Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT

Device failure detection is one of most essential problems in Industrial Internet of Things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might lead to disclosure of sensitive business data. Ther...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 8; no. 7; pp. 5926 - 5937
Main Authors Zhang, Weishan, Lu, Qinghua, Yu, Qiuyu, Li, Zhaotong, Liu, Yue, Lo, Sin Kit, Chen, Shiping, Xu, Xiwei, Zhu, Liming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Device failure detection is one of most essential problems in Industrial Internet of Things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might lead to disclosure of sensitive business data. Therefore, in this article, to ensure client data privacy, we propose a blockchain-based federated learning approach for device failure detection in IIoT. First, we present a platform architecture of blockchain-based federated learning systems for failure detection in IIoT, which enables verifiable integrity of client data. In the architecture, each client periodically creates a Merkle tree in which each leaf node represents a client data record, and stores the tree root on a blockchain. Furthermore, to address the data heterogeneity issue in IIoT failure detection, we propose a novel centroid distance weighted federated averaging (CDW_FedAvg) algorithm taking into account the distance between positive class and negative class of each client data set. In addition, to motivate clients to participate in federated learning, a smart contact-based incentive mechanism is designed depending on the size and the centroid distance of client data used in local model training. A prototype of the proposed architecture is implemented with our industry partner, and evaluated in terms of feasibility, accuracy, and performance. The results show that the approach is feasible, and has satisfactory accuracy and performance.
AbstractList Device failure detection is one of most essential problems in Industrial Internet of Things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might lead to disclosure of sensitive business data. Therefore, in this article, to ensure client data privacy, we propose a blockchain-based federated learning approach for device failure detection in IIoT. First, we present a platform architecture of blockchain-based federated learning systems for failure detection in IIoT, which enables verifiable integrity of client data. In the architecture, each client periodically creates a Merkle tree in which each leaf node represents a client data record, and stores the tree root on a blockchain. Furthermore, to address the data heterogeneity issue in IIoT failure detection, we propose a novel centroid distance weighted federated averaging (CDW_FedAvg) algorithm taking into account the distance between positive class and negative class of each client data set. In addition, to motivate clients to participate in federated learning, a smart contact-based incentive mechanism is designed depending on the size and the centroid distance of client data used in local model training. A prototype of the proposed architecture is implemented with our industry partner, and evaluated in terms of feasibility, accuracy, and performance. The results show that the approach is feasible, and has satisfactory accuracy and performance.
Author Yu, Qiuyu
Lo, Sin Kit
Li, Zhaotong
Lu, Qinghua
Zhu, Liming
Chen, Shiping
Liu, Yue
Zhang, Weishan
Xu, Xiwei
Author_xml – sequence: 1
  givenname: Weishan
  orcidid: 0000-0001-9800-1068
  surname: Zhang
  fullname: Zhang, Weishan
  organization: College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
– sequence: 2
  givenname: Qinghua
  orcidid: 0000-0002-9466-1672
  surname: Lu
  fullname: Lu, Qinghua
  email: qinghua.lu@data61.csiro.au
  organization: Data61, CSIRO, Sydney, NSW, Australia
– sequence: 3
  givenname: Qiuyu
  orcidid: 0000-0003-4300-0230
  surname: Yu
  fullname: Yu, Qiuyu
  organization: College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
– sequence: 4
  givenname: Zhaotong
  surname: Li
  fullname: Li, Zhaotong
  organization: College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China
– sequence: 5
  givenname: Yue
  surname: Liu
  fullname: Liu, Yue
  organization: Data61, CSIRO, Sydney, NSW, Australia
– sequence: 6
  givenname: Sin Kit
  orcidid: 0000-0002-9156-3225
  surname: Lo
  fullname: Lo, Sin Kit
  organization: Data61, CSIRO, Sydney, NSW, Australia
– sequence: 7
  givenname: Shiping
  orcidid: 0000-0002-4603-0024
  surname: Chen
  fullname: Chen, Shiping
  organization: Data61, CSIRO, Sydney, NSW, Australia
– sequence: 8
  givenname: Xiwei
  orcidid: 0000-0002-2273-1862
  surname: Xu
  fullname: Xu, Xiwei
  organization: Data61, CSIRO, Sydney, NSW, Australia
– sequence: 9
  givenname: Liming
  surname: Zhu
  fullname: Zhu, Liming
  organization: Data61, CSIRO, Sydney, NSW, Australia
BookMark eNp9kM1Lw0AQxRdRsNb-AeIl4Dl1v_J1tNVqpVCQel4mm4lujZu6uxH8701oEfHgad7A-81j3hk5tq1FQi4YnTJGi-vH5Xoz5ZTTqaCCJ1IekREXPItlmvLjX_qUTLzfUkp7LGFFOiJPs6bVb_oVjI1n4LGKFlihg9CrFYKzxr5EdeuiW_w0GqMFmKZz2K8BdTCtjYyNlrbqfHAGmmjZbs7JSQ2Nx8lhjsnz4m4zf4hX6_vl_GYVa5EUIQYtUsGZ1ExCngKWvKRlDbVGLSHLy4oldZGDAMpyhilkUOaosUABUgqoxZhc7e_uXPvRoQ9q23bO9pGKJzRJaZ7TpHexvUu71nuHtdo58w7uSzGqhvbU0J4a2lOH9nom-8NoE2D4Nrj-_3_Jyz1pEPEnqeBCyCQT33fBfro
CODEN IITJAU
CitedBy_id crossref_primary_10_1109_COMST_2023_3315374
crossref_primary_10_1016_j_jisa_2023_103521
crossref_primary_10_1049_cmu2_12870
crossref_primary_10_1109_ACCESS_2024_3374650
crossref_primary_10_1109_JSEN_2021_3138250
crossref_primary_10_1109_JIOT_2022_3228792
crossref_primary_10_1016_j_aei_2025_103179
crossref_primary_10_1109_JIOT_2024_3485208
crossref_primary_10_1016_j_ins_2022_11_124
crossref_primary_10_1109_MWC_017_2100714
crossref_primary_10_1109_JIOT_2024_3353727
crossref_primary_10_1109_JIOT_2021_3134932
crossref_primary_10_1109_JIOT_2023_3340630
crossref_primary_10_1016_j_jss_2022_111357
crossref_primary_10_1016_j_compeleceng_2022_108421
crossref_primary_10_1080_09540091_2023_2299103
crossref_primary_10_1016_j_future_2024_03_019
crossref_primary_10_1155_2021_9965157
crossref_primary_10_1109_JIOT_2022_3201117
crossref_primary_10_1016_j_iot_2024_101107
crossref_primary_10_1109_JIOT_2021_3119520
crossref_primary_10_1007_s00607_023_01211_8
crossref_primary_10_3233_JIFS_223316
crossref_primary_10_1145_3659099
crossref_primary_10_1109_TCCN_2022_3177522
crossref_primary_10_3390_electronics13122370
crossref_primary_10_1016_j_comnet_2023_109634
crossref_primary_10_1016_j_vrih_2022_05_003
crossref_primary_10_1109_TII_2021_3067324
crossref_primary_10_1016_j_compeleceng_2022_108379
crossref_primary_10_1007_s10462_024_10748_9
crossref_primary_10_1109_JSTSP_2021_3137028
crossref_primary_10_3390_app14020898
crossref_primary_10_3390_computers12080157
crossref_primary_10_1007_s00521_024_10136_y
crossref_primary_10_1109_TCE_2024_3454299
crossref_primary_10_3390_s23167235
crossref_primary_10_1007_s10586_024_04810_y
crossref_primary_10_1109_TII_2024_3363092
crossref_primary_10_1145_3688003
crossref_primary_10_1109_JIOT_2024_3406602
crossref_primary_10_1109_OJITS_2024_3440876
crossref_primary_10_1109_TCSS_2024_3423749
crossref_primary_10_1007_s11760_024_03125_0
crossref_primary_10_1145_3659205
crossref_primary_10_1007_s10586_024_04567_4
crossref_primary_10_1109_ACCESS_2024_3511272
crossref_primary_10_1109_TCE_2023_3328020
crossref_primary_10_1109_ACCESS_2022_3184309
crossref_primary_10_1109_ACCESS_2022_3174865
crossref_primary_10_1016_j_compbiomed_2023_107861
crossref_primary_10_1109_ACCESS_2023_3321960
crossref_primary_10_1109_JIOT_2022_3144450
crossref_primary_10_1109_TNSM_2022_3177512
crossref_primary_10_1109_TNSE_2021_3138928
crossref_primary_10_1109_TII_2022_3159684
crossref_primary_10_1109_JRFID_2022_3209657
crossref_primary_10_1007_s00521_023_08375_6
crossref_primary_10_1038_s41598_024_76359_0
crossref_primary_10_32604_cmes_2024_030084
crossref_primary_10_1016_j_iot_2023_100781
crossref_primary_10_3389_fonc_2021_811355
crossref_primary_10_1016_j_iot_2024_101251
crossref_primary_10_1109_JIOT_2021_3112159
crossref_primary_10_1109_JIOT_2023_3318647
crossref_primary_10_1016_j_comcom_2024_107964
crossref_primary_10_1007_s10462_024_10766_7
crossref_primary_10_1145_3450288
crossref_primary_10_3390_fi15060203
crossref_primary_10_1109_TNSM_2022_3230208
crossref_primary_10_1109_JIOT_2023_3285206
crossref_primary_10_1007_s00500_021_06496_5
crossref_primary_10_3233_THC_231895
crossref_primary_10_3390_jsan14020024
crossref_primary_10_1109_TIV_2024_3415410
crossref_primary_10_32604_cmc_2022_025473
crossref_primary_10_1109_TSMC_2023_3348449
crossref_primary_10_1007_s13198_024_02330_x
crossref_primary_10_3390_s23125658
crossref_primary_10_1109_JRFID_2022_3218288
crossref_primary_10_1109_ACCESS_2021_3069137
crossref_primary_10_1109_TII_2021_3088057
crossref_primary_10_1109_JIOT_2022_3231363
crossref_primary_10_1109_TII_2022_3167663
crossref_primary_10_1109_ACCESS_2024_3435374
crossref_primary_10_1109_ACCESS_2023_3280798
crossref_primary_10_4018_JOEUC_313194
crossref_primary_10_1007_s12243_023_00965_8
crossref_primary_10_1145_3614424
crossref_primary_10_1109_JIOT_2021_3056185
crossref_primary_10_1016_j_cose_2023_103097
crossref_primary_10_1109_ACCESS_2020_3037474
crossref_primary_10_1016_j_comcom_2023_12_042
crossref_primary_10_1016_j_compeleceng_2024_109948
crossref_primary_10_1109_TMC_2024_3488746
crossref_primary_10_1109_JIOT_2022_3218704
crossref_primary_10_1109_ACCESS_2022_3210950
crossref_primary_10_1109_OJCOMS_2024_3438264
crossref_primary_10_3390_math11234844
crossref_primary_10_1109_TKDE_2021_3124599
crossref_primary_10_1109_ACCESS_2021_3118926
crossref_primary_10_3390_fi16100374
crossref_primary_10_1002_ett_4824
crossref_primary_10_2478_bipie_2022_0019
crossref_primary_10_1007_s10586_021_03424_y
crossref_primary_10_1007_s11227_024_06715_4
crossref_primary_10_1109_TC_2022_3180968
crossref_primary_10_1109_ACCESS_2023_3319083
crossref_primary_10_1109_JSAC_2023_3310068
crossref_primary_10_46592_turkager_1348187
crossref_primary_10_1109_TII_2020_3043458
crossref_primary_10_3390_fi13020048
crossref_primary_10_1016_j_displa_2025_102990
crossref_primary_10_1109_TII_2024_3353920
crossref_primary_10_3390_app14209459
crossref_primary_10_26599_TST_2024_9010034
crossref_primary_10_1016_j_adhoc_2024_103590
crossref_primary_10_1145_3570953
crossref_primary_10_1145_3617373
crossref_primary_10_1109_ACCESS_2023_3335245
crossref_primary_10_1109_TPDS_2023_3253604
crossref_primary_10_1145_3626234
crossref_primary_10_3390_en14123654
crossref_primary_10_3390_electronics13234744
crossref_primary_10_1145_3560816
crossref_primary_10_1016_j_comcom_2024_04_024
crossref_primary_10_1016_j_comnet_2022_109311
crossref_primary_10_1016_j_inffus_2022_09_027
crossref_primary_10_1016_j_future_2025_107752
crossref_primary_10_1109_TII_2021_3097131
crossref_primary_10_1109_JIOT_2022_3233599
crossref_primary_10_3390_fi15120400
crossref_primary_10_1109_TCBB_2023_3243932
crossref_primary_10_1016_j_comnet_2024_110691
crossref_primary_10_1016_j_dcan_2022_08_001
crossref_primary_10_1109_TCBB_2023_3239848
crossref_primary_10_1109_JIOT_2022_3161943
crossref_primary_10_1016_j_dcan_2023_01_022
crossref_primary_10_1109_TII_2021_3064351
crossref_primary_10_1007_s11063_022_11014_1
crossref_primary_10_1109_JIOT_2023_3340745
crossref_primary_10_1109_TIV_2023_3332675
crossref_primary_10_1109_TPDS_2021_3138848
crossref_primary_10_3390_fi16100356
crossref_primary_10_3390_s23052670
crossref_primary_10_1109_ACCESS_2024_3432610
crossref_primary_10_1109_JIOT_2023_3263598
crossref_primary_10_1111_risa_14124
crossref_primary_10_1109_JSAC_2022_3213314
Cites_doi 10.1109/ACCESS.2019.2959771
10.1109/BIGCOM.2019.00030
10.1109/ICC.2019.8761315
10.1007/978-3-030-11723-8_9
10.1609/aaai.v34i04.5826
10.1109/TDSC.2019.2952332
10.1109/JIOT.2019.2940820
10.1109/LCOMM.2019.2921755
10.23919/APNOMS.2019.8892848
10.1109/TDSC.2020.3009212
10.1109/JIOT.2020.3007662
10.1109/JIOT.2020.3022033
10.1109/MC.2016.145
10.1109/TII.2019.2942190
10.1109/ACCESS.2020.2992385
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2020.3032544
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 5937
ExternalDocumentID 10_1109_JIOT_2020_3032544
9233457
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072469
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2015020031
  funderid: 10.13039/501100012226
– fundername: National Key Research and Development Program of China; National Key Research and Development Program
  grantid: 2018YFE0116700
  funderid: 10.13039/501100012166
– fundername: Shandong Provincial Natural Science Foundation (Parallel Data Driven Fault Prediction under Online-Offline Combined Cloud Computing Environment)
  grantid: ZR2019MF049
  funderid: 10.13039/501100007129
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-ac363214c14a86aeb2b0bfafcec4a78bd15f98a3a0181e6a7ab8ece9e3a443af3
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 14:13:43 EDT 2025
Tue Jul 01 04:08:06 EDT 2025
Thu Apr 24 22:50:58 EDT 2025
Wed Aug 27 02:33:23 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-ac363214c14a86aeb2b0bfafcec4a78bd15f98a3a0181e6a7ab8ece9e3a443af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2273-1862
0000-0003-4300-0230
0000-0002-9156-3225
0000-0002-9466-1672
0000-0001-9800-1068
0000-0002-4603-0024
PQID 2505608805
PQPubID 2040421
PageCount 12
ParticipantIDs proquest_journals_2505608805
crossref_primary_10_1109_JIOT_2020_3032544
crossref_citationtrail_10_1109_JIOT_2020_3032544
ieee_primary_9233457
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ramaswamy (ref14) 2019
ref15
konecný (ref3) 2016
ref2
mcmahan (ref9) 2016
ref1
ref17
chen (ref13) 2019
ref16
lo (ref4) 2020
ref18
ref24
ref23
ref20
kairouz (ref10) 2019
ref22
ref21
yang (ref12) 2018
caldas (ref26) 2019
ref8
ref7
nakamoto (ref19) 2008
kotonya (ref25) 1998
ref6
ref5
buterin (ref27) 2013
zhao (ref11) 2019
References_xml – ident: ref20
  doi: 10.1109/ACCESS.2019.2959771
– ident: ref24
  doi: 10.1109/BIGCOM.2019.00030
– ident: ref16
  doi: 10.1109/ICC.2019.8761315
– year: 2018
  ident: ref12
  publication-title: Applied Federated Learning Improving Google Keyboard Query Suggestions
– ident: ref15
  doi: 10.1007/978-3-030-11723-8_9
– year: 2019
  ident: ref13
  publication-title: Federated learning of out-of-vocabulary words
– ident: ref17
  doi: 10.1609/aaai.v34i04.5826
– year: 2013
  ident: ref27
  publication-title: Ethereum white paper a next generation smart contract & decentralized application platform
– ident: ref6
  doi: 10.1109/TDSC.2019.2952332
– year: 2019
  ident: ref10
  publication-title: Advances and Open Problems in Federated Learning
– ident: ref23
  doi: 10.1109/JIOT.2019.2940820
– ident: ref5
  doi: 10.1109/LCOMM.2019.2921755
– year: 2019
  ident: ref14
  publication-title: Federated learning for mobile keyboard prediction
– ident: ref7
  doi: 10.23919/APNOMS.2019.8892848
– ident: ref1
  doi: 10.1109/TDSC.2020.3009212
– ident: ref18
  doi: 10.1109/JIOT.2020.3007662
– ident: ref2
  doi: 10.1109/JIOT.2020.3022033
– year: 2019
  ident: ref11
  publication-title: Mobile edge computing blockchain and reputation-based crowdsourcing IoT federated learning A secure decentralized and privacy-preserving system
– year: 2019
  ident: ref26
  publication-title: LEAF A benchmark for federated settings
– year: 2020
  ident: ref4
  publication-title: A systematic literature review on federated machine learning From a software engineering perspective
– year: 2008
  ident: ref19
  publication-title: Bitcoin A Peer-to-Peer Electronic Cash System
– year: 1998
  ident: ref25
  publication-title: Requirements Engineering Processes and Techniques
– ident: ref8
  doi: 10.1109/MC.2016.145
– year: 2016
  ident: ref3
  publication-title: Federated learning Strategies for improving communication efficiency
– year: 2016
  ident: ref9
  publication-title: Feder-ated learning of deep networks using model averaging
– ident: ref22
  doi: 10.1109/TII.2019.2942190
– ident: ref21
  doi: 10.1109/ACCESS.2020.2992385
SSID ssj0001105196
Score 2.595985
Snippet Device failure detection is one of most essential problems in Industrial Internet of Things (IIoT). However, in conventional IIoT device failure detection,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5926
SubjectTerms Algorithms
Blockchain
Blockchains
Centroids
Collaboration
Computational modeling
Computer architecture
Cryptography
Data models
edge computing
Failure detection
Feasibility
Federated learning
Heterogeneity
Industrial applications
Industrial Internet of Things
Internet of Things
IoT
machine learning
Servers
Training
Title Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT
URI https://ieeexplore.ieee.org/document/9233457
https://www.proquest.com/docview/2505608805
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH6oJy9OneJ0Sg6exG7tkmbt0V9FhSnIBruVJE10TDrR7uJf70uaTfyBeCktJBDykve-17x8H8CxQKtaGpWAFTQMWIwPibggUH2eCtMzXDm1hsEdvx6x23E8XoHT5V0YrbUrPtMd--rO8ouZmttfZV0EI5TF_VVYxcStvqv1-T8lsmCE-4PLKEy7tzf3Q0wAe5iXhtQycX0JPU5L5YcDdlEla8BgMZ66mGTamVeyo96_UTX-d8CbsOHhJTmr18MWrOhyGxoL6Qbid3ITHs4xiE3Vk5iUwTkGsoJkllUCgWdBPOXqI0E8Sy61dSUkExNbv46flavdKsmkJJ-yH-RmNtyBUXY1vLgOvLxCoGicVoFQlFuZIhUxkXCBKbYMpRFGacVEP5FFFJs0EVRYTi_NRV_IRCudaioYo8LQXVgrZ6XeA2J6lAl0DxjoDIsKLQ0muVxGilNtkjBpQbiY-Vx57nErgfGcuxwkTHNrrNwaK_fGasHJsstLTbzxV-OmnfxlQz_vLWgvzJv7rfmWO8yHvjWM93_vdQDrPVu44spz2rBWvc71ISKPSh65JfcBYlPVbA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0VOMCFrSDK6gMnREpSO25yZKtaoEVCrcQtsh0bKlCKIL3w9Yxdt4hFiEuUSLZkeeyZN_H4PYBDgVa1NCoBy2kYsBgfEnFBoJo8FaZhuHJqDd0ebw_Y1X18X4Hj2V0YrbUrPtN1--rO8vORGttfZScIRiiLm3OwgHE_jia3tT7_qEQWjnB_dBmF6clV57aPKWADM9OQWi6uL8HHqan8cMEurrRWoDsd0aSc5Kk-LmVdvX8ja_zvkFdh2QNMcjpZEWtQ0cU6rEzFG4jfy1W4O8Mw9qQexbAIzjCU5aRleSUQeubEk64-EES05EJbZ0JaYmgr2PGzdNVbBRkW5FP4g3RG_Q0YtC775-3ACywEisZpGQhFuRUqUhETCReYZMtQGmGUVkw0E5lHsUkTQYVl9dJcNIVMtNKppoIxKgzdhPliVOgtIKZBmUAHgaHOsCjX0mCay2WkONUmCZMahNOZz5RnH7ciGM-Zy0LCNLPGyqyxMm-sGhzNurxMqDf-aly1kz9r6Oe9BrtT82Z-c75lDvWhdw3j7d97HcBiu9-9yW46vesdWGrYMhZXrLML8-XrWO8hDinlvlt-H6yx2LU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blockchain-Based+Federated+Learning+for+Device+Failure+Detection+in+Industrial+IoT&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhang%2C+Weishan&rft.au=Lu%2C+Qinghua&rft.au=Yu%2C+Qiuyu&rft.au=Li%2C+Zhaotong&rft.date=2021-04-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=8&rft.issue=7&rft.spage=5926&rft.epage=5937&rft_id=info:doi/10.1109%2FJIOT.2020.3032544&rft.externalDocID=9233457
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon