4Ml4h_CVpg9grsbsoo7MCbJLcr--oTwf8sO2maOfnnw7GM7JZHtGA98zQ5DE-PQZowKwk0XDP13NiCHOLSXbHyJm4qt_rR4DOc3MqonsD2bz8JTYMjhc624U8pbaQJaNy58Jqs8laRg5XuQrla5dJ2yOhX4mJaRYaVFScAoCRhlB4wevFl3-bqUFflX4x1a6HXDbo17sLeCUtkdPIsS-b4pjDY62_17r5dwezg5Oy1Pj0cnz-AOpxCdGIi0B9vNVRueo4_VVC8i1Bl8vmng_AIFVDOd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ContractWard%3A+Automated+Vulnerability+Detection+Models+for+Ethereum+Smart+Contracts&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Wang%2C+Wei&rft.au=Song%2C+Jingjing&rft.au=Xu%2C+Guangquan&rft.au=Li%2C+Yidong&rft.date=2021-04-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=8&rft.issue=2&rft.spage=1133&rft.epage=1144&rft_id=info:doi/10.1109%2FTNSE.2020.2968505&rft.externalDocID=8967006 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |