ContractWard: Automated Vulnerability Detection Models for Ethereum Smart Contracts

Smart contracts are decentralized applications running on Blockchain. A very large number of smart contracts has been deployed on Ethereum. Meanwhile, security flaws of contracts have led to huge pecuniary losses and destroyed the ecological stability of contract layer on Blockchain. It is thus an e...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 8; no. 2; pp. 1133 - 1144
Main Authors Wang, Wei, Song, Jingjing, Xu, Guangquan, Li, Yidong, Wang, Hao, Su, Chunhua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Smart contracts are decentralized applications running on Blockchain. A very large number of smart contracts has been deployed on Ethereum. Meanwhile, security flaws of contracts have led to huge pecuniary losses and destroyed the ecological stability of contract layer on Blockchain. It is thus an emerging yet crucial issue to effectively and efficiently detect vulnerabilities in contracts. Existing detection methods like Oyente and Securify are mainly based on symbolic execution or analysis. These methods are very time-consuming, as the symbolic execution requires the exploration of all executable paths or the analysis of dependency graphs in a contract. In this work, we propose ContractWard to detect vulnerabilities in smart contracts with machine learning techniques. First, we extract bigram features from simplified operation codes of smart contracts. Second, we employ five machine learning algorithms and two sampling algorithms to build the models. ContractWard is evaluated with 49502 real-world smart contracts running on Ethereum. The experimental results demonstrate the effectiveness and efficiency of ContractWard. The predictive Micro-F1 and Macro-F1 of ContractWard are over 96% and the average detection time is 4 seconds on each smart contract when we use XGBoost for training the models and SMOTETomek for balancing the training sets.
AbstractList Smart contracts are decentralized applications running on Blockchain. A very large number of smart contracts has been deployed on Ethereum. Meanwhile, security flaws of contracts have led to huge pecuniary losses and destroyed the ecological stability of contract layer on Blockchain. It is thus an emerging yet crucial issue to effectively and efficiently detect vulnerabilities in contracts. Existing detection methods like Oyente and Securify are mainly based on symbolic execution or analysis. These methods are very time-consuming, as the symbolic execution requires the exploration of all executable paths or the analysis of dependency graphs in a contract. In this work, we propose ContractWard to detect vulnerabilities in smart contracts with machine learning techniques. First, we extract bigram features from simplified operation codes of smart contracts. Second, we employ five machine learning algorithms and two sampling algorithms to build the models. ContractWard is evaluated with 49502 real-world smart contracts running on Ethereum. The experimental results demonstrate the effectiveness and efficiency of ContractWard. The predictive Micro-F1 and Macro-F1 of ContractWard are over 96% and the average detection time is 4 seconds on each smart contract when we use XGBoost for training the models and SMOTETomek for balancing the training sets.
Author Xu, Guangquan
Wang, Wei
Li, Yidong
Su, Chunhua
Song, Jingjing
Wang, Hao
Author_xml – sequence: 1
  givenname: Wei
  orcidid: 0000-0002-5974-1589
  surname: Wang
  fullname: Wang, Wei
  email: wangwei1@bjtu.edu.cn
  organization: Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing, China
– sequence: 2
  givenname: Jingjing
  orcidid: 0000-0002-1098-0511
  surname: Song
  fullname: Song, Jingjing
  email: 17120479@bjtu.edu.cn
  organization: Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing, China
– sequence: 3
  givenname: Guangquan
  orcidid: 0000-0001-8701-3944
  surname: Xu
  fullname: Xu, Guangquan
  email: losin@tju.edu.cn
  organization: Tianjin Key Laboratory of Advanced Networking, College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Yidong
  orcidid: 0000-0003-2965-6196
  surname: Li
  fullname: Li, Yidong
  email: ydli@bjtu.edu.cn
  organization: Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing, China
– sequence: 5
  givenname: Hao
  orcidid: 0000-0001-9301-5989
  surname: Wang
  fullname: Wang, Hao
  email: hawa@ntnu.no
  organization: Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, Norway
– sequence: 6
  givenname: Chunhua
  orcidid: 0000-0002-6461-9684
  surname: Su
  fullname: Su, Chunhua
  email: suchunhua@gmail.com
  organization: Division of Computer Science, University of Aizu, Aizu-Wakamatsu, Japan
BookMark eNp9kDtPwzAUhS0EEqX0ByAWS8wpfsSOzVaV8pAKDC2PLXLtG5EqjYvjDP33JGphYGC6d7jnnHu-M3Rc-xoQuqBkTCnR18vnxWzMCCNjpqUSRByhAeM8TTjTH8f9zrIklTo7RaOmWRNCKFOScz5Ai6mvYzA2vpvgbvCkjX5jIjj81lY1BLMqqzLu8C1EsLH0NX7yDqoGFz7gWfyEAO0GLzYmRPzj1Jyjk8JUDYwOc4he72bL6UMyf7l_nE7mieVCx2SVGkOtdI4DWON4kWUrRjQ4bmRBnVCFNqmzQgnBjeYrmqZWWsWJzQgnUvMhutr7boP_aqGJ-dq3oe4icyZSpZVUknZXdH9lg2-aAEW-DWX38C6nJO_x5T2-vMeXH_B1muyPxpbR9P27hmX1r_JyrywB4DdJaZkRIvk3dNp_3w
CODEN ITNSD5
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3378736
crossref_primary_10_32604_cmes_2024_054820
crossref_primary_10_1186_s13677_023_00459_x
crossref_primary_10_1016_j_suscom_2025_101099
crossref_primary_10_1109_TSE_2021_3116808
crossref_primary_10_1007_s10618_023_00981_1
crossref_primary_10_1007_s10664_024_10446_8
crossref_primary_10_1016_j_jss_2024_112160
crossref_primary_10_1109_TCSS_2022_3228122
crossref_primary_10_3390_electronics12102327
crossref_primary_10_1016_j_dajour_2022_100122
crossref_primary_10_1145_3703462
crossref_primary_10_1109_TVT_2021_3063783
crossref_primary_10_1177_15501477211033765
crossref_primary_10_1109_TIFS_2024_3349852
crossref_primary_10_32604_csse_2023_027680
crossref_primary_10_1145_3719004
crossref_primary_10_1109_ACCESS_2022_3162065
crossref_primary_10_1016_j_bcra_2022_100101
crossref_primary_10_1109_TSE_2023_3317209
crossref_primary_10_1016_j_scico_2023_103076
crossref_primary_10_1007_s10515_024_00418_z
crossref_primary_10_32604_cmes_2023_026627
crossref_primary_10_1109_TC_2022_3157996
crossref_primary_10_1109_TNSM_2023_3278311
crossref_primary_10_1007_s12083_023_01554_1
crossref_primary_10_3390_app13106027
crossref_primary_10_33317_ssurj_421
crossref_primary_10_3390_cryptography7030034
crossref_primary_10_1109_TSE_2024_3400294
crossref_primary_10_32604_cmes_2024_046758
crossref_primary_10_1007_s12652_023_04577_x
crossref_primary_10_1186_s13638_021_01953_z
crossref_primary_10_1007_s11571_025_10221_5
crossref_primary_10_3390_s22051829
crossref_primary_10_1109_ACCESS_2024_3364351
crossref_primary_10_1016_j_jisa_2025_103987
crossref_primary_10_1016_j_cose_2024_104059
crossref_primary_10_1007_s10207_024_00965_2
crossref_primary_10_1007_s10922_024_09832_w
crossref_primary_10_1016_j_comcom_2024_03_016
crossref_primary_10_1016_j_jii_2024_100713
crossref_primary_10_1155_2023_9212269
crossref_primary_10_1145_3643895
crossref_primary_10_1002_stvr_1867
crossref_primary_10_1109_TDSC_2023_3264567
crossref_primary_10_1016_j_heliyon_2023_e15353
crossref_primary_10_48084_etasr_6641
crossref_primary_10_1002_spe_3163
crossref_primary_10_1016_j_jnca_2024_103882
crossref_primary_10_1109_ACCESS_2023_3298048
crossref_primary_10_4018_IJDWM_320473
crossref_primary_10_1016_j_jisa_2023_103555
crossref_primary_10_1145_3695864
crossref_primary_10_1109_ACCESS_2022_3174052
crossref_primary_10_1155_2022_8021267
crossref_primary_10_1109_MNET_001_1900656
crossref_primary_10_3390_electronics13183786
crossref_primary_10_1016_j_asoc_2024_111698
crossref_primary_10_3390_app13137721
crossref_primary_10_1109_ACCESS_2021_3140091
crossref_primary_10_1109_JIOT_2023_3241544
crossref_primary_10_1016_j_compeleceng_2024_109682
crossref_primary_10_1109_JIOT_2024_3434627
crossref_primary_10_1109_ACCESS_2025_3530269
crossref_primary_10_1109_TR_2022_3173025
crossref_primary_10_1109_ACCESS_2025_3532326
crossref_primary_10_3934_era_2023036
crossref_primary_10_1016_j_comnet_2024_110959
crossref_primary_10_1109_TDSC_2022_3228302
crossref_primary_10_1016_j_jnca_2025_104142
crossref_primary_10_1016_j_comnet_2022_109289
crossref_primary_10_1109_TBDATA_2024_3403376
crossref_primary_10_1002_smr_2712
crossref_primary_10_1587_transinf_2024EDL8004
crossref_primary_10_1016_j_comnet_2023_109604
crossref_primary_10_1007_s10207_023_00752_5
crossref_primary_10_1515_jisys_2023_0038
crossref_primary_10_3390_electronics13193942
crossref_primary_10_1587_transinf_2021BCP0014
crossref_primary_10_3390_s22124621
crossref_primary_10_7717_peerj_cs_2320
crossref_primary_10_1049_2023_6631967
crossref_primary_10_1016_j_dcan_2023_07_009
crossref_primary_10_1142_S0218194023410061
crossref_primary_10_1007_s11042_023_15042_4
crossref_primary_10_1109_TNSE_2020_3024557
crossref_primary_10_3390_electronics13122295
crossref_primary_10_1002_int_23053
crossref_primary_10_1109_ACCESS_2020_2976745
crossref_primary_10_1016_j_jnca_2024_103858
crossref_primary_10_1016_j_jksuci_2022_10_004
crossref_primary_10_1016_j_jss_2024_112118
crossref_primary_10_3390_jcp2020019
crossref_primary_10_1002_spy2_430
crossref_primary_10_1016_j_scico_2024_103211
crossref_primary_10_1016_j_eswa_2024_126353
crossref_primary_10_1109_TNSE_2024_3470788
crossref_primary_10_1049_blc2_12072
crossref_primary_10_1109_ACCESS_2022_3169902
crossref_primary_10_1109_TKDE_2021_3095196
crossref_primary_10_1016_j_compeleceng_2025_110096
crossref_primary_10_3390_electronics11193260
crossref_primary_10_1109_TITS_2021_3135197
crossref_primary_10_1155_2022_7357820
crossref_primary_10_1186_s42400_021_00105_6
crossref_primary_10_1109_TCSS_2022_3189368
crossref_primary_10_1109_TKDE_2023_3333371
crossref_primary_10_1080_09540091_2024_2313853
crossref_primary_10_1007_s11227_025_06951_2
crossref_primary_10_1109_TSE_2023_3271417
crossref_primary_10_1002_ett_4675
crossref_primary_10_1145_3641846
crossref_primary_10_1186_s42400_024_00245_5
crossref_primary_10_1016_j_sysarc_2023_102897
crossref_primary_10_1093_comjnl_bxac124
crossref_primary_10_2478_jsiot_2022_0010
crossref_primary_10_1016_j_jnca_2022_103486
crossref_primary_10_1007_s11276_024_03755_9
crossref_primary_10_1016_j_infsof_2023_107221
crossref_primary_10_1007_s12083_021_01268_2
crossref_primary_10_1007_s10586_024_04857_x
crossref_primary_10_1109_JAS_2023_123642
Cites_doi 10.1145/2939672.2939785
10.1109/TIT.1967.1053964
10.1145/2976749.2978309
10.1145/3243734.3243780
10.1016/j.ins.2019.09.024
10.1145/2993600.2993611
10.1016/j.comcom.2007.10.010
10.1109/ACCESS.2019.2918139
10.1109/Cybermatics_2018.2018.00232
10.1145/3238147.3238177
10.1007/978-3-319-89722-6_10
10.23919/MIPRO.2018.8400278
10.1109/TMC.2019.2903186
10.1023/A:1010933404324
10.1023/A:1018628609742
10.1109/CSF.2018.00022
10.14722/ndss.2018.23082
10.1006/jcss.1997.1504
10.1016/j.future.2018.12.044
10.1109/ARES.2006.73
10.1007/s11280-017-0446-0
10.1109/TIFS.2014.2353996
10.1214/aos/1016218223
10.1007/978-1-4842-2535-6
10.1016/j.future.2017.01.019
10.1007/978-3-662-54455-6_8
10.1007/978-3-030-36938-5_26
10.1007/978-3-319-70278-0_33
10.1093/ijlit/eaz008
10.1016/j.future.2017.04.041
10.1007/s12652-018-0803-6
10.1109/ACCESS.2016.2566339
10.1016/j.cose.2006.05.005
10.1109/TITS.2017.2777990
10.1007/978-3-540-28648-6_105
10.1145/1007730.1007735
10.1613/jair.953
10.1016/j.knosys.2018.05.037
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2020.2968505
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 1144
ExternalDocumentID 10_1109_TNSE_2020_2968505
8967006
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFB0802805
  funderid: 10.13039/501100012166
– fundername: Natural Science Foundation of China
  grantid: U1736114
– fundername: JSPS Kiban(B)
  grantid: 18H03240
– fundername: JSPS Kiban(C)
  grantid: 18K11298
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IEDLZ
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-b4aa1c6dd3eecad3f77b209ed3a6f1d58f9a4dc58553a93b144c6c830c7030693
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Mon Jun 30 09:48:34 EDT 2025
Tue Jul 01 03:10:41 EDT 2025
Thu Apr 24 22:57:30 EDT 2025
Wed Aug 27 02:26:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-b4aa1c6dd3eecad3f77b209ed3a6f1d58f9a4dc58553a93b144c6c830c7030693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1098-0511
0000-0002-5974-1589
0000-0001-9301-5989
0000-0001-8701-3944
0000-0003-2965-6196
0000-0002-6461-9684
PQID 2548986861
PQPubID 2040409
PageCount 12
ParticipantIDs proquest_journals_2548986861
crossref_primary_10_1109_TNSE_2020_2968505
crossref_citationtrail_10_1109_TNSE_2020_2968505
ieee_primary_8967006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref15
ref52
ref55
ref11
ref16
ref18
cavnar (ref54) 0
scott (ref12) 2016
ref51
ref46
ref45
ref48
ref47
ref42
ref41
wood (ref50) 2014; 151
ref44
ref43
nakamoto (ref2) 2008
ref49
(ref17) 0
(ref30) 0
ref7
ref9
ref3
suiche (ref22) 2017; 25
ref5
ref40
ekblaw (ref8) 0; 13
ref35
ref34
ref37
ref31
ref33
zhang (ref6) 2017; 43
ref32
ref39
ref38
(ref53) 0
castillo (ref14) 0
ref24
ref23
szabo (ref1) 1996
ref26
nikoli? (ref36) 0
ref25
ref20
lin (ref13) 2017; 19
ref28
ref27
(ref19) 0
ref29
buterin (ref4) 2014; 3
(ref21) 0
rahman (ref10) 2020
References_xml – ident: ref25
  doi: 10.1145/2939672.2939785
– volume: 25
  start-page: 11
  year: 2017
  ident: ref22
  article-title: Porosity: A decompiler for blockchain-based smart contracts bytecode
  publication-title: DEF CON
– ident: ref29
  doi: 10.1109/TIT.1967.1053964
– ident: ref18
  doi: 10.1145/2976749.2978309
– ident: ref20
  doi: 10.1145/3243734.3243780
– year: 0
  ident: ref21
  article-title: Ethereum virtual machine operation codes
– start-page: 1
  year: 2020
  ident: ref10
  article-title: Accountable cross-border data sharing using blockchain under relaxed trust assumption
  publication-title: IEEE Trans Eng Manage
– ident: ref46
  doi: 10.1016/j.ins.2019.09.024
– ident: ref24
  doi: 10.1145/2993600.2993611
– volume: 151
  start-page: 1
  year: 2014
  ident: ref50
  article-title: Ethereum: A secure decentralised generalised transaction ledger
  publication-title: Ethereum Project Yellow Paper
– year: 0
  ident: ref30
  article-title: Ethereum official website
– ident: ref47
  doi: 10.1016/j.comcom.2007.10.010
– ident: ref38
  doi: 10.1109/ACCESS.2019.2918139
– year: 1996
  ident: ref1
  article-title: Smart contracts: Building blocks for digital markets
– volume: 43
  start-page: 1544
  year: 2017
  ident: ref6
  article-title: Distributed electrical energy systems: Needs, concepts, approaches and vision
  publication-title: ACTA Automatica Sinica
– ident: ref5
  doi: 10.1109/Cybermatics_2018.2018.00232
– year: 0
  ident: ref54
  article-title: N-gram-based text categorization
  publication-title: Proc SDAIR-94 3rd Annu Symp Document Anal Inf Retrieval
– year: 0
  ident: ref53
  article-title: Oyente project
– ident: ref35
  doi: 10.1145/3238147.3238177
– ident: ref32
  doi: 10.1007/978-3-319-89722-6_10
– ident: ref51
  doi: 10.23919/MIPRO.2018.8400278
– ident: ref43
  doi: 10.1109/TMC.2019.2903186
– ident: ref27
  doi: 10.1023/A:1010933404324
– ident: ref28
  doi: 10.1023/A:1018628609742
– ident: ref33
  doi: 10.1109/CSF.2018.00022
– volume: 13
  start-page: 13
  year: 0
  ident: ref8
  article-title: A case study for blockchain in healthcare: "MEDREC" prototype for electronic health records and medical research data
  publication-title: Proc IEEE Open Big Data Conf
– year: 0
  ident: ref19
  article-title: Mythril project
– volume: 19
  start-page: 653
  year: 2017
  ident: ref13
  article-title: A survey of blockchain security issues and challenges
  publication-title: IJ Netw Secur
– ident: ref34
  doi: 10.14722/ndss.2018.23082
– ident: ref26
  doi: 10.1006/jcss.1997.1504
– ident: ref9
  doi: 10.1016/j.future.2018.12.044
– ident: ref48
  doi: 10.1109/ARES.2006.73
– volume: 3
  start-page: 37
  year: 2014
  ident: ref4
  article-title: A next-generation smart contract and decentralized application platform
– start-page: 653
  year: 0
  ident: ref36
  article-title: Finding the greedy, prodigal, and suicidal contracts at scale
  publication-title: Proc 34th Annu Comput Secur Appl Conf
– ident: ref45
  doi: 10.1007/s11280-017-0446-0
– ident: ref39
  doi: 10.1109/TIFS.2014.2353996
– ident: ref56
  doi: 10.1214/aos/1016218223
– ident: ref3
  doi: 10.1007/978-1-4842-2535-6
– ident: ref40
  doi: 10.1016/j.future.2017.01.019
– start-page: 1
  year: 2016
  ident: ref12
  article-title: How can cryptocurrency and blockchain technology play a role in building social and solidarity finance
– year: 0
  ident: ref14
  article-title: The dao attacked: Code issue leads to $60 million ether theft
– year: 0
  ident: ref17
  article-title: A Lottery Contract Example
– ident: ref16
  doi: 10.1007/978-3-662-54455-6_8
– ident: ref37
  doi: 10.1007/978-3-030-36938-5_26
– year: 2008
  ident: ref2
  article-title: Bitcoin: A peer-to-peer electronic cash system
– ident: ref31
  doi: 10.1007/978-3-319-70278-0_33
– ident: ref15
  doi: 10.1093/ijlit/eaz008
– ident: ref42
  doi: 10.1016/j.future.2017.04.041
– ident: ref41
  doi: 10.1007/s12652-018-0803-6
– ident: ref7
  doi: 10.1109/ACCESS.2016.2566339
– ident: ref44
  doi: 10.1016/j.cose.2006.05.005
– ident: ref11
  doi: 10.1109/TITS.2017.2777990
– ident: ref49
  doi: 10.1007/978-3-540-28648-6_105
– ident: ref55
  doi: 10.1145/1007730.1007735
– ident: ref23
  doi: 10.1613/jair.953
– ident: ref52
  doi: 10.1016/j.knosys.2018.05.037
SSID ssj0001286333
Score 2.5994442
Snippet Smart contracts are decentralized applications running on Blockchain. A very large number of smart contracts has been deployed on Ethereum. Meanwhile, security...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1133
SubjectTerms Algorithms
Blockchain
Contracts
Cryptography
Feature extraction
Flaw detection
Machine learning
Machine learning algorithms
Security
Smart contracts
Training
vulnerability detection
Title ContractWard: Automated Vulnerability Detection Models for Ethereum Smart Contracts
URI https://ieeexplore.ieee.org/document/8967006
https://www.proquest.com/docview/2548986861
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeUlD0yIlCR-xGaroBVCgqW8tsixnYU-EE0G-PX43LSqACG2DHZk-c5399l33wGcSundcpnoqNAsjZgr_ZHKJPeYx1rmA1peaASKd_fi5pHdvvCXJTif18I450LymWvjZ3jLt2NT41XZhVRYVCKWYdkDt2mt1sJ9ihSU0ubhMonVxcN9v-sBYBq3UyUkxwZ1C64n9FL5YYCDV-ltwN1sPdNkktd2XRVt8_mNqvG_C96E9Sa8JJ2pPmzBkhttw9oC6eAO9JGQCmujnr1yXJJOXY191OoseaoHSEEdsmU_yLWrQpbWiGC7tMGE-OiWdDFcdPWQ9Ide5cjsT5NdeOx1H65uoqa1QmQoV1VUMK0TI6ylzhltaZllRRorZ6kWZWK5LJVm1ngswalWtPCwywgjaWzQQghF92BlNB65fSAe4WaCp4Zzq5l03van1CasyGKG_E62BfFs13PT8I5j-4tBHvBHrHIUVI6CyhtBteBsPuVtSrrx1-Ad3Pj5wGbPW3A0E23eHMtJ7tGwVFJIkRz8PusQVlNMWgmpOUewUr3X7thHHVVxEtTtC-_T1Lk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NbxMxEB1V5QAc-CqIlAI-wAVp011_rReJQ0VTpbTNJSn0tnht74U0Qc2uUPkt_BX-GzPOJooAcavEbQ_2SrafPfPsmTcAr4xBs1xnNqms5IkMNW6p3CjkPN5LdGhVZYkono308Fx-uFAXW_BjnQsTQojBZ6FPn_Et389dS1dl-6agpBLdhVCehOtvSNAW744PcTVfc340mLwfJl0NgcQJVTRJJa3NnPZehOCsF3WeVzwtghdW15lXpi6s9A6dZiVsISrkF047I1JHW0GT1BIe8LdwQIovs8M2bnCMFkJ0T6VZWuxPRuMBUk6e9nmhjaKSeBvGLlZv-ePIj3bs6D78XM3AMnzlS79tqr77_ps45P86RQ_gXudAs4Ml4h_CVpg9grsbsoo7MCbJLcr--oTwf8sO2maOfnnw7GM7JZHtGA98zQ5DE-PQZowKwk0XDP13NiCHOLSXbHyJm4qt_rR4DOc3MqonsD2bz8JTYMjhc624U8pbaQJaNy58Jqs8laRg5XuQrla5dJ2yOhX4mJaRYaVFScAoCRhlB4wevFl3-bqUFflX4x1a6HXDbo17sLeCUtkdPIsS-b4pjDY62_17r5dwezg5Oy1Pj0cnz-AOpxCdGIi0B9vNVRueo4_VVC8i1Bl8vmng_AIFVDOd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ContractWard%3A+Automated+Vulnerability+Detection+Models+for+Ethereum+Smart+Contracts&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Wang%2C+Wei&rft.au=Song%2C+Jingjing&rft.au=Xu%2C+Guangquan&rft.au=Li%2C+Yidong&rft.date=2021-04-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=8&rft.issue=2&rft.spage=1133&rft.epage=1144&rft_id=info:doi/10.1109%2FTNSE.2020.2968505&rft.externalDocID=8967006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon