Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT
Device failure detection is one of most essential problems in Industrial Internet of Things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might lead to disclosure of sensitive business data. Ther...
Saved in:
Published in | IEEE internet of things journal Vol. 8; no. 7; pp. 5926 - 5937 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Device failure detection is one of most essential problems in Industrial Internet of Things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might lead to disclosure of sensitive business data. Therefore, in this article, to ensure client data privacy, we propose a blockchain-based federated learning approach for device failure detection in IIoT. First, we present a platform architecture of blockchain-based federated learning systems for failure detection in IIoT, which enables verifiable integrity of client data. In the architecture, each client periodically creates a Merkle tree in which each leaf node represents a client data record, and stores the tree root on a blockchain. Furthermore, to address the data heterogeneity issue in IIoT failure detection, we propose a novel centroid distance weighted federated averaging (CDW_FedAvg) algorithm taking into account the distance between positive class and negative class of each client data set. In addition, to motivate clients to participate in federated learning, a smart contact-based incentive mechanism is designed depending on the size and the centroid distance of client data used in local model training. A prototype of the proposed architecture is implemented with our industry partner, and evaluated in terms of feasibility, accuracy, and performance. The results show that the approach is feasible, and has satisfactory accuracy and performance. |
---|---|
AbstractList | Device failure detection is one of most essential problems in Industrial Internet of Things (IIoT). However, in conventional IIoT device failure detection, client devices need to upload raw data to the central server for model training, which might lead to disclosure of sensitive business data. Therefore, in this article, to ensure client data privacy, we propose a blockchain-based federated learning approach for device failure detection in IIoT. First, we present a platform architecture of blockchain-based federated learning systems for failure detection in IIoT, which enables verifiable integrity of client data. In the architecture, each client periodically creates a Merkle tree in which each leaf node represents a client data record, and stores the tree root on a blockchain. Furthermore, to address the data heterogeneity issue in IIoT failure detection, we propose a novel centroid distance weighted federated averaging (CDW_FedAvg) algorithm taking into account the distance between positive class and negative class of each client data set. In addition, to motivate clients to participate in federated learning, a smart contact-based incentive mechanism is designed depending on the size and the centroid distance of client data used in local model training. A prototype of the proposed architecture is implemented with our industry partner, and evaluated in terms of feasibility, accuracy, and performance. The results show that the approach is feasible, and has satisfactory accuracy and performance. |
Author | Yu, Qiuyu Lo, Sin Kit Li, Zhaotong Lu, Qinghua Zhu, Liming Chen, Shiping Liu, Yue Zhang, Weishan Xu, Xiwei |
Author_xml | – sequence: 1 givenname: Weishan orcidid: 0000-0001-9800-1068 surname: Zhang fullname: Zhang, Weishan organization: College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China – sequence: 2 givenname: Qinghua orcidid: 0000-0002-9466-1672 surname: Lu fullname: Lu, Qinghua email: qinghua.lu@data61.csiro.au organization: Data61, CSIRO, Sydney, NSW, Australia – sequence: 3 givenname: Qiuyu orcidid: 0000-0003-4300-0230 surname: Yu fullname: Yu, Qiuyu organization: College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China – sequence: 4 givenname: Zhaotong surname: Li fullname: Li, Zhaotong organization: College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China – sequence: 5 givenname: Yue surname: Liu fullname: Liu, Yue organization: Data61, CSIRO, Sydney, NSW, Australia – sequence: 6 givenname: Sin Kit orcidid: 0000-0002-9156-3225 surname: Lo fullname: Lo, Sin Kit organization: Data61, CSIRO, Sydney, NSW, Australia – sequence: 7 givenname: Shiping orcidid: 0000-0002-4603-0024 surname: Chen fullname: Chen, Shiping organization: Data61, CSIRO, Sydney, NSW, Australia – sequence: 8 givenname: Xiwei orcidid: 0000-0002-2273-1862 surname: Xu fullname: Xu, Xiwei organization: Data61, CSIRO, Sydney, NSW, Australia – sequence: 9 givenname: Liming surname: Zhu fullname: Zhu, Liming organization: Data61, CSIRO, Sydney, NSW, Australia |
BookMark | eNp9kM1Lw0AQxRdRsNb-AeIl4Dl1v_J1tNVqpVCQel4mm4lujZu6uxH8701oEfHgad7A-81j3hk5tq1FQi4YnTJGi-vH5Xoz5ZTTqaCCJ1IekREXPItlmvLjX_qUTLzfUkp7LGFFOiJPs6bVb_oVjI1n4LGKFlihg9CrFYKzxr5EdeuiW_w0GqMFmKZz2K8BdTCtjYyNlrbqfHAGmmjZbs7JSQ2Nx8lhjsnz4m4zf4hX6_vl_GYVa5EUIQYtUsGZ1ExCngKWvKRlDbVGLSHLy4oldZGDAMpyhilkUOaosUABUgqoxZhc7e_uXPvRoQ9q23bO9pGKJzRJaZ7TpHexvUu71nuHtdo58w7uSzGqhvbU0J4a2lOH9nom-8NoE2D4Nrj-_3_Jyz1pEPEnqeBCyCQT33fBfro |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1109_COMST_2023_3315374 crossref_primary_10_1016_j_jisa_2023_103521 crossref_primary_10_1049_cmu2_12870 crossref_primary_10_1109_ACCESS_2024_3374650 crossref_primary_10_1109_JSEN_2021_3138250 crossref_primary_10_1109_JIOT_2022_3228792 crossref_primary_10_1016_j_aei_2025_103179 crossref_primary_10_1109_JIOT_2024_3485208 crossref_primary_10_1016_j_ins_2022_11_124 crossref_primary_10_1109_MWC_017_2100714 crossref_primary_10_1109_JIOT_2024_3353727 crossref_primary_10_1109_JIOT_2021_3134932 crossref_primary_10_1109_JIOT_2023_3340630 crossref_primary_10_1016_j_jss_2022_111357 crossref_primary_10_1016_j_compeleceng_2022_108421 crossref_primary_10_1080_09540091_2023_2299103 crossref_primary_10_1016_j_future_2024_03_019 crossref_primary_10_1155_2021_9965157 crossref_primary_10_1109_JIOT_2022_3201117 crossref_primary_10_1016_j_iot_2024_101107 crossref_primary_10_1109_JIOT_2021_3119520 crossref_primary_10_1007_s00607_023_01211_8 crossref_primary_10_3233_JIFS_223316 crossref_primary_10_1145_3659099 crossref_primary_10_1109_TCCN_2022_3177522 crossref_primary_10_3390_electronics13122370 crossref_primary_10_1016_j_comnet_2023_109634 crossref_primary_10_1016_j_vrih_2022_05_003 crossref_primary_10_1109_TII_2021_3067324 crossref_primary_10_1016_j_compeleceng_2022_108379 crossref_primary_10_1007_s10462_024_10748_9 crossref_primary_10_1109_JSTSP_2021_3137028 crossref_primary_10_3390_app14020898 crossref_primary_10_3390_computers12080157 crossref_primary_10_1007_s00521_024_10136_y crossref_primary_10_1109_TCE_2024_3454299 crossref_primary_10_3390_s23167235 crossref_primary_10_1007_s10586_024_04810_y crossref_primary_10_1109_TII_2024_3363092 crossref_primary_10_1145_3688003 crossref_primary_10_1109_JIOT_2024_3406602 crossref_primary_10_1109_OJITS_2024_3440876 crossref_primary_10_1109_TCSS_2024_3423749 crossref_primary_10_1007_s11760_024_03125_0 crossref_primary_10_1145_3659205 crossref_primary_10_1007_s10586_024_04567_4 crossref_primary_10_1109_ACCESS_2024_3511272 crossref_primary_10_1109_TCE_2023_3328020 crossref_primary_10_1109_ACCESS_2022_3184309 crossref_primary_10_1109_ACCESS_2022_3174865 crossref_primary_10_1016_j_compbiomed_2023_107861 crossref_primary_10_1109_ACCESS_2023_3321960 crossref_primary_10_1109_JIOT_2022_3144450 crossref_primary_10_1109_TNSM_2022_3177512 crossref_primary_10_1109_TNSE_2021_3138928 crossref_primary_10_1109_TII_2022_3159684 crossref_primary_10_1109_JRFID_2022_3209657 crossref_primary_10_1007_s00521_023_08375_6 crossref_primary_10_1038_s41598_024_76359_0 crossref_primary_10_32604_cmes_2024_030084 crossref_primary_10_1016_j_iot_2023_100781 crossref_primary_10_3389_fonc_2021_811355 crossref_primary_10_1016_j_iot_2024_101251 crossref_primary_10_1109_JIOT_2021_3112159 crossref_primary_10_1109_JIOT_2023_3318647 crossref_primary_10_1016_j_comcom_2024_107964 crossref_primary_10_1007_s10462_024_10766_7 crossref_primary_10_1145_3450288 crossref_primary_10_3390_fi15060203 crossref_primary_10_1109_TNSM_2022_3230208 crossref_primary_10_1109_JIOT_2023_3285206 crossref_primary_10_1007_s00500_021_06496_5 crossref_primary_10_3233_THC_231895 crossref_primary_10_3390_jsan14020024 crossref_primary_10_1109_TIV_2024_3415410 crossref_primary_10_32604_cmc_2022_025473 crossref_primary_10_1109_TSMC_2023_3348449 crossref_primary_10_1007_s13198_024_02330_x crossref_primary_10_3390_s23125658 crossref_primary_10_1109_JRFID_2022_3218288 crossref_primary_10_1109_ACCESS_2021_3069137 crossref_primary_10_1109_TII_2021_3088057 crossref_primary_10_1109_JIOT_2022_3231363 crossref_primary_10_1109_TII_2022_3167663 crossref_primary_10_1109_ACCESS_2024_3435374 crossref_primary_10_1109_ACCESS_2023_3280798 crossref_primary_10_4018_JOEUC_313194 crossref_primary_10_1007_s12243_023_00965_8 crossref_primary_10_1145_3614424 crossref_primary_10_1109_JIOT_2021_3056185 crossref_primary_10_1016_j_cose_2023_103097 crossref_primary_10_1109_ACCESS_2020_3037474 crossref_primary_10_1016_j_comcom_2023_12_042 crossref_primary_10_1016_j_compeleceng_2024_109948 crossref_primary_10_1109_TMC_2024_3488746 crossref_primary_10_1109_JIOT_2022_3218704 crossref_primary_10_1109_ACCESS_2022_3210950 crossref_primary_10_1109_OJCOMS_2024_3438264 crossref_primary_10_3390_math11234844 crossref_primary_10_1109_TKDE_2021_3124599 crossref_primary_10_1109_ACCESS_2021_3118926 crossref_primary_10_3390_fi16100374 crossref_primary_10_1002_ett_4824 crossref_primary_10_2478_bipie_2022_0019 crossref_primary_10_1007_s10586_021_03424_y crossref_primary_10_1007_s11227_024_06715_4 crossref_primary_10_1109_TC_2022_3180968 crossref_primary_10_1109_ACCESS_2023_3319083 crossref_primary_10_1109_JSAC_2023_3310068 crossref_primary_10_46592_turkager_1348187 crossref_primary_10_1109_TII_2020_3043458 crossref_primary_10_3390_fi13020048 crossref_primary_10_1016_j_displa_2025_102990 crossref_primary_10_1109_TII_2024_3353920 crossref_primary_10_3390_app14209459 crossref_primary_10_26599_TST_2024_9010034 crossref_primary_10_1016_j_adhoc_2024_103590 crossref_primary_10_1145_3570953 crossref_primary_10_1145_3617373 crossref_primary_10_1109_ACCESS_2023_3335245 crossref_primary_10_1109_TPDS_2023_3253604 crossref_primary_10_1145_3626234 crossref_primary_10_3390_en14123654 crossref_primary_10_3390_electronics13234744 crossref_primary_10_1145_3560816 crossref_primary_10_1016_j_comcom_2024_04_024 crossref_primary_10_1016_j_comnet_2022_109311 crossref_primary_10_1016_j_inffus_2022_09_027 crossref_primary_10_1016_j_future_2025_107752 crossref_primary_10_1109_TII_2021_3097131 crossref_primary_10_1109_JIOT_2022_3233599 crossref_primary_10_3390_fi15120400 crossref_primary_10_1109_TCBB_2023_3243932 crossref_primary_10_1016_j_comnet_2024_110691 crossref_primary_10_1016_j_dcan_2022_08_001 crossref_primary_10_1109_TCBB_2023_3239848 crossref_primary_10_1109_JIOT_2022_3161943 crossref_primary_10_1016_j_dcan_2023_01_022 crossref_primary_10_1109_TII_2021_3064351 crossref_primary_10_1007_s11063_022_11014_1 crossref_primary_10_1109_JIOT_2023_3340745 crossref_primary_10_1109_TIV_2023_3332675 crossref_primary_10_1109_TPDS_2021_3138848 crossref_primary_10_3390_fi16100356 crossref_primary_10_3390_s23052670 crossref_primary_10_1109_ACCESS_2024_3432610 crossref_primary_10_1109_JIOT_2023_3263598 crossref_primary_10_1111_risa_14124 crossref_primary_10_1109_JSAC_2022_3213314 |
Cites_doi | 10.1109/ACCESS.2019.2959771 10.1109/BIGCOM.2019.00030 10.1109/ICC.2019.8761315 10.1007/978-3-030-11723-8_9 10.1609/aaai.v34i04.5826 10.1109/TDSC.2019.2952332 10.1109/JIOT.2019.2940820 10.1109/LCOMM.2019.2921755 10.23919/APNOMS.2019.8892848 10.1109/TDSC.2020.3009212 10.1109/JIOT.2020.3007662 10.1109/JIOT.2020.3022033 10.1109/MC.2016.145 10.1109/TII.2019.2942190 10.1109/ACCESS.2020.2992385 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2020.3032544 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 5937 |
ExternalDocumentID | 10_1109_JIOT_2020_3032544 9233457 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62072469 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2015020031 funderid: 10.13039/501100012226 – fundername: National Key Research and Development Program of China; National Key Research and Development Program grantid: 2018YFE0116700 funderid: 10.13039/501100012166 – fundername: Shandong Provincial Natural Science Foundation (Parallel Data Driven Fault Prediction under Online-Offline Combined Cloud Computing Environment) grantid: ZR2019MF049 funderid: 10.13039/501100007129 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-ac363214c14a86aeb2b0bfafcec4a78bd15f98a3a0181e6a7ab8ece9e3a443af3 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Mon Jun 30 14:13:43 EDT 2025 Tue Jul 01 04:08:06 EDT 2025 Thu Apr 24 22:50:58 EDT 2025 Wed Aug 27 02:33:23 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-ac363214c14a86aeb2b0bfafcec4a78bd15f98a3a0181e6a7ab8ece9e3a443af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2273-1862 0000-0003-4300-0230 0000-0002-9156-3225 0000-0002-9466-1672 0000-0001-9800-1068 0000-0002-4603-0024 |
PQID | 2505608805 |
PQPubID | 2040421 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2505608805 crossref_primary_10_1109_JIOT_2020_3032544 crossref_citationtrail_10_1109_JIOT_2020_3032544 ieee_primary_9233457 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ramaswamy (ref14) 2019 ref15 konecný (ref3) 2016 ref2 mcmahan (ref9) 2016 ref1 ref17 chen (ref13) 2019 ref16 lo (ref4) 2020 ref18 ref24 ref23 ref20 kairouz (ref10) 2019 ref22 ref21 yang (ref12) 2018 caldas (ref26) 2019 ref8 ref7 nakamoto (ref19) 2008 kotonya (ref25) 1998 ref6 ref5 buterin (ref27) 2013 zhao (ref11) 2019 |
References_xml | – ident: ref20 doi: 10.1109/ACCESS.2019.2959771 – ident: ref24 doi: 10.1109/BIGCOM.2019.00030 – ident: ref16 doi: 10.1109/ICC.2019.8761315 – year: 2018 ident: ref12 publication-title: Applied Federated Learning Improving Google Keyboard Query Suggestions – ident: ref15 doi: 10.1007/978-3-030-11723-8_9 – year: 2019 ident: ref13 publication-title: Federated learning of out-of-vocabulary words – ident: ref17 doi: 10.1609/aaai.v34i04.5826 – year: 2013 ident: ref27 publication-title: Ethereum white paper a next generation smart contract & decentralized application platform – ident: ref6 doi: 10.1109/TDSC.2019.2952332 – year: 2019 ident: ref10 publication-title: Advances and Open Problems in Federated Learning – ident: ref23 doi: 10.1109/JIOT.2019.2940820 – ident: ref5 doi: 10.1109/LCOMM.2019.2921755 – year: 2019 ident: ref14 publication-title: Federated learning for mobile keyboard prediction – ident: ref7 doi: 10.23919/APNOMS.2019.8892848 – ident: ref1 doi: 10.1109/TDSC.2020.3009212 – ident: ref18 doi: 10.1109/JIOT.2020.3007662 – ident: ref2 doi: 10.1109/JIOT.2020.3022033 – year: 2019 ident: ref11 publication-title: Mobile edge computing blockchain and reputation-based crowdsourcing IoT federated learning A secure decentralized and privacy-preserving system – year: 2019 ident: ref26 publication-title: LEAF A benchmark for federated settings – year: 2020 ident: ref4 publication-title: A systematic literature review on federated machine learning From a software engineering perspective – year: 2008 ident: ref19 publication-title: Bitcoin A Peer-to-Peer Electronic Cash System – year: 1998 ident: ref25 publication-title: Requirements Engineering Processes and Techniques – ident: ref8 doi: 10.1109/MC.2016.145 – year: 2016 ident: ref3 publication-title: Federated learning Strategies for improving communication efficiency – year: 2016 ident: ref9 publication-title: Feder-ated learning of deep networks using model averaging – ident: ref22 doi: 10.1109/TII.2019.2942190 – ident: ref21 doi: 10.1109/ACCESS.2020.2992385 |
SSID | ssj0001105196 |
Score | 2.595985 |
Snippet | Device failure detection is one of most essential problems in Industrial Internet of Things (IIoT). However, in conventional IIoT device failure detection,... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5926 |
SubjectTerms | Algorithms Blockchain Blockchains Centroids Collaboration Computational modeling Computer architecture Cryptography Data models edge computing Failure detection Feasibility Federated learning Heterogeneity Industrial applications Industrial Internet of Things Internet of Things IoT machine learning Servers Training |
Title | Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT |
URI | https://ieeexplore.ieee.org/document/9233457 https://www.proquest.com/docview/2505608805 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH6oJy9OneJ0Sg6exG7tkmbt0V9FhSnIBruVJE10TDrR7uJf70uaTfyBeCktJBDykve-17x8H8CxQKtaGpWAFTQMWIwPibggUH2eCtMzXDm1hsEdvx6x23E8XoHT5V0YrbUrPtMd--rO8ouZmttfZV0EI5TF_VVYxcStvqv1-T8lsmCE-4PLKEy7tzf3Q0wAe5iXhtQycX0JPU5L5YcDdlEla8BgMZ66mGTamVeyo96_UTX-d8CbsOHhJTmr18MWrOhyGxoL6Qbid3ITHs4xiE3Vk5iUwTkGsoJkllUCgWdBPOXqI0E8Sy61dSUkExNbv46flavdKsmkJJ-yH-RmNtyBUXY1vLgOvLxCoGicVoFQlFuZIhUxkXCBKbYMpRFGacVEP5FFFJs0EVRYTi_NRV_IRCudaioYo8LQXVgrZ6XeA2J6lAl0DxjoDIsKLQ0muVxGilNtkjBpQbiY-Vx57nErgfGcuxwkTHNrrNwaK_fGasHJsstLTbzxV-OmnfxlQz_vLWgvzJv7rfmWO8yHvjWM93_vdQDrPVu44spz2rBWvc71ISKPSh65JfcBYlPVbA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB0VOMCFrSDK6gMnREpSO25yZKtaoEVCrcQtsh0bKlCKIL3w9Yxdt4hFiEuUSLZkeeyZN_H4PYBDgVa1NCoBy2kYsBgfEnFBoJo8FaZhuHJqDd0ebw_Y1X18X4Hj2V0YrbUrPtN1--rO8vORGttfZScIRiiLm3OwgHE_jia3tT7_qEQWjnB_dBmF6clV57aPKWADM9OQWi6uL8HHqan8cMEurrRWoDsd0aSc5Kk-LmVdvX8ja_zvkFdh2QNMcjpZEWtQ0cU6rEzFG4jfy1W4O8Mw9qQexbAIzjCU5aRleSUQeubEk64-EES05EJbZ0JaYmgr2PGzdNVbBRkW5FP4g3RG_Q0YtC775-3ACywEisZpGQhFuRUqUhETCReYZMtQGmGUVkw0E5lHsUkTQYVl9dJcNIVMtNKppoIxKgzdhPliVOgtIKZBmUAHgaHOsCjX0mCay2WkONUmCZMahNOZz5RnH7ciGM-Zy0LCNLPGyqyxMm-sGhzNurxMqDf-aly1kz9r6Oe9BrtT82Z-c75lDvWhdw3j7d97HcBiu9-9yW46vesdWGrYMhZXrLML8-XrWO8hDinlvlt-H6yx2LU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Blockchain-Based+Federated+Learning+for+Device+Failure+Detection+in+Industrial+IoT&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Zhang%2C+Weishan&rft.au=Lu%2C+Qinghua&rft.au=Yu%2C+Qiuyu&rft.au=Li%2C+Zhaotong&rft.date=2021-04-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=8&rft.issue=7&rft.spage=5926&rft.epage=5937&rft_id=info:doi/10.1109%2FJIOT.2020.3032544&rft.externalDocID=9233457 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |