Driving Behavior Primitive Classification Using CNN-Based Fusion Models

Driving behavior primitives play a crucial role in semantic explanation of driving behaviors. Although much work has been done on exacting driving behavior primitives from naturalistic driving data, few studies was published on primitive classification. Driving behavior primitives are typically desc...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 56344 - 56355
Main Authors Cui, Xiaotong, Li, Xiansheng, Zheng, Xuelian, Ren, Yuanyuan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Driving behavior primitives play a crucial role in semantic explanation of driving behaviors. Although much work has been done on exacting driving behavior primitives from naturalistic driving data, few studies was published on primitive classification. Driving behavior primitives are typically described by multi-dimensional variables with varying durations, which leads to the inefficiency of the traditional classification methods. There hence, a CNN-based fusion model for primitive classification is proposed in this paper. Primitive feature matrix is constructed using statistical methods for the four basic and the four constructed variables, which serves as the input. A 1D-CNN is employed to extract global information of the total eight variables in the feature matrix, while a 2D-CNN is used to extract the local information. The 1D-CNN and the 2D-CNN are fused in parallel using a new fusion method to combine different types of information, and two models, namely the FC-before fusion model and the FC-after fusion model, are acquired. Compared with the classical methods, the empirical results demonstrate that CNN-based fusion model can recognize driving behavior primitives more accurately. Specifically, the FC-after fusion model achieves an accuracy of 91.12% and a macro F1-score of 90.88%, while the accuracy and macro F1-score of the FC-before fusion model are 93.47% and 92.57%, respectively.
AbstractList Driving behavior primitives play a crucial role in semantic explanation of driving behaviors. Although much work has been done on exacting driving behavior primitives from naturalistic driving data, few studies was published on primitive classification. Driving behavior primitives are typically described by multi-dimensional variables with varying durations, which leads to the inefficiency of the traditional classification methods. There hence, a CNN-based fusion model for primitive classification is proposed in this paper. Primitive feature matrix is constructed using statistical methods for the four basic and the four constructed variables, which serves as the input. A 1D-CNN is employed to extract global information of the total eight variables in the feature matrix, while a 2D-CNN is used to extract the local information. The 1D-CNN and the 2D-CNN are fused in parallel using a new fusion method to combine different types of information, and two models, namely the FC-before fusion model and the FC-after fusion model, are acquired. Compared with the classical methods, the empirical results demonstrate that CNN-based fusion model can recognize driving behavior primitives more accurately. Specifically, the FC-after fusion model achieves an accuracy of 91.12% and a macro F1-score of 90.88%, while the accuracy and macro F1-score of the FC-before fusion model are 93.47% and 92.57%, respectively.
Author Li, Xiansheng
Cui, Xiaotong
Ren, Yuanyuan
Zheng, Xuelian
Author_xml – sequence: 1
  givenname: Xiaotong
  orcidid: 0000-0002-3472-7713
  surname: Cui
  fullname: Cui, Xiaotong
  organization: Transportation College, Jilin University, Changchun, China
– sequence: 2
  givenname: Xiansheng
  orcidid: 0000-0002-3165-4125
  surname: Li
  fullname: Li, Xiansheng
  organization: Transportation College, Jilin University, Changchun, China
– sequence: 3
  givenname: Xuelian
  orcidid: 0000-0003-2659-8998
  surname: Zheng
  fullname: Zheng, Xuelian
  email: zhengxuelian@jlu.edu.cn
  organization: Transportation College, Jilin University, Changchun, China
– sequence: 4
  givenname: Yuanyuan
  orcidid: 0000-0001-7802-2128
  surname: Ren
  fullname: Ren, Yuanyuan
  organization: Transportation College, Jilin University, Changchun, China
BookMark eNpNUV1LwzAUDTLBqfsF-lDwuTNpmrR5nFXnYH6A7jmkyc3MmI0m3cB_b2uHeF_u5XDOuQfOKRo1vgGELgieEoLF9ayq7l5fpxnO8imlgpACH6FxRrhIKaN89O8-QZMYN7ibsoNYMUbz2-D2rlknN_Cu9s6H5CW4D9e6PSTVVsXorNOqdb5JVrHnVU9P6Y2KYJL7XezhR29gG8_RsVXbCJPDPkOr-7u36iFdPs8X1WyZaspEmyojNM-FMZkw1oK11BYguNFgam3LvICC5plWojR1rqDImBIMdCmYKDEDoGdoMfgarzbys8uqwrf0yslfwIe1VKF1egvSAqekBmxLpXNsoa6Vqo0WhOscuM46r6vB6zP4rx3EVm78LjRdfElxzgUuCy46Fh1YOvgYA9i_rwTLvgA5FCD7AuShgE51OagcAPxTMMwoxvQHR--E4Q
CODEN IAECCG
Cites_doi 10.1007/s10514-017-9619-z
10.1109/CCDC49329.2020.9163824
10.1109/IVS.2015.7225793
10.1109/JSEN.2017.2780089
10.1109/TITS.2019.2896672
10.1109/ACCESS.2020.3001159
10.1109/TVT.2019.2958622
10.1007/s10489-022-03328-3
10.1109/TVT.2019.2903110
10.1109/TITS.2014.2376525
10.1016/j.trc.2018.02.009
10.1186/s40648-014-0001-z
10.1109/IVS.2014.6856476
10.1016/j.trc.2017.11.001
10.1145/1089815.1089821
10.1016/j.eswa.2020.113778
10.1109/TITS.2014.2326082
10.1109/IVS.2012.6232243
10.1109/TITS.2020.3014612
10.1016/j.eswa.2020.114442
10.1109/MITS.2018.2842049
10.1016/j.aap.2017.11.010
10.1109/TVT.2018.2793889
10.3390/app112110420
10.1109/LSENS.2019.2945117
10.1016/j.patcog.2020.107276
10.1109/TITS.2020.3027240
10.1109/TITS.2018.2870525
10.1016/j.trc.2020.102698
10.1109/ACCESS.2022.3171347
10.1109/ACCESS.2021.3089660
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3391170
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 56355
ExternalDocumentID oai_doaj_org_article_fe631be0f8ac40febbaabdc916c4e6c2
10_1109_ACCESS_2024_3391170
10505300
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2023YFC3009600
  funderid: 10.13039/501100012166
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-ad9c649dd29dffeff3f7e96dcedbcf847e7342ca98db4ae725a95ec8959805ee3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:52 EDT 2025
Mon Jun 30 14:42:24 EDT 2025
Tue Jul 01 04:14:31 EDT 2025
Wed Aug 27 02:06:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ad9c649dd29dffeff3f7e96dcedbcf847e7342ca98db4ae725a95ec8959805ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3472-7713
0000-0002-3165-4125
0000-0001-7802-2128
0000-0003-2659-8998
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10505300
PQID 3046908769
PQPubID 4845423
PageCount 12
ParticipantIDs proquest_journals_3046908769
crossref_primary_10_1109_ACCESS_2024_3391170
doaj_primary_oai_doaj_org_article_fe631be0f8ac40febbaabdc916c4e6c2
ieee_primary_10505300
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref31
Sun (ref16) 2020
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref19
ref18
Li (ref33) 2023
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Li (ref14) 2023; 36
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
  doi: 10.1007/s10514-017-9619-z
– volume: 36
  start-page: 223
  issue: 7
  year: 2023
  ident: ref14
  article-title: Extraction of driving behavior primitives based on multi-type variables space
  publication-title: China J. Highway Transp.
– ident: ref4
  doi: 10.1109/CCDC49329.2020.9163824
– ident: ref21
  doi: 10.1109/IVS.2015.7225793
– ident: ref22
  doi: 10.1109/JSEN.2017.2780089
– ident: ref25
  doi: 10.1109/TITS.2019.2896672
– volume-title: A driving event clustering method and system based on an LDA extended model
  year: 2023
  ident: ref33
– ident: ref32
  doi: 10.1109/ACCESS.2020.3001159
– ident: ref19
  doi: 10.1109/TVT.2019.2958622
– ident: ref20
  doi: 10.1007/s10489-022-03328-3
– ident: ref31
  doi: 10.1109/TVT.2019.2903110
– ident: ref2
  doi: 10.1109/TITS.2014.2376525
– ident: ref7
  doi: 10.1016/j.trc.2018.02.009
– ident: ref17
  doi: 10.1186/s40648-014-0001-z
– ident: ref8
  doi: 10.1109/IVS.2014.6856476
– ident: ref15
  doi: 10.1016/j.trc.2017.11.001
– ident: ref18
  doi: 10.1145/1089815.1089821
– ident: ref29
  doi: 10.1016/j.eswa.2020.113778
– ident: ref12
  doi: 10.1109/TITS.2014.2326082
– ident: ref9
  doi: 10.1109/IVS.2012.6232243
– ident: ref1
  doi: 10.1109/TITS.2020.3014612
– year: 2020
  ident: ref16
  article-title: Research on personalized shared control considering driver’s driving capability and style
– ident: ref30
  doi: 10.1016/j.eswa.2020.114442
– ident: ref6
  doi: 10.1109/MITS.2018.2842049
– ident: ref23
  doi: 10.1016/j.aap.2017.11.010
– ident: ref5
  doi: 10.1109/TVT.2018.2793889
– ident: ref26
  doi: 10.3390/app112110420
– ident: ref34
  doi: 10.1109/LSENS.2019.2945117
– ident: ref28
  doi: 10.1016/j.patcog.2020.107276
– ident: ref24
  doi: 10.1109/TITS.2020.3027240
– ident: ref10
  doi: 10.1109/TITS.2018.2870525
– ident: ref3
  doi: 10.1016/j.trc.2020.102698
– ident: ref11
  doi: 10.1109/ACCESS.2022.3171347
– ident: ref27
  doi: 10.1109/ACCESS.2021.3089660
SSID ssj0000816957
Score 2.306588
Snippet Driving behavior primitives play a crucial role in semantic explanation of driving behaviors. Although much work has been done on exacting driving behavior...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 56344
SubjectTerms Advanced driver assistance systems
Behavioral sciences
Brain modeling
Classification
CNN-based fusion model
Convolutional neural networks
Couplings
Data mining
Deep learning
Driving behavior analysis
driving behavior primitive classification
Feature extraction
Hidden Markov models
information fusion
Model accuracy
primitive feature matrix
Semantics
Statistical methods
Vehicle driving
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFB6kJz2IS8VqlTl4NDbpLJk5ttFaBIsHC70Ns4IgVbr8f99MUol48OIxIWQy30velsf3IXQjguGQFoQs_uODAsUWmXbWZtSU0hZGU55Ikp5nfDqnTwu2aEl9xZmwmh64Bm4QPCeF8XkQ2tI8eGO0Ns5CVmOp5zZ5X4h5rWIq-WBRcMnKhmaoyOVgVFWwIygIh_SOEBkFV36EosTY30is_PLLKdhMjtBhkyXiUf10x2jPL0_QQYs78BQ93q_eYjMANwyHK_wSFbqi98JJ6TLOACXYcRoLwNVslo0hZjk82cYWGY4yaO_rLppPHl6radaoImSWMLkBKKXlVDo3lC4EHwIJpZfcWe-MDRBsfEno0GopnKHal0OmJfNWSCZFzrwnZ6iz_Fj6c4QddQ6MZawQjJLSSMPgkBgoOryzxvXQ7Q4g9VmTX6hUNORS1XiqiKdq8OyhcQTx-9LIXJ1OgD1VY0_1lz17qBtN0FoPcjSSw837O5uo5jNbK5Kqe3Do8uI_1r5E-3E_dYeljzqb1dZfQc6xMdfp9foCqUbWiA
  priority: 102
  providerName: Directory of Open Access Journals
Title Driving Behavior Primitive Classification Using CNN-Based Fusion Models
URI https://ieeexplore.ieee.org/document/10505300
https://www.proquest.com/docview/3046908769
https://doaj.org/article/fe631be0f8ac40febbaabdc916c4e6c2
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSB0ZS0thO4hEKBSFRMYDEZsXns4RALSrtwq_n7LiIh5DYkihRHH927r7z-TvGjmtvS3ILfBbW-IigQC9rHEAmbaWhZxtZRpGk22F5_SBvHtVj2qwe98IgYkw-w244jGv5bgyzECqjGU72WuTE0BeJubWbtT4DKqGChFZVUhbq5fr0rN-njyAOWMiuEDrUWPlmfaJIf6qq8utXHO3LYI0N5y1r00qeu7Op7cL7D9HGfzd9na0mT5OftUNjgy3gaJOtfNEf3GJXF5OnEFDgSSVxwu9Cla_wB-SxWmbII4rQ8ZhawPvDYXZOds_xwSyE2Xgopfbyts0eBpf3_essVVbIQCg9JTg0lFI7V2jnPXovfIW6dIDOgieDhZWQBTS6dlY2WBWq0Qqh1krXuUIUO2xpNB7hLuNOOkeAW6hrJUVltVV0KiwRF3RgXYedzHvcvLYCGiYSj1ybFiATADIJoA47D6h83hrUr-MF6k2TJpPxWIqexdzXDcjco7VNYx2QpwsSSyg6bDsg8OV9bed32MEcZJOm6psRMUJARkHv_fHYPlsOTWwDLwdsaTqZ4SG5IlN7FCn8URyIH0oM3r8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2hcgAOlI8ilrbgA0eyJLGdxMd2y7JAG3Fopd6seDyWKtAWbXcv_HrGjrcqICRuSZQojp-dNzMevwF42wXXsFkQirjGxw4KVsXgEQvlWoOVG1STRJLO-mZxoT5f6su8WT3thSGilHxG03iY1vL9NW5iqIxnOPO1LNlDv8_Er6txu9ZtSCXWkDC6zdpCVWneH81m_BnsBdZqKqWJVVZ-458k05_rqvz1M04MM9-Fftu2MbHk23SzdlP8-Yds4383_gk8zramOBoHx1O4R8tn8OiOAuFz-HiyuoohBZF1Elfia6zzFf-BItXLjJlECTyRkgvErO-LY2Y-L-abGGgTsZja95s9uJh_OJ8tilxboUCpzZoBMdgo431tfAgUggwtmcYjeYeBKYtaqWocTOedGqit9WA0YWe06UpNJF_AzvJ6SS9BeOU9Q-6w67SSrTNO86l07LqQR-cn8G7b4_bHKKFhk-tRGjsCZCNANgM0geOIyu2tUf86XeDetHk62UCNrByVoRtQlYGcGwbnkW1dVNRgPYG9iMCd942dP4GDLcg2T9YbK1OMgGnBvPrHY2_gweL87NSefuq_7MPD2NwxDHMAO-vVhg7ZMFm712k4_gLLXOET
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driving+Behavior+Primitive+Classification+Using+CNN-Based+Fusion+Models&rft.jtitle=IEEE+access&rft.au=Cui%2C+Xiaotong&rft.au=Li%2C+Xiansheng&rft.au=Zheng%2C+Xuelian&rft.au=Ren%2C+Yuanyuan&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=56344&rft.epage=56355&rft_id=info:doi/10.1109%2FACCESS.2024.3391170&rft.externalDocID=10505300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon