Driving Behavior Primitive Classification Using CNN-Based Fusion Models
Driving behavior primitives play a crucial role in semantic explanation of driving behaviors. Although much work has been done on exacting driving behavior primitives from naturalistic driving data, few studies was published on primitive classification. Driving behavior primitives are typically desc...
Saved in:
Published in | IEEE access Vol. 12; pp. 56344 - 56355 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Driving behavior primitives play a crucial role in semantic explanation of driving behaviors. Although much work has been done on exacting driving behavior primitives from naturalistic driving data, few studies was published on primitive classification. Driving behavior primitives are typically described by multi-dimensional variables with varying durations, which leads to the inefficiency of the traditional classification methods. There hence, a CNN-based fusion model for primitive classification is proposed in this paper. Primitive feature matrix is constructed using statistical methods for the four basic and the four constructed variables, which serves as the input. A 1D-CNN is employed to extract global information of the total eight variables in the feature matrix, while a 2D-CNN is used to extract the local information. The 1D-CNN and the 2D-CNN are fused in parallel using a new fusion method to combine different types of information, and two models, namely the FC-before fusion model and the FC-after fusion model, are acquired. Compared with the classical methods, the empirical results demonstrate that CNN-based fusion model can recognize driving behavior primitives more accurately. Specifically, the FC-after fusion model achieves an accuracy of 91.12% and a macro F1-score of 90.88%, while the accuracy and macro F1-score of the FC-before fusion model are 93.47% and 92.57%, respectively. |
---|---|
AbstractList | Driving behavior primitives play a crucial role in semantic explanation of driving behaviors. Although much work has been done on exacting driving behavior primitives from naturalistic driving data, few studies was published on primitive classification. Driving behavior primitives are typically described by multi-dimensional variables with varying durations, which leads to the inefficiency of the traditional classification methods. There hence, a CNN-based fusion model for primitive classification is proposed in this paper. Primitive feature matrix is constructed using statistical methods for the four basic and the four constructed variables, which serves as the input. A 1D-CNN is employed to extract global information of the total eight variables in the feature matrix, while a 2D-CNN is used to extract the local information. The 1D-CNN and the 2D-CNN are fused in parallel using a new fusion method to combine different types of information, and two models, namely the FC-before fusion model and the FC-after fusion model, are acquired. Compared with the classical methods, the empirical results demonstrate that CNN-based fusion model can recognize driving behavior primitives more accurately. Specifically, the FC-after fusion model achieves an accuracy of 91.12% and a macro F1-score of 90.88%, while the accuracy and macro F1-score of the FC-before fusion model are 93.47% and 92.57%, respectively. |
Author | Li, Xiansheng Cui, Xiaotong Ren, Yuanyuan Zheng, Xuelian |
Author_xml | – sequence: 1 givenname: Xiaotong orcidid: 0000-0002-3472-7713 surname: Cui fullname: Cui, Xiaotong organization: Transportation College, Jilin University, Changchun, China – sequence: 2 givenname: Xiansheng orcidid: 0000-0002-3165-4125 surname: Li fullname: Li, Xiansheng organization: Transportation College, Jilin University, Changchun, China – sequence: 3 givenname: Xuelian orcidid: 0000-0003-2659-8998 surname: Zheng fullname: Zheng, Xuelian email: zhengxuelian@jlu.edu.cn organization: Transportation College, Jilin University, Changchun, China – sequence: 4 givenname: Yuanyuan orcidid: 0000-0001-7802-2128 surname: Ren fullname: Ren, Yuanyuan organization: Transportation College, Jilin University, Changchun, China |
BookMark | eNpNUV1LwzAUDTLBqfsF-lDwuTNpmrR5nFXnYH6A7jmkyc3MmI0m3cB_b2uHeF_u5XDOuQfOKRo1vgGELgieEoLF9ayq7l5fpxnO8imlgpACH6FxRrhIKaN89O8-QZMYN7ibsoNYMUbz2-D2rlknN_Cu9s6H5CW4D9e6PSTVVsXorNOqdb5JVrHnVU9P6Y2KYJL7XezhR29gG8_RsVXbCJPDPkOr-7u36iFdPs8X1WyZaspEmyojNM-FMZkw1oK11BYguNFgam3LvICC5plWojR1rqDImBIMdCmYKDEDoGdoMfgarzbys8uqwrf0yslfwIe1VKF1egvSAqekBmxLpXNsoa6Vqo0WhOscuM46r6vB6zP4rx3EVm78LjRdfElxzgUuCy46Fh1YOvgYA9i_rwTLvgA5FCD7AuShgE51OagcAPxTMMwoxvQHR--E4Q |
CODEN | IAECCG |
Cites_doi | 10.1007/s10514-017-9619-z 10.1109/CCDC49329.2020.9163824 10.1109/IVS.2015.7225793 10.1109/JSEN.2017.2780089 10.1109/TITS.2019.2896672 10.1109/ACCESS.2020.3001159 10.1109/TVT.2019.2958622 10.1007/s10489-022-03328-3 10.1109/TVT.2019.2903110 10.1109/TITS.2014.2376525 10.1016/j.trc.2018.02.009 10.1186/s40648-014-0001-z 10.1109/IVS.2014.6856476 10.1016/j.trc.2017.11.001 10.1145/1089815.1089821 10.1016/j.eswa.2020.113778 10.1109/TITS.2014.2326082 10.1109/IVS.2012.6232243 10.1109/TITS.2020.3014612 10.1016/j.eswa.2020.114442 10.1109/MITS.2018.2842049 10.1016/j.aap.2017.11.010 10.1109/TVT.2018.2793889 10.3390/app112110420 10.1109/LSENS.2019.2945117 10.1016/j.patcog.2020.107276 10.1109/TITS.2020.3027240 10.1109/TITS.2018.2870525 10.1016/j.trc.2020.102698 10.1109/ACCESS.2022.3171347 10.1109/ACCESS.2021.3089660 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3391170 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 56355 |
ExternalDocumentID | oai_doaj_org_article_fe631be0f8ac40febbaabdc916c4e6c2 10_1109_ACCESS_2024_3391170 10505300 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2023YFC3009600 funderid: 10.13039/501100012166 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-ad9c649dd29dffeff3f7e96dcedbcf847e7342ca98db4ae725a95ec8959805ee3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:52 EDT 2025 Mon Jun 30 14:42:24 EDT 2025 Tue Jul 01 04:14:31 EDT 2025 Wed Aug 27 02:06:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-ad9c649dd29dffeff3f7e96dcedbcf847e7342ca98db4ae725a95ec8959805ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3472-7713 0000-0002-3165-4125 0000-0001-7802-2128 0000-0003-2659-8998 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10505300 |
PQID | 3046908769 |
PQPubID | 4845423 |
PageCount | 12 |
ParticipantIDs | proquest_journals_3046908769 crossref_primary_10_1109_ACCESS_2024_3391170 doaj_primary_oai_doaj_org_article_fe631be0f8ac40febbaabdc916c4e6c2 ieee_primary_10505300 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref34 ref15 ref31 Sun (ref16) 2020 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref19 ref18 Li (ref33) 2023 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Li (ref14) 2023; 36 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 doi: 10.1007/s10514-017-9619-z – volume: 36 start-page: 223 issue: 7 year: 2023 ident: ref14 article-title: Extraction of driving behavior primitives based on multi-type variables space publication-title: China J. Highway Transp. – ident: ref4 doi: 10.1109/CCDC49329.2020.9163824 – ident: ref21 doi: 10.1109/IVS.2015.7225793 – ident: ref22 doi: 10.1109/JSEN.2017.2780089 – ident: ref25 doi: 10.1109/TITS.2019.2896672 – volume-title: A driving event clustering method and system based on an LDA extended model year: 2023 ident: ref33 – ident: ref32 doi: 10.1109/ACCESS.2020.3001159 – ident: ref19 doi: 10.1109/TVT.2019.2958622 – ident: ref20 doi: 10.1007/s10489-022-03328-3 – ident: ref31 doi: 10.1109/TVT.2019.2903110 – ident: ref2 doi: 10.1109/TITS.2014.2376525 – ident: ref7 doi: 10.1016/j.trc.2018.02.009 – ident: ref17 doi: 10.1186/s40648-014-0001-z – ident: ref8 doi: 10.1109/IVS.2014.6856476 – ident: ref15 doi: 10.1016/j.trc.2017.11.001 – ident: ref18 doi: 10.1145/1089815.1089821 – ident: ref29 doi: 10.1016/j.eswa.2020.113778 – ident: ref12 doi: 10.1109/TITS.2014.2326082 – ident: ref9 doi: 10.1109/IVS.2012.6232243 – ident: ref1 doi: 10.1109/TITS.2020.3014612 – year: 2020 ident: ref16 article-title: Research on personalized shared control considering driver’s driving capability and style – ident: ref30 doi: 10.1016/j.eswa.2020.114442 – ident: ref6 doi: 10.1109/MITS.2018.2842049 – ident: ref23 doi: 10.1016/j.aap.2017.11.010 – ident: ref5 doi: 10.1109/TVT.2018.2793889 – ident: ref26 doi: 10.3390/app112110420 – ident: ref34 doi: 10.1109/LSENS.2019.2945117 – ident: ref28 doi: 10.1016/j.patcog.2020.107276 – ident: ref24 doi: 10.1109/TITS.2020.3027240 – ident: ref10 doi: 10.1109/TITS.2018.2870525 – ident: ref3 doi: 10.1016/j.trc.2020.102698 – ident: ref11 doi: 10.1109/ACCESS.2022.3171347 – ident: ref27 doi: 10.1109/ACCESS.2021.3089660 |
SSID | ssj0000816957 |
Score | 2.306588 |
Snippet | Driving behavior primitives play a crucial role in semantic explanation of driving behaviors. Although much work has been done on exacting driving behavior... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 56344 |
SubjectTerms | Advanced driver assistance systems Behavioral sciences Brain modeling Classification CNN-based fusion model Convolutional neural networks Couplings Data mining Deep learning Driving behavior analysis driving behavior primitive classification Feature extraction Hidden Markov models information fusion Model accuracy primitive feature matrix Semantics Statistical methods Vehicle driving |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFB6kJz2IS8VqlTl4NDbpLJk5ttFaBIsHC70Ns4IgVbr8f99MUol48OIxIWQy30velsf3IXQjguGQFoQs_uODAsUWmXbWZtSU0hZGU55Ikp5nfDqnTwu2aEl9xZmwmh64Bm4QPCeF8XkQ2tI8eGO0Ns5CVmOp5zZ5X4h5rWIq-WBRcMnKhmaoyOVgVFWwIygIh_SOEBkFV36EosTY30is_PLLKdhMjtBhkyXiUf10x2jPL0_QQYs78BQ93q_eYjMANwyHK_wSFbqi98JJ6TLOACXYcRoLwNVslo0hZjk82cYWGY4yaO_rLppPHl6radaoImSWMLkBKKXlVDo3lC4EHwIJpZfcWe-MDRBsfEno0GopnKHal0OmJfNWSCZFzrwnZ6iz_Fj6c4QddQ6MZawQjJLSSMPgkBgoOryzxvXQ7Q4g9VmTX6hUNORS1XiqiKdq8OyhcQTx-9LIXJ1OgD1VY0_1lz17qBtN0FoPcjSSw837O5uo5jNbK5Kqe3Do8uI_1r5E-3E_dYeljzqb1dZfQc6xMdfp9foCqUbWiA priority: 102 providerName: Directory of Open Access Journals |
Title | Driving Behavior Primitive Classification Using CNN-Based Fusion Models |
URI | https://ieeexplore.ieee.org/document/10505300 https://www.proquest.com/docview/3046908769 https://doaj.org/article/fe631be0f8ac40febbaabdc916c4e6c2 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELaACQbeiPKSB0ZS0thO4hEKBSFRMYDEZsXns4RALSrtwq_n7LiIh5DYkihRHH927r7z-TvGjmtvS3ILfBbW-IigQC9rHEAmbaWhZxtZRpGk22F5_SBvHtVj2qwe98IgYkw-w244jGv5bgyzECqjGU72WuTE0BeJubWbtT4DKqGChFZVUhbq5fr0rN-njyAOWMiuEDrUWPlmfaJIf6qq8utXHO3LYI0N5y1r00qeu7Op7cL7D9HGfzd9na0mT5OftUNjgy3gaJOtfNEf3GJXF5OnEFDgSSVxwu9Cla_wB-SxWmbII4rQ8ZhawPvDYXZOds_xwSyE2Xgopfbyts0eBpf3_essVVbIQCg9JTg0lFI7V2jnPXovfIW6dIDOgieDhZWQBTS6dlY2WBWq0Qqh1krXuUIUO2xpNB7hLuNOOkeAW6hrJUVltVV0KiwRF3RgXYedzHvcvLYCGiYSj1ybFiATADIJoA47D6h83hrUr-MF6k2TJpPxWIqexdzXDcjco7VNYx2QpwsSSyg6bDsg8OV9bed32MEcZJOm6psRMUJARkHv_fHYPlsOTWwDLwdsaTqZ4SG5IlN7FCn8URyIH0oM3r8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2hcgAOlI8ilrbgA0eyJLGdxMd2y7JAG3Fopd6seDyWKtAWbXcv_HrGjrcqICRuSZQojp-dNzMevwF42wXXsFkQirjGxw4KVsXgEQvlWoOVG1STRJLO-mZxoT5f6su8WT3thSGilHxG03iY1vL9NW5iqIxnOPO1LNlDv8_Er6txu9ZtSCXWkDC6zdpCVWneH81m_BnsBdZqKqWJVVZ-458k05_rqvz1M04MM9-Fftu2MbHk23SzdlP8-Yds4383_gk8zramOBoHx1O4R8tn8OiOAuFz-HiyuoohBZF1Elfia6zzFf-BItXLjJlECTyRkgvErO-LY2Y-L-abGGgTsZja95s9uJh_OJ8tilxboUCpzZoBMdgo431tfAgUggwtmcYjeYeBKYtaqWocTOedGqit9WA0YWe06UpNJF_AzvJ6SS9BeOU9Q-6w67SSrTNO86l07LqQR-cn8G7b4_bHKKFhk-tRGjsCZCNANgM0geOIyu2tUf86XeDetHk62UCNrByVoRtQlYGcGwbnkW1dVNRgPYG9iMCd942dP4GDLcg2T9YbK1OMgGnBvPrHY2_gweL87NSefuq_7MPD2NwxDHMAO-vVhg7ZMFm712k4_gLLXOET |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Driving+Behavior+Primitive+Classification+Using+CNN-Based+Fusion+Models&rft.jtitle=IEEE+access&rft.au=Cui%2C+Xiaotong&rft.au=Li%2C+Xiansheng&rft.au=Zheng%2C+Xuelian&rft.au=Ren%2C+Yuanyuan&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=56344&rft.epage=56355&rft_id=info:doi/10.1109%2FACCESS.2024.3391170&rft.externalDocID=10505300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |