Sum-Rate Maximization in IRS-Assisted Wireless Power Communication Networks
Wireless-powered communication networks (WPCNs) are a promising technology supporting resource-intensive devices in the Internet of Things (IoT). However, their transmission efficiency is very limited over long distances. The newly emerged intelligent reflecting surface (IRS) can effectively mitigat...
Saved in:
Published in | IEEE internet of things journal Vol. 8; no. 19; pp. 14959 - 14970 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wireless-powered communication networks (WPCNs) are a promising technology supporting resource-intensive devices in the Internet of Things (IoT). However, their transmission efficiency is very limited over long distances. The newly emerged intelligent reflecting surface (IRS) can effectively mitigate the propagation-induced impairment by controlling the phase shifts of passive reflection elements. In this article, we integrate IRS into WPCNs to assist both the energy and information transmission. We aim to maximize the uplink (UL) sum rate of all IoT devices by jointly optimizing the time allocation variable, energy beam matrix at the power transmitting base station (PTBS), receive beamforming matrix at the information receiving base station, and the phase shifts of the IRS both in the UL and downlink (DL) subject to time allocation constraint, together with transmit power constraint for the PTBS and unit modulus constraints. This problem is very difficult to solve directly due to the highly coupled variables, which results in the optimization problem taking neither linear nor convex form. Hence, we decouple this problem into three subproblems by using the block coordinate descent method. The UL receive beamforing matrix and phase shift are alternatively optimized in the UL optimization subproblem with fixed time allocation and the DL variables. The DL optimization subproblem is solved by the proposed successive convex approximation algorithm. Simulation results demonstrate that the performance of integrating IRS and WPCNs outperforms traditional WPCNs. Besides, the results show that IRS is an effective method to preserve the tradeoff of energy efficiency and transmission efficiency in the IoT. |
---|---|
AbstractList | Wireless-powered communication networks (WPCNs) are a promising technology supporting resource-intensive devices in the Internet of Things (IoT). However, their transmission efficiency is very limited over long distances. The newly emerged intelligent reflecting surface (IRS) can effectively mitigate the propagation-induced impairment by controlling the phase shifts of passive reflection elements. In this article, we integrate IRS into WPCNs to assist both the energy and information transmission. We aim to maximize the uplink (UL) sum rate of all IoT devices by jointly optimizing the time allocation variable, energy beam matrix at the power transmitting base station (PTBS), receive beamforming matrix at the information receiving base station, and the phase shifts of the IRS both in the UL and downlink (DL) subject to time allocation constraint, together with transmit power constraint for the PTBS and unit modulus constraints. This problem is very difficult to solve directly due to the highly coupled variables, which results in the optimization problem taking neither linear nor convex form. Hence, we decouple this problem into three subproblems by using the block coordinate descent method. The UL receive beamforing matrix and phase shift are alternatively optimized in the UL optimization subproblem with fixed time allocation and the DL variables. The DL optimization subproblem is solved by the proposed successive convex approximation algorithm. Simulation results demonstrate that the performance of integrating IRS and WPCNs outperforms traditional WPCNs. Besides, the results show that IRS is an effective method to preserve the tradeoff of energy efficiency and transmission efficiency in the IoT. |
Author | Zhang, Chiya Chen, Gaojie He, Chunlong Chambers, Jonathon A. Li, Xingquan |
Author_xml | – sequence: 1 givenname: Xingquan orcidid: 0000-0002-9313-4117 surname: Li fullname: Li, Xingquan email: lixingquan@szu.edu.cn organization: School of Electronic and Information Engineering, Harbin Institute of Technology, Harbin, China – sequence: 2 givenname: Chiya orcidid: 0000-0002-1113-4659 surname: Zhang fullname: Zhang, Chiya email: zhangchiya@hit.edu.cn organization: School of Electronic and Information Engineering, Harbin Institute of Technology, Shenzhen, China – sequence: 3 givenname: Chunlong orcidid: 0000-0003-4316-0672 surname: He fullname: He, Chunlong email: hclong@szu.edu.cn organization: College of Information Engineering, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Gaojie orcidid: 0000-0003-2978-0365 surname: Chen fullname: Chen, Gaojie email: gaojie.chen@leicester.ac.uk organization: School of Engineering, University of Leicester, Leicester, U.K – sequence: 5 givenname: Jonathon A. surname: Chambers fullname: Chambers, Jonathon A. email: jonathon.chambers@leicester.ac.uk organization: School of Engineering, University of Leicester, Leicester, U.K |
BookMark | eNp9kEtPwzAQhC1UJErpD0BcInFO8aOJ42NV8SiUh9oijpZrbySXJi52ogK_npRUCHHgtCvtfLOjOUad0pWA0CnBA0KwuLidPC4GFFMyYJhTkfED1KWM8niYprTzaz9C_RBWGOMGS4hIu-huXhfxTFUQ3at3W9hPVVlXRraMJrN5PArBhgpM9GI9rCGE6MltwUdjVxR1aXUrfoBq6_xrOEGHuVoH6O9nDz1fXS7GN_H08XoyHk1jzRJRxcoIzjTXWZLwxCSaC8MZz9MmjzLLPIOMQpZzY4aGKAPLnOW4uREDQvOMCdZD563vxru3GkIlV672ZfNS0saSUCFo2qh4q9LeheAhl9pW34Err-xaEix35cldeXJXntyX15DkD7nxtlD-41_mrGUsAPzoxRAzxgn7Ah3MfII |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1002_dac_5911 crossref_primary_10_23919_transcom_2024EBP3009 crossref_primary_10_1109_LWC_2024_3381949 crossref_primary_10_1109_TWC_2024_3456243 crossref_primary_10_1109_ACCESS_2023_3243848 crossref_primary_10_1109_JIOT_2023_3278238 crossref_primary_10_1109_TWC_2022_3213614 crossref_primary_10_3390_electronics11172681 crossref_primary_10_3390_sym17030413 crossref_primary_10_1109_JIOT_2022_3195543 crossref_primary_10_1109_TVT_2023_3265963 crossref_primary_10_1109_JIOT_2023_3326440 crossref_primary_10_1109_TWC_2023_3328308 crossref_primary_10_1109_JIOT_2024_3455434 crossref_primary_10_1109_TMC_2023_3269791 crossref_primary_10_1109_TWC_2022_3222218 crossref_primary_10_1109_ACCESS_2024_3525036 crossref_primary_10_1109_JIOT_2021_3108894 crossref_primary_10_1109_LWC_2021_3136210 crossref_primary_10_3390_s22072436 crossref_primary_10_1109_TVT_2023_3262801 crossref_primary_10_1016_j_phycom_2025_102656 crossref_primary_10_1360_SSI_2022_0071 crossref_primary_10_1109_OJCOMS_2024_3360288 crossref_primary_10_3390_electronics11020200 crossref_primary_10_1109_TVT_2024_3431676 crossref_primary_10_1109_TWC_2022_3156732 crossref_primary_10_3724_SP_J_1249_2023_01022 crossref_primary_10_1016_j_compeleceng_2022_108053 crossref_primary_10_1109_ACCESS_2024_3509856 crossref_primary_10_1109_JIOT_2023_3305914 crossref_primary_10_1109_TWC_2022_3187156 |
Cites_doi | 10.1109/JSAC.2018.2872615 10.1109/TWC.2013.112513.130760 10.1109/MCOM.2018.1700659 10.1109/ACCESS.2019.2935192 10.1109/MCOM.2015.7081084 10.1109/TCOMM.2017.2783628 10.1109/LWC.2019.2919685 10.1109/JIOT.2021.3049956 10.1109/TCOMM.2014.2370035 10.1109/MCOM.001.1900107 10.1109/TWC.2020.3006915 10.1109/LCOMM.2019.2924214 10.1109/GLOBECOM38437.2019.9014322 10.1109/ICASSP.2018.8461496 10.1109/LWC.2020.3012206 10.1109/MWC.001.1900656 10.1109/TCOMM.2020.2981458 10.1109/LWC.2019.2961357 10.1109/ACCESS.2017.2661378 10.1109/TWC.2019.2936025 10.1109/TWC.2019.2922609 10.1109/LWC.2019.2961656 10.1109/TCOMM.2020.3024621 10.1109/TSP.2016.2601299 10.1109/LWC.2020.2999356 10.1109/TWC.2020.2994455 10.1109/LWC.2020.3027969 10.1109/JSTSP.2019.2898114 10.1109/JSAC.2020.3000802 10.1109/TCOMM.2017.2676103 10.23919/JCIN.2019.8917871 10.1109/TSP.2014.2340817 10.1109/TIFS.2019.2954748 10.1109/JSAC.2020.3007035 10.1109/ACCESS.2019.2924034 10.1109/LWC.2020.3000490 10.1109/JSAC.2020.3007039 10.1109/TSP.2020.2990098 10.1109/TWC.2020.2990766 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2021.3072987 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 14970 |
ExternalDocumentID | 10_1109_JIOT_2021_3072987 9403371 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Basic Research Program grantid: 2019A1515110358; 2021A1515012097; 2020ZDZX1037; 2020ZDZX1021 – fundername: Shenzhen Basic Research Program grantid: JCYJ20190808122409660 – fundername: Shenzhen Overseas High-Level Talents Innovation and Entrepreneurship grantid: KQJSCX20180328093835762 – fundername: National Natural Science Foundation of China grantid: 61801302 funderid: 10.13039/501100001809 – fundername: EPSRC of the U.K. grantid: EP/R006377/1 (M3NETs) funderid: 10.13039/501100000266 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-ad973c7c85575d5c79d737f6196adbf8e82e8f7dd4d1adebf3f01961de9c78393 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Sun Jun 29 16:41:29 EDT 2025 Tue Jul 01 04:08:10 EDT 2025 Thu Apr 24 23:00:49 EDT 2025 Wed Aug 27 02:27:18 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-ad973c7c85575d5c79d737f6196adbf8e82e8f7dd4d1adebf3f01961de9c78393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9313-4117 0000-0003-4316-0672 0000-0003-2978-0365 0000-0002-1113-4659 |
PQID | 2575129926 |
PQPubID | 2040421 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_JIOT_2021_3072987 proquest_journals_2575129926 crossref_primary_10_1109_JIOT_2021_3072987 ieee_primary_9403371 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref39 ref17 ref38 ref16 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 (ref1) 2020 ref4 liang (ref19) 2019; 4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref4 doi: 10.1109/JSAC.2018.2872615 – ident: ref9 doi: 10.1109/TWC.2013.112513.130760 – ident: ref20 doi: 10.1109/MCOM.2018.1700659 – ident: ref2 doi: 10.1109/ACCESS.2019.2935192 – ident: ref10 doi: 10.1109/MCOM.2015.7081084 – ident: ref11 doi: 10.1109/TCOMM.2017.2783628 – ident: ref34 doi: 10.1109/LWC.2019.2919685 – ident: ref13 doi: 10.1109/JIOT.2021.3049956 – ident: ref39 doi: 10.1109/TCOMM.2014.2370035 – ident: ref15 doi: 10.1109/MCOM.001.1900107 – ident: ref17 doi: 10.1109/TWC.2020.3006915 – ident: ref33 doi: 10.1109/LCOMM.2019.2924214 – ident: ref32 doi: 10.1109/GLOBECOM38437.2019.9014322 – ident: ref23 doi: 10.1109/ICASSP.2018.8461496 – ident: ref12 doi: 10.1109/LWC.2020.3012206 – ident: ref6 doi: 10.1109/MWC.001.1900656 – ident: ref29 doi: 10.1109/TCOMM.2020.2981458 – ident: ref30 doi: 10.1109/LWC.2019.2961357 – ident: ref38 doi: 10.1109/ACCESS.2017.2661378 – ident: ref26 doi: 10.1109/TWC.2019.2936025 – ident: ref25 doi: 10.1109/TWC.2019.2922609 – ident: ref37 doi: 10.1109/LWC.2019.2961656 – ident: ref36 doi: 10.1109/TCOMM.2020.3024621 – ident: ref40 doi: 10.1109/TSP.2016.2601299 – ident: ref16 doi: 10.1109/LWC.2020.2999356 – ident: ref27 doi: 10.1109/TWC.2020.2994455 – ident: ref24 doi: 10.1109/LWC.2020.3027969 – ident: ref8 doi: 10.1109/JSTSP.2019.2898114 – ident: ref22 doi: 10.1109/JSAC.2020.3000802 – ident: ref3 doi: 10.1109/TCOMM.2017.2676103 – year: 2020 ident: ref1 publication-title: Cisco Annual Internet Report (2018-2023) White Paper – volume: 4 start-page: 40 year: 2019 ident: ref19 article-title: Large intelligent surface/antennas (LISA): Making reflective radios smart publication-title: J Commun Inf Netw doi: 10.23919/JCIN.2019.8917871 – ident: ref5 doi: 10.1109/TSP.2014.2340817 – ident: ref7 doi: 10.1109/TIFS.2019.2954748 – ident: ref31 doi: 10.1109/JSAC.2020.3007035 – ident: ref35 doi: 10.1109/ACCESS.2019.2924034 – ident: ref14 doi: 10.1109/LWC.2020.3000490 – ident: ref18 doi: 10.1109/JSAC.2020.3007039 – ident: ref28 doi: 10.1109/TSP.2020.2990098 – ident: ref21 doi: 10.1109/TWC.2020.2990766 |
SSID | ssj0001105196 |
Score | 2.426928 |
Snippet | Wireless-powered communication networks (WPCNs) are a promising technology supporting resource-intensive devices in the Internet of Things (IoT). However,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14959 |
SubjectTerms | Algorithms Array signal processing Beamforming Communication networks Communications networks Efficiency Information processing Intelligent reflecting surface (IRS) Internet of Things OFDM Optimization Power management Resource management sum rate Transmission efficiency Wireless communication Wireless communications Wireless networks wireless-powered communication networks (WPCNs) |
Title | Sum-Rate Maximization in IRS-Assisted Wireless Power Communication Networks |
URI | https://ieeexplore.ieee.org/document/9403371 https://www.proquest.com/docview/2575129926 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6QkxdR0Yii6cGTsbC7Xdrt0RgJYEDDI-G22bazCZGHEUiMv952t-Azxtsepptmpu18034zg9AlhCoxjjslCXCPhJEAImmkiErSgEk_kEJmLN8ea43CzrgxLqDrbS4MAGTkM6jZz-wtXy_U2l6V1UXoUWoTxndM4Jbnan3cp_gWjDD3cOl7ot5pPwxNABj4NWrLY1vS3CfXk_VS-XEAZ16lWULdzXxyMslTbb2SNfX2rVTjfye8j_YcvMQ3-Xo4QAWYH6LSpnUDdju5jO4H6xnpG5yJu8nrZOaSMfFkjtv9ATE2s9bX2HJjp-YsxI-2mRr-kk2CezmDfHmERs274W2LuL4KRNGGWJFEC04VV1HDYDXdUFxoTnlqQimWaJlGEAUQpVzrUPuJBpnS1FbR8TUIxQ2goseoOF_M4QThkGvwWSB1JIw0QAQpZ0ozLTymqU8ryNuoPFau6LjtfTGNs-DDE7G1UmytFDsrVdDVdshzXnHjL-Gy1fpW0Cm8gqobu8ZuTy7jwD4xGe8bsNPfR52hXfvvnKpXRcXVyxrODeRYyYtsrb0DqTvVJw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHODCGzGeOXBCZDRNmzRHhEAbsIFgSNyqJnElBAwEm4T49SRtNp5C3Hpw1MhO4s_JZxtgBxNTOMdd0gJlRJNMIdU8M9QUZSw0i7XSFcu3K1rXyclNejMBe-NcGESsyGfY9J_VW759NEN_VbavkohznzA-5fx-yupsrY8bFebhiAhPlyxS-yft854LAWPW5L5AtqfNfXI-VTeVH0dw5VeO56AzmlFNJ7lrDge6ad6-FWv875TnYTYATHJQr4gFmMD-IsyNmjeQsJeX4PRq-EAvHdIkneL19iGkY5LbPmlfXlFnNW9_Szw79t6dhuTCt1MjX_JJSLfmkL8sw_XxUe-wRUNnBWp4qga0sEpyI02WOrRmUyOVlVyWLpgShdVlhlmMWSmtTSwrLOqSl76ODrOojHSQiq_AZP-xj6tAEmmRiVjbTDlpxAxLKYwVVkXCcsYbEI1UnptQdtx3v7jPq_AjUrm3Uu6tlAcrNWB3POSprrnxl_CS1_pYMCi8ARsju-ZhV77ksX9kcv43Fmu_j9qG6Vavc5aftbun6zDj_1MT9zZgcvA8xE0HQAZ6q1p37_CO2HA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sum-Rate+Maximization+in+IRS-Assisted+Wireless+Power+Communication+Networks&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Li%2C+Xingquan&rft.au=Zhang%2C+Chiya&rft.au=He%2C+Chunlong&rft.au=Chen%2C+Gaojie&rft.date=2021-10-01&rft.issn=2327-4662&rft.eissn=2327-4662&rft.volume=8&rft.issue=19&rft.spage=14959&rft.epage=14970&rft_id=info:doi/10.1109%2FJIOT.2021.3072987&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JIOT_2021_3072987 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |