Deep Neural Network Technique for High-Dimensional Microwave Modeling and Applications to Parameter Extraction of Microwave Filters
This article introduces the deep neural network method into the field of high-dimensional microwave modeling. Deep learning is nowadays highly successful in solving complex and challenging pattern recognition and classification problems. This article investigates the use of deep neural networks to s...
Saved in:
Published in | IEEE transactions on microwave theory and techniques Vol. 67; no. 10; pp. 4140 - 4155 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article introduces the deep neural network method into the field of high-dimensional microwave modeling. Deep learning is nowadays highly successful in solving complex and challenging pattern recognition and classification problems. This article investigates the use of deep neural networks to solve microwave modeling problems that are much more challenging than that solved by the previous shallow neural networks. The most commonly used activation function in the existing deep neural network is the rectified linear unit (ReLU), which is a piecewise hard switch function. However, such a ReLU is not suitable for microwave modeling where the input-output relationships are smooth and continuous. In this article, we propose a new deep neural network to perform high-dimensional microwave modeling. A smooth ReLU is proposed for the new deep neural network. The proposed deep neural network employs both the sigmoid function and the smooth ReLU as activation functions. The new deep neural network can represent the smooth input-output relationship that is required for microwave modeling. An advanced three-stage deep learning algorithm is proposed to train the new deep neural network model. This algorithm can determine the number of hidden layers with sigmoid functions and those with smooth ReLUs in the training process. It can also overcome the vanishing gradient problem for training the deep neural network. The proposed deep neural network technique can solve microwave modeling problems in a higher dimension than the previous neural network method, i.e., shallow neural network method. Two high-dimensional parameter-extraction modeling examples of microwave filters are presented to demonstrate the proposed deep neural network technique. |
---|---|
AbstractList | This article introduces the deep neural network method into the field of high-dimensional microwave modeling. Deep learning is nowadays highly successful in solving complex and challenging pattern recognition and classification problems. This article investigates the use of deep neural networks to solve microwave modeling problems that are much more challenging than that solved by the previous shallow neural networks. The most commonly used activation function in the existing deep neural network is the rectified linear unit (ReLU), which is a piecewise hard switch function. However, such a ReLU is not suitable for microwave modeling where the input–output relationships are smooth and continuous. In this article, we propose a new deep neural network to perform high-dimensional microwave modeling. A smooth ReLU is proposed for the new deep neural network. The proposed deep neural network employs both the sigmoid function and the smooth ReLU as activation functions. The new deep neural network can represent the smooth input–output relationship that is required for microwave modeling. An advanced three-stage deep learning algorithm is proposed to train the new deep neural network model. This algorithm can determine the number of hidden layers with sigmoid functions and those with smooth ReLUs in the training process. It can also overcome the vanishing gradient problem for training the deep neural network. The proposed deep neural network technique can solve microwave modeling problems in a higher dimension than the previous neural network method, i.e., shallow neural network method. Two high-dimensional parameter-extraction modeling examples of microwave filters are presented to demonstrate the proposed deep neural network technique. |
Author | Na, Weicong Zhang, Chao Feng, Feng Zhang, Qi-Jun Jin, Jing Ma, Jianguo |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-8638-7837 surname: Jin fullname: Jin, Jing email: jingjin5@cmail.carleton.ca organization: School of Microelectronics, Tianjin University, Tianjin, China – sequence: 2 givenname: Chao orcidid: 0000-0002-6519-3371 surname: Zhang fullname: Zhang, Chao email: chaozhang@doe.carleton.ca organization: Department of Electronics, Carleton University, Ottawa, ON, Canada – sequence: 3 givenname: Feng orcidid: 0000-0002-3569-8782 surname: Feng fullname: Feng, Feng email: fengfeng@doe.carleton.ca organization: Department of Electronics, Carleton University, Ottawa, ON, Canada – sequence: 4 givenname: Weicong orcidid: 0000-0001-9775-5124 surname: Na fullname: Na, Weicong email: weicongna@bjut.edu.cn organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China – sequence: 5 givenname: Jianguo surname: Ma fullname: Ma, Jianguo email: majg@tju.edu.cn organization: School of Computers, Guangdong University of Technology, Guangzhou, China – sequence: 6 givenname: Qi-Jun orcidid: 0000-0001-7852-5331 surname: Zhang fullname: Zhang, Qi-Jun email: qjz@doe.carleton.ca organization: Department of Electronics, Carleton University, Ottawa, ON, Canada |
BookMark | eNp9kD9PwzAQxS1UJErhAyAWS8wptvPH9ogKpUgUGMIcOc4FDGkc7JTCzBfHoQghBqbT6d7v7t7bR6PWtoDQESVTSok8zZd5PmWEyimTMeOx2EFjmqY8khknIzQmhIpIJoLsoX3vn0KbpESM0cc5QIdvYO1UE0q_se4Z56AfW_OyBlxbhxfm4TE6NytovbFtkC2NdnajXgEvbQWNaR-wait81nWN0aoPIo97i--UUyvoweGLt94pPQywrX_hc9OEsT9Au7VqPBx-1wm6n1_ks0V0fXt5NTu7jnScyj5SpWIqobUClimZZrqMs0yLmgtNa55BpTTTlAnOS6CpkDHnsqxIqUTKdcKreIJOtns7Z4M53xdPdu2CI1-wmMQykUwkQUW3qvCl9w7qonNmpdx7QUkxZF0MWRdD1sV31oHhfxht-q8kgnHT_Eseb0kDAD-XBJdChF8-AbcZkQY |
CODEN | IETMAB |
CitedBy_id | crossref_primary_10_1109_TMTT_2022_3163745 crossref_primary_10_1016_j_jhydrol_2021_126586 crossref_primary_10_1002_jnm_2888 crossref_primary_10_1364_OE_449621 crossref_primary_10_1109_TAP_2024_3360637 crossref_primary_10_1002_ett_4579 crossref_primary_10_1109_ACCESS_2020_2991890 crossref_primary_10_1109_TAP_2021_3111299 crossref_primary_10_1109_TCSI_2022_3189388 crossref_primary_10_3390_photonics9020075 crossref_primary_10_1049_mia2_12137 crossref_primary_10_1002_jnm_2879 crossref_primary_10_1109_ACCESS_2021_3063523 crossref_primary_10_1016_j_mejo_2022_105523 crossref_primary_10_1109_TCPMT_2023_3279098 crossref_primary_10_3390_mi11090831 crossref_primary_10_1038_s41598_024_70246_4 crossref_primary_10_1109_TVLSI_2024_3414584 crossref_primary_10_1109_TMTT_2022_3200071 crossref_primary_10_1049_ell2_12910 crossref_primary_10_1109_JMMCT_2024_3385451 crossref_primary_10_1109_LMWC_2022_3153058 crossref_primary_10_1587_elex_21_20240492 crossref_primary_10_1016_j_knosys_2022_108161 crossref_primary_10_1039_D3MH00039G crossref_primary_10_1109_MMM_2024_3492145 crossref_primary_10_1016_j_aeue_2024_155589 crossref_primary_10_1007_s10489_023_05200_4 crossref_primary_10_1002_mmce_23034 crossref_primary_10_1109_TCSI_2023_3264616 crossref_primary_10_1109_ACCESS_2023_3248961 crossref_primary_10_1109_TCSI_2023_3337115 crossref_primary_10_1109_TMTT_2022_3208913 crossref_primary_10_1109_LMWT_2024_3503572 crossref_primary_10_3390_electronics13234833 crossref_primary_10_1007_s11277_024_11359_x crossref_primary_10_1109_TAP_2024_3384064 crossref_primary_10_3390_mi11070696 crossref_primary_10_1109_TMTT_2020_3004622 crossref_primary_10_1007_s10470_020_01733_7 crossref_primary_10_1109_TMTT_2021_3112156 crossref_primary_10_1109_TCSI_2024_3425642 crossref_primary_10_1038_s41598_022_20941_x crossref_primary_10_1109_TAP_2021_3096207 crossref_primary_10_2528_PIERL23071902 crossref_primary_10_3390_electronics10010010 crossref_primary_10_1080_00150193_2022_2159223 crossref_primary_10_1155_2024_5524054 crossref_primary_10_1007_s13369_022_06769_7 crossref_primary_10_1109_MMM_2021_3095990 crossref_primary_10_1109_TMTT_2022_3208009 crossref_primary_10_1364_OE_503010 crossref_primary_10_3390_act11050122 crossref_primary_10_1109_TCSII_2024_3380412 crossref_primary_10_1109_TCPMT_2024_3349434 crossref_primary_10_1109_ACCESS_2020_3015043 crossref_primary_10_1109_TMTT_2022_3223122 crossref_primary_10_1109_LMWT_2024_3402542 crossref_primary_10_1038_s41598_025_90103_2 crossref_primary_10_1109_LMWT_2023_3276746 crossref_primary_10_1109_TCSI_2020_3008947 crossref_primary_10_1109_TMTT_2022_3197751 crossref_primary_10_1109_TMTT_2022_3208898 crossref_primary_10_1063_5_0158925 crossref_primary_10_1029_2024JH000311 crossref_primary_10_1109_TIE_2020_3040658 crossref_primary_10_1109_TAP_2022_3188627 crossref_primary_10_1109_TAP_2022_3184545 crossref_primary_10_1109_ACCESS_2020_3039269 crossref_primary_10_1109_TAP_2023_3331249 crossref_primary_10_3390_w16182564 crossref_primary_10_1109_TMTT_2023_3238418 crossref_primary_10_3390_electronics14051035 crossref_primary_10_1007_s00477_022_02251_w crossref_primary_10_1109_ACCESS_2021_3137033 crossref_primary_10_1109_JMW_2020_3033780 crossref_primary_10_1109_TEMC_2023_3316916 crossref_primary_10_1109_TMTT_2022_3232895 crossref_primary_10_1109_TEMC_2021_3064853 crossref_primary_10_3390_electronics11010047 crossref_primary_10_1109_MMM_2024_3486596 crossref_primary_10_3390_electronics14020367 crossref_primary_10_1002_mop_33295 crossref_primary_10_1109_JMMCT_2024_3502062 crossref_primary_10_1109_LMWT_2023_3343095 crossref_primary_10_1109_TCSII_2024_3350137 crossref_primary_10_1002_cta_3485 crossref_primary_10_1109_TCAD_2021_3112138 crossref_primary_10_1016_j_aeue_2020_153419 crossref_primary_10_1109_TMTT_2023_3330766 crossref_primary_10_3390_electronics11040551 crossref_primary_10_1109_TMTT_2021_3134992 crossref_primary_10_1109_ACCESS_2024_3351843 crossref_primary_10_1016_j_ifacol_2020_12_117 crossref_primary_10_1109_TMTT_2022_3210229 crossref_primary_10_1109_MMM_2024_3486588 crossref_primary_10_1109_LMWC_2020_2986156 crossref_primary_10_1109_TCAD_2024_3385368 crossref_primary_10_3390_electronics12112399 crossref_primary_10_3390_electronics13122321 crossref_primary_10_1109_TEMC_2024_3457629 crossref_primary_10_1007_s00500_023_08427_y crossref_primary_10_1109_TCSI_2023_3340219 crossref_primary_10_1109_ACCESS_2021_3078432 crossref_primary_10_17694_bajece_1061375 crossref_primary_10_1109_ACCESS_2021_3111902 crossref_primary_10_1109_LMWC_2022_3208355 crossref_primary_10_1109_LMWT_2023_3329047 crossref_primary_10_1017_S1759078722000125 crossref_primary_10_1109_ACCESS_2022_3158976 crossref_primary_10_12737_2219_0767_2021_14_2_28_34 crossref_primary_10_1587_transele_2022MMI0005 crossref_primary_10_1109_LMWC_2022_3214467 crossref_primary_10_1109_TMTT_2022_3180332 crossref_primary_10_1109_ACCESS_2024_3432450 crossref_primary_10_1109_TMTT_2022_3191327 crossref_primary_10_1002_jnm_2732 crossref_primary_10_1109_TMTT_2022_3207482 crossref_primary_10_1016_j_aeue_2023_155068 crossref_primary_10_1021_acsomega_2c01435 crossref_primary_10_1109_TCAD_2024_3451329 crossref_primary_10_1109_TMTT_2022_3209701 crossref_primary_10_1109_TMTT_2022_3166151 crossref_primary_10_1109_LAWP_2024_3437436 crossref_primary_10_1109_TCYB_2023_3341804 crossref_primary_10_1109_LAWP_2022_3144046 crossref_primary_10_1109_LMWT_2023_3243524 crossref_primary_10_1007_s10489_024_05853_9 crossref_primary_10_1109_TMTT_2022_3189655 |
Cites_doi | 10.1142/S0218488598000094 10.1017/CBO9780511619960 10.1109/TMTT.2017.2650904 10.1109/ICASSP.2013.6638947 10.1109/TMTT.2003.809179 10.1109/MMM.2012.2216095 10.1109/MWSYM.2000.862292 10.1126/science.1129813 10.1109/ICASSP.2013.6639346 10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I 10.1109/72.279181 10.1109/TMTT.2016.2586055 10.1109/TMTT.2003.820895 10.1109/LMWC.2016.2516761 10.1109/TMTT.2008.919078 10.1038/nature14539 10.1109/TMTT.2002.805283 10.1109/22.971646 10.1109/TMTT.2016.2623902 10.1109/TMTT.2015.2504099 10.1109/NEMO.2018.8503117 10.1109/TMAG.2007.892480 10.1109/TMTT.2005.855742 10.1561/2200000006 10.1109/TMTT.2010.2098041 10.1109/TPAMI.2012.231 10.1109/TMTT.2017.2657501 10.1109/MWSYM.2004.1338824 10.1109/MMM.2010.936079 10.1109/LMWC.2016.2623248 10.1145/1390156.1390177 10.3115/v1/D14-1179 10.1002/mop.27447 10.1109/TMTT.2008.2007318 10.1109/NEMO.2016.7561591 10.1109/22.643868 10.1109/TMTT.2016.2630059 10.1109/TMTT.1986.1133540 10.1109/TMTT.2003.820897 10.1109/TASLP.2015.2422573 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TMTT.2019.2932738 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9670 |
EndPage | 4155 |
ExternalDocumentID | 10_1109_TMTT_2019_2932738 8798884 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2017-06420 funderid: 10.13039/501100000038 |
GroupedDBID | -~X .GJ 0R~ 29I 3EH 4.4 5GY 5VS 66. 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 VJK VOH AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c359t-aba2a41fae26a956cb366c8f78c1f76edac2c12877be15893779bd0ba857c47d3 |
IEDL.DBID | RIE |
ISSN | 0018-9480 |
IngestDate | Mon Jun 30 10:11:35 EDT 2025 Tue Jul 01 02:00:14 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 Wed Aug 27 02:43:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-aba2a41fae26a956cb366c8f78c1f76edac2c12877be15893779bd0ba857c47d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9775-5124 0000-0002-6519-3371 0000-0002-8638-7837 0000-0001-7852-5331 0000-0002-3569-8782 |
PQID | 2303949284 |
PQPubID | 106035 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TMTT_2019_2932738 proquest_journals_2303949284 ieee_primary_8798884 crossref_citationtrail_10_1109_TMTT_2019_2932738 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-01 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on microwave theory and techniques |
PublicationTitleAbbrev | TMTT |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 michael nielsen (ref37) 2015 ref10 glorot (ref33) 2011 ref16 ref19 ref18 seide (ref23) 2011 ref51 ref50 ref46 ref45 ref48 ref47 ref41 ref44 ref43 telgarsky (ref24) 2016 ref49 ref8 ref7 ref9 ref4 ref3 maas (ref40) 2013 ref6 ref5 rumelhart (ref42) 1986; 1 ref35 glorot (ref38) 2011 ref31 ref30 ref32 ref2 ref1 ref39 zhang (ref17) 2016 krizhevsky (ref26) 2012 ref25 ref20 ref22 ref21 hochreiter (ref36) 2001 zhang (ref34) 2000 ref28 ref27 ref29 |
References_xml | – ident: ref43 doi: 10.1142/S0218488598000094 – start-page: 1 year: 2013 ident: ref40 article-title: Rectifier nonlinearities improve neural network acoustic models publication-title: Proc Int Conf Mach Learn – ident: ref12 doi: 10.1017/CBO9780511619960 – ident: ref20 doi: 10.1109/TMTT.2017.2650904 – ident: ref27 doi: 10.1109/ICASSP.2013.6638947 – volume: 1 start-page: 318 year: 1986 ident: ref42 article-title: Learning internal representations by error propagation publication-title: Parallel Distributed Processing Explorations in the Microstructure of Cognition – ident: ref7 doi: 10.1109/TMTT.2003.809179 – ident: ref16 doi: 10.1109/MMM.2012.2216095 – ident: ref47 doi: 10.1109/MWSYM.2000.862292 – year: 2015 ident: ref37 publication-title: Neural Networks and Deep Learning – ident: ref28 doi: 10.1126/science.1129813 – start-page: 315 year: 2011 ident: ref38 article-title: Deep sparse rectifier neural networks publication-title: Proc Int Conf Artif Intell Statist – start-page: 437 year: 2011 ident: ref23 article-title: Conversational speech transcription using context-dependent deep neural networks publication-title: Proc Conf Int Speech Commun Assoc – ident: ref39 doi: 10.1109/ICASSP.2013.6639346 – ident: ref10 doi: 10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I – year: 2000 ident: ref34 publication-title: Neural Networks for RF and Microwave Design – start-page: 1 year: 2016 ident: ref17 article-title: Parallel matrix neural network training on cluster systems for dynamic FET modeling from large datasets publication-title: IEEE MTT-S Int Microw Symp Dig – ident: ref35 doi: 10.1109/72.279181 – ident: ref18 doi: 10.1109/TMTT.2016.2586055 – ident: ref45 doi: 10.1109/TMTT.2003.820895 – ident: ref15 doi: 10.1109/LMWC.2016.2516761 – ident: ref3 doi: 10.1109/TMTT.2008.919078 – ident: ref25 doi: 10.1038/nature14539 – ident: ref50 doi: 10.1109/TMTT.2002.805283 – start-page: 1517 year: 2016 ident: ref24 article-title: Benefits of depth in neural networks publication-title: Proc Conf Learn Theory – ident: ref46 doi: 10.1109/22.971646 – ident: ref1 doi: 10.1109/TMTT.2016.2623902 – start-page: 513 year: 2011 ident: ref33 article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach publication-title: Proc Int Conf Mach Learn – ident: ref2 doi: 10.1109/TMTT.2015.2504099 – ident: ref44 doi: 10.1109/NEMO.2018.8503117 – ident: ref4 doi: 10.1109/TMAG.2007.892480 – ident: ref11 doi: 10.1109/TMTT.2005.855742 – ident: ref41 doi: 10.1561/2200000006 – ident: ref13 doi: 10.1109/TMTT.2010.2098041 – ident: ref29 doi: 10.1109/TPAMI.2012.231 – ident: ref14 doi: 10.1109/TMTT.2017.2657501 – ident: ref48 doi: 10.1109/MWSYM.2004.1338824 – year: 2001 ident: ref36 article-title: Gradient flow in recurrent nets: The difficulty of learning long-term dependencies publication-title: A Field Guide to Dynamical Recurrent Neural Networks – ident: ref9 doi: 10.1109/MMM.2010.936079 – ident: ref6 doi: 10.1109/LMWC.2016.2623248 – ident: ref31 doi: 10.1145/1390156.1390177 – ident: ref32 doi: 10.3115/v1/D14-1179 – ident: ref5 doi: 10.1002/mop.27447 – ident: ref22 doi: 10.1109/TMTT.2008.2007318 – start-page: 1097 year: 2012 ident: ref26 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref49 doi: 10.1109/NEMO.2016.7561591 – ident: ref21 doi: 10.1109/22.643868 – ident: ref19 doi: 10.1109/TMTT.2016.2630059 – ident: ref51 doi: 10.1109/TMTT.1986.1133540 – ident: ref8 doi: 10.1109/TMTT.2003.820897 – ident: ref30 doi: 10.1109/TASLP.2015.2422573 |
SSID | ssj0014508 |
Score | 2.6262925 |
Snippet | This article introduces the deep neural network method into the field of high-dimensional microwave modeling. Deep learning is nowadays highly successful in... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4140 |
SubjectTerms | Activation Algorithms Artificial neural networks Biological neural networks Deep learning deep neural networks high dimension Machine learning Mathematical models Microwave circuits Microwave filters microwave modeling Modelling Neural networks Neurons parameter extraction Parameters Pattern recognition Switching theory Training |
Title | Deep Neural Network Technique for High-Dimensional Microwave Modeling and Applications to Parameter Extraction of Microwave Filters |
URI | https://ieeexplore.ieee.org/document/8798884 https://www.proquest.com/docview/2303949284 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3Ukx78FqtVcvAkbt2P7GZzLGopQouHLfS2JNkERGlL3ap49Y-b2eyWoiLe9pCEwCSZmX1v3gBcpEoVRRAJj3FjE5RQcg-7FHoioTY4jnhKNSK6g2HSH9H7cTxeg6tlLYzWuiKf6Q5-Vlh-MVUL_FV2naK4VkrXYd0mbq5Wa4kY0NivX117gWnaIJiBz6-zQZYhiYt3rG9zpSgrPqhqqvLjJa7cS28HBs3GHKvkqbMoZUd9fNNs_O_Od2G7jjNJ1x2MPVjTk33YWlEfPIDPW61nBNU57MCho4OTrNF0JTaaJcgC8W6xAYAT7yAD5O-9iVdNsIkalrITMSlIdwUGJ-WUPAjkfFmTkbv3cu5qJ8jUrEzvPSJM_3IIo95ddtP36p4MnopiXnpCilDQwAgdJsLmVkpGSaJSw1IVGJboQqhQWZ_HmNRBjMEQ47LwpUhjpigroiPYmEwn-hgIIqz2cTXSSE254TJigQo1M0zYuEiELfAbK-WqFizHvhnPeZW4-DxHw-Zo2Lw2bAsul1NmTq3jr8EHaKjlwNpGLWg3RyGv7_NLbhO1iFNuffnJ77NOYRPXdjS_NmyU84U-s-FKKc-rc_oFiIHpOA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcoAe-CqoCwV8gAtStonjxPGBQ8V2taXdFYdU6i3Yji0h0G7VzVLgyt_gr_DfmImT1QoQt0rccrATyXmZj8ybNwAvCmvrOkl1JJXHBIUbFdGUwkjnAoPjVBXCUUV3OssnZ-LteXa-BT_WvTDOuZZ85oZ02dby64Vd0a-yg4LEtQrRUShP3NcrTNCWr49H-DZfcj4-Kt9Mom6GQGTTTDWRNpprkXjteK4xF7AmzXNbeFnYxMvc1dpyizZaSuOSjJy3VKaOjS4yaYWsU7zvDbiJcUbGQ3fYukYhsriz82gyRNHXTJNYHZTTsiTamBqiNw3NLxterx3j8oftbx3a-C787I8i8Fg-DleNGdpvv6lE_q9ndQ_udJE0OwzQvw9bbv4Adjb0FXfh-8i5C0b6I7hwFgjvrOxVaxnG64x4LtGIRhwEeRI2JYbilf7sGI2Jo2Z9puc1O9wo9LNmwd5pYrUhKNnRl-YydIewhd_YPv5ARITlQzi7llN4BNvzxdztAaMaMroPb7xxQnllUplY7qSXGiM_zQcQ96iobCfJTpNBPlVtaharioBUEZCqDkgDeLXechH0SP61eJeAsV7YYWIA-z30qs5iLStMRVMlFEYrj_--6zncmpTT0-r0eHbyBG7TcwKpcR-2m8uVe4rBWWOetd8Ig_fXDbRfxuZIWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+Technique+for+High-Dimensional+Microwave+Modeling+and+Applications+to+Parameter+Extraction+of+Microwave+Filters&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Jin%2C+Jing&rft.au=Zhang%2C+Chao&rft.au=Feng%2C+Feng&rft.au=Na%2C+Weicong&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=0018-9480&rft.volume=67&rft.issue=10&rft.spage=4140&rft.epage=4155&rft_id=info:doi/10.1109%2FTMTT.2019.2932738&rft.externalDocID=8798884 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon |