Deep Neural Network Technique for High-Dimensional Microwave Modeling and Applications to Parameter Extraction of Microwave Filters

This article introduces the deep neural network method into the field of high-dimensional microwave modeling. Deep learning is nowadays highly successful in solving complex and challenging pattern recognition and classification problems. This article investigates the use of deep neural networks to s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on microwave theory and techniques Vol. 67; no. 10; pp. 4140 - 4155
Main Authors Jin, Jing, Zhang, Chao, Feng, Feng, Na, Weicong, Ma, Jianguo, Zhang, Qi-Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article introduces the deep neural network method into the field of high-dimensional microwave modeling. Deep learning is nowadays highly successful in solving complex and challenging pattern recognition and classification problems. This article investigates the use of deep neural networks to solve microwave modeling problems that are much more challenging than that solved by the previous shallow neural networks. The most commonly used activation function in the existing deep neural network is the rectified linear unit (ReLU), which is a piecewise hard switch function. However, such a ReLU is not suitable for microwave modeling where the input-output relationships are smooth and continuous. In this article, we propose a new deep neural network to perform high-dimensional microwave modeling. A smooth ReLU is proposed for the new deep neural network. The proposed deep neural network employs both the sigmoid function and the smooth ReLU as activation functions. The new deep neural network can represent the smooth input-output relationship that is required for microwave modeling. An advanced three-stage deep learning algorithm is proposed to train the new deep neural network model. This algorithm can determine the number of hidden layers with sigmoid functions and those with smooth ReLUs in the training process. It can also overcome the vanishing gradient problem for training the deep neural network. The proposed deep neural network technique can solve microwave modeling problems in a higher dimension than the previous neural network method, i.e., shallow neural network method. Two high-dimensional parameter-extraction modeling examples of microwave filters are presented to demonstrate the proposed deep neural network technique.
AbstractList This article introduces the deep neural network method into the field of high-dimensional microwave modeling. Deep learning is nowadays highly successful in solving complex and challenging pattern recognition and classification problems. This article investigates the use of deep neural networks to solve microwave modeling problems that are much more challenging than that solved by the previous shallow neural networks. The most commonly used activation function in the existing deep neural network is the rectified linear unit (ReLU), which is a piecewise hard switch function. However, such a ReLU is not suitable for microwave modeling where the input–output relationships are smooth and continuous. In this article, we propose a new deep neural network to perform high-dimensional microwave modeling. A smooth ReLU is proposed for the new deep neural network. The proposed deep neural network employs both the sigmoid function and the smooth ReLU as activation functions. The new deep neural network can represent the smooth input–output relationship that is required for microwave modeling. An advanced three-stage deep learning algorithm is proposed to train the new deep neural network model. This algorithm can determine the number of hidden layers with sigmoid functions and those with smooth ReLUs in the training process. It can also overcome the vanishing gradient problem for training the deep neural network. The proposed deep neural network technique can solve microwave modeling problems in a higher dimension than the previous neural network method, i.e., shallow neural network method. Two high-dimensional parameter-extraction modeling examples of microwave filters are presented to demonstrate the proposed deep neural network technique.
Author Na, Weicong
Zhang, Chao
Feng, Feng
Zhang, Qi-Jun
Jin, Jing
Ma, Jianguo
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-8638-7837
  surname: Jin
  fullname: Jin, Jing
  email: jingjin5@cmail.carleton.ca
  organization: School of Microelectronics, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0002-6519-3371
  surname: Zhang
  fullname: Zhang, Chao
  email: chaozhang@doe.carleton.ca
  organization: Department of Electronics, Carleton University, Ottawa, ON, Canada
– sequence: 3
  givenname: Feng
  orcidid: 0000-0002-3569-8782
  surname: Feng
  fullname: Feng, Feng
  email: fengfeng@doe.carleton.ca
  organization: Department of Electronics, Carleton University, Ottawa, ON, Canada
– sequence: 4
  givenname: Weicong
  orcidid: 0000-0001-9775-5124
  surname: Na
  fullname: Na, Weicong
  email: weicongna@bjut.edu.cn
  organization: Faculty of Information Technology, Beijing University of Technology, Beijing, China
– sequence: 5
  givenname: Jianguo
  surname: Ma
  fullname: Ma, Jianguo
  email: majg@tju.edu.cn
  organization: School of Computers, Guangdong University of Technology, Guangzhou, China
– sequence: 6
  givenname: Qi-Jun
  orcidid: 0000-0001-7852-5331
  surname: Zhang
  fullname: Zhang, Qi-Jun
  email: qjz@doe.carleton.ca
  organization: Department of Electronics, Carleton University, Ottawa, ON, Canada
BookMark eNp9kD9PwzAQxS1UJErhAyAWS8wptvPH9ogKpUgUGMIcOc4FDGkc7JTCzBfHoQghBqbT6d7v7t7bR6PWtoDQESVTSok8zZd5PmWEyimTMeOx2EFjmqY8khknIzQmhIpIJoLsoX3vn0KbpESM0cc5QIdvYO1UE0q_se4Z56AfW_OyBlxbhxfm4TE6NytovbFtkC2NdnajXgEvbQWNaR-wait81nWN0aoPIo97i--UUyvoweGLt94pPQywrX_hc9OEsT9Au7VqPBx-1wm6n1_ks0V0fXt5NTu7jnScyj5SpWIqobUClimZZrqMs0yLmgtNa55BpTTTlAnOS6CpkDHnsqxIqUTKdcKreIJOtns7Z4M53xdPdu2CI1-wmMQykUwkQUW3qvCl9w7qonNmpdx7QUkxZF0MWRdD1sV31oHhfxht-q8kgnHT_Eseb0kDAD-XBJdChF8-AbcZkQY
CODEN IETMAB
CitedBy_id crossref_primary_10_1109_TMTT_2022_3163745
crossref_primary_10_1016_j_jhydrol_2021_126586
crossref_primary_10_1002_jnm_2888
crossref_primary_10_1364_OE_449621
crossref_primary_10_1109_TAP_2024_3360637
crossref_primary_10_1002_ett_4579
crossref_primary_10_1109_ACCESS_2020_2991890
crossref_primary_10_1109_TAP_2021_3111299
crossref_primary_10_1109_TCSI_2022_3189388
crossref_primary_10_3390_photonics9020075
crossref_primary_10_1049_mia2_12137
crossref_primary_10_1002_jnm_2879
crossref_primary_10_1109_ACCESS_2021_3063523
crossref_primary_10_1016_j_mejo_2022_105523
crossref_primary_10_1109_TCPMT_2023_3279098
crossref_primary_10_3390_mi11090831
crossref_primary_10_1038_s41598_024_70246_4
crossref_primary_10_1109_TVLSI_2024_3414584
crossref_primary_10_1109_TMTT_2022_3200071
crossref_primary_10_1049_ell2_12910
crossref_primary_10_1109_JMMCT_2024_3385451
crossref_primary_10_1109_LMWC_2022_3153058
crossref_primary_10_1587_elex_21_20240492
crossref_primary_10_1016_j_knosys_2022_108161
crossref_primary_10_1039_D3MH00039G
crossref_primary_10_1109_MMM_2024_3492145
crossref_primary_10_1016_j_aeue_2024_155589
crossref_primary_10_1007_s10489_023_05200_4
crossref_primary_10_1002_mmce_23034
crossref_primary_10_1109_TCSI_2023_3264616
crossref_primary_10_1109_ACCESS_2023_3248961
crossref_primary_10_1109_TCSI_2023_3337115
crossref_primary_10_1109_TMTT_2022_3208913
crossref_primary_10_1109_LMWT_2024_3503572
crossref_primary_10_3390_electronics13234833
crossref_primary_10_1007_s11277_024_11359_x
crossref_primary_10_1109_TAP_2024_3384064
crossref_primary_10_3390_mi11070696
crossref_primary_10_1109_TMTT_2020_3004622
crossref_primary_10_1007_s10470_020_01733_7
crossref_primary_10_1109_TMTT_2021_3112156
crossref_primary_10_1109_TCSI_2024_3425642
crossref_primary_10_1038_s41598_022_20941_x
crossref_primary_10_1109_TAP_2021_3096207
crossref_primary_10_2528_PIERL23071902
crossref_primary_10_3390_electronics10010010
crossref_primary_10_1080_00150193_2022_2159223
crossref_primary_10_1155_2024_5524054
crossref_primary_10_1007_s13369_022_06769_7
crossref_primary_10_1109_MMM_2021_3095990
crossref_primary_10_1109_TMTT_2022_3208009
crossref_primary_10_1364_OE_503010
crossref_primary_10_3390_act11050122
crossref_primary_10_1109_TCSII_2024_3380412
crossref_primary_10_1109_TCPMT_2024_3349434
crossref_primary_10_1109_ACCESS_2020_3015043
crossref_primary_10_1109_TMTT_2022_3223122
crossref_primary_10_1109_LMWT_2024_3402542
crossref_primary_10_1038_s41598_025_90103_2
crossref_primary_10_1109_LMWT_2023_3276746
crossref_primary_10_1109_TCSI_2020_3008947
crossref_primary_10_1109_TMTT_2022_3197751
crossref_primary_10_1109_TMTT_2022_3208898
crossref_primary_10_1063_5_0158925
crossref_primary_10_1029_2024JH000311
crossref_primary_10_1109_TIE_2020_3040658
crossref_primary_10_1109_TAP_2022_3188627
crossref_primary_10_1109_TAP_2022_3184545
crossref_primary_10_1109_ACCESS_2020_3039269
crossref_primary_10_1109_TAP_2023_3331249
crossref_primary_10_3390_w16182564
crossref_primary_10_1109_TMTT_2023_3238418
crossref_primary_10_3390_electronics14051035
crossref_primary_10_1007_s00477_022_02251_w
crossref_primary_10_1109_ACCESS_2021_3137033
crossref_primary_10_1109_JMW_2020_3033780
crossref_primary_10_1109_TEMC_2023_3316916
crossref_primary_10_1109_TMTT_2022_3232895
crossref_primary_10_1109_TEMC_2021_3064853
crossref_primary_10_3390_electronics11010047
crossref_primary_10_1109_MMM_2024_3486596
crossref_primary_10_3390_electronics14020367
crossref_primary_10_1002_mop_33295
crossref_primary_10_1109_JMMCT_2024_3502062
crossref_primary_10_1109_LMWT_2023_3343095
crossref_primary_10_1109_TCSII_2024_3350137
crossref_primary_10_1002_cta_3485
crossref_primary_10_1109_TCAD_2021_3112138
crossref_primary_10_1016_j_aeue_2020_153419
crossref_primary_10_1109_TMTT_2023_3330766
crossref_primary_10_3390_electronics11040551
crossref_primary_10_1109_TMTT_2021_3134992
crossref_primary_10_1109_ACCESS_2024_3351843
crossref_primary_10_1016_j_ifacol_2020_12_117
crossref_primary_10_1109_TMTT_2022_3210229
crossref_primary_10_1109_MMM_2024_3486588
crossref_primary_10_1109_LMWC_2020_2986156
crossref_primary_10_1109_TCAD_2024_3385368
crossref_primary_10_3390_electronics12112399
crossref_primary_10_3390_electronics13122321
crossref_primary_10_1109_TEMC_2024_3457629
crossref_primary_10_1007_s00500_023_08427_y
crossref_primary_10_1109_TCSI_2023_3340219
crossref_primary_10_1109_ACCESS_2021_3078432
crossref_primary_10_17694_bajece_1061375
crossref_primary_10_1109_ACCESS_2021_3111902
crossref_primary_10_1109_LMWC_2022_3208355
crossref_primary_10_1109_LMWT_2023_3329047
crossref_primary_10_1017_S1759078722000125
crossref_primary_10_1109_ACCESS_2022_3158976
crossref_primary_10_12737_2219_0767_2021_14_2_28_34
crossref_primary_10_1587_transele_2022MMI0005
crossref_primary_10_1109_LMWC_2022_3214467
crossref_primary_10_1109_TMTT_2022_3180332
crossref_primary_10_1109_ACCESS_2024_3432450
crossref_primary_10_1109_TMTT_2022_3191327
crossref_primary_10_1002_jnm_2732
crossref_primary_10_1109_TMTT_2022_3207482
crossref_primary_10_1016_j_aeue_2023_155068
crossref_primary_10_1021_acsomega_2c01435
crossref_primary_10_1109_TCAD_2024_3451329
crossref_primary_10_1109_TMTT_2022_3209701
crossref_primary_10_1109_TMTT_2022_3166151
crossref_primary_10_1109_LAWP_2024_3437436
crossref_primary_10_1109_TCYB_2023_3341804
crossref_primary_10_1109_LAWP_2022_3144046
crossref_primary_10_1109_LMWT_2023_3243524
crossref_primary_10_1007_s10489_024_05853_9
crossref_primary_10_1109_TMTT_2022_3189655
Cites_doi 10.1142/S0218488598000094
10.1017/CBO9780511619960
10.1109/TMTT.2017.2650904
10.1109/ICASSP.2013.6638947
10.1109/TMTT.2003.809179
10.1109/MMM.2012.2216095
10.1109/MWSYM.2000.862292
10.1126/science.1129813
10.1109/ICASSP.2013.6639346
10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I
10.1109/72.279181
10.1109/TMTT.2016.2586055
10.1109/TMTT.2003.820895
10.1109/LMWC.2016.2516761
10.1109/TMTT.2008.919078
10.1038/nature14539
10.1109/TMTT.2002.805283
10.1109/22.971646
10.1109/TMTT.2016.2623902
10.1109/TMTT.2015.2504099
10.1109/NEMO.2018.8503117
10.1109/TMAG.2007.892480
10.1109/TMTT.2005.855742
10.1561/2200000006
10.1109/TMTT.2010.2098041
10.1109/TPAMI.2012.231
10.1109/TMTT.2017.2657501
10.1109/MWSYM.2004.1338824
10.1109/MMM.2010.936079
10.1109/LMWC.2016.2623248
10.1145/1390156.1390177
10.3115/v1/D14-1179
10.1002/mop.27447
10.1109/TMTT.2008.2007318
10.1109/NEMO.2016.7561591
10.1109/22.643868
10.1109/TMTT.2016.2630059
10.1109/TMTT.1986.1133540
10.1109/TMTT.2003.820897
10.1109/TASLP.2015.2422573
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TMTT.2019.2932738
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9670
EndPage 4155
ExternalDocumentID 10_1109_TMTT_2019_2932738
8798884
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2017-06420
  funderid: 10.13039/501100000038
GroupedDBID -~X
.GJ
0R~
29I
3EH
4.4
5GY
5VS
66.
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c359t-aba2a41fae26a956cb366c8f78c1f76edac2c12877be15893779bd0ba857c47d3
IEDL.DBID RIE
ISSN 0018-9480
IngestDate Mon Jun 30 10:11:35 EDT 2025
Tue Jul 01 02:00:14 EDT 2025
Thu Apr 24 23:09:35 EDT 2025
Wed Aug 27 02:43:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-aba2a41fae26a956cb366c8f78c1f76edac2c12877be15893779bd0ba857c47d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9775-5124
0000-0002-6519-3371
0000-0002-8638-7837
0000-0001-7852-5331
0000-0002-3569-8782
PQID 2303949284
PQPubID 106035
PageCount 16
ParticipantIDs crossref_primary_10_1109_TMTT_2019_2932738
proquest_journals_2303949284
ieee_primary_8798884
crossref_citationtrail_10_1109_TMTT_2019_2932738
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on microwave theory and techniques
PublicationTitleAbbrev TMTT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
michael nielsen (ref37) 2015
ref10
glorot (ref33) 2011
ref16
ref19
ref18
seide (ref23) 2011
ref51
ref50
ref46
ref45
ref48
ref47
ref41
ref44
ref43
telgarsky (ref24) 2016
ref49
ref8
ref7
ref9
ref4
ref3
maas (ref40) 2013
ref6
ref5
rumelhart (ref42) 1986; 1
ref35
glorot (ref38) 2011
ref31
ref30
ref32
ref2
ref1
ref39
zhang (ref17) 2016
krizhevsky (ref26) 2012
ref25
ref20
ref22
ref21
hochreiter (ref36) 2001
zhang (ref34) 2000
ref28
ref27
ref29
References_xml – ident: ref43
  doi: 10.1142/S0218488598000094
– start-page: 1
  year: 2013
  ident: ref40
  article-title: Rectifier nonlinearities improve neural network acoustic models
  publication-title: Proc Int Conf Mach Learn
– ident: ref12
  doi: 10.1017/CBO9780511619960
– ident: ref20
  doi: 10.1109/TMTT.2017.2650904
– ident: ref27
  doi: 10.1109/ICASSP.2013.6638947
– volume: 1
  start-page: 318
  year: 1986
  ident: ref42
  article-title: Learning internal representations by error propagation
  publication-title: Parallel Distributed Processing Explorations in the Microstructure of Cognition
– ident: ref7
  doi: 10.1109/TMTT.2003.809179
– ident: ref16
  doi: 10.1109/MMM.2012.2216095
– ident: ref47
  doi: 10.1109/MWSYM.2000.862292
– year: 2015
  ident: ref37
  publication-title: Neural Networks and Deep Learning
– ident: ref28
  doi: 10.1126/science.1129813
– start-page: 315
  year: 2011
  ident: ref38
  article-title: Deep sparse rectifier neural networks
  publication-title: Proc Int Conf Artif Intell Statist
– start-page: 437
  year: 2011
  ident: ref23
  article-title: Conversational speech transcription using context-dependent deep neural networks
  publication-title: Proc Conf Int Speech Commun Assoc
– ident: ref39
  doi: 10.1109/ICASSP.2013.6639346
– ident: ref10
  doi: 10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I
– year: 2000
  ident: ref34
  publication-title: Neural Networks for RF and Microwave Design
– start-page: 1
  year: 2016
  ident: ref17
  article-title: Parallel matrix neural network training on cluster systems for dynamic FET modeling from large datasets
  publication-title: IEEE MTT-S Int Microw Symp Dig
– ident: ref35
  doi: 10.1109/72.279181
– ident: ref18
  doi: 10.1109/TMTT.2016.2586055
– ident: ref45
  doi: 10.1109/TMTT.2003.820895
– ident: ref15
  doi: 10.1109/LMWC.2016.2516761
– ident: ref3
  doi: 10.1109/TMTT.2008.919078
– ident: ref25
  doi: 10.1038/nature14539
– ident: ref50
  doi: 10.1109/TMTT.2002.805283
– start-page: 1517
  year: 2016
  ident: ref24
  article-title: Benefits of depth in neural networks
  publication-title: Proc Conf Learn Theory
– ident: ref46
  doi: 10.1109/22.971646
– ident: ref1
  doi: 10.1109/TMTT.2016.2623902
– start-page: 513
  year: 2011
  ident: ref33
  article-title: Domain adaptation for large-scale sentiment classification: A deep learning approach
  publication-title: Proc Int Conf Mach Learn
– ident: ref2
  doi: 10.1109/TMTT.2015.2504099
– ident: ref44
  doi: 10.1109/NEMO.2018.8503117
– ident: ref4
  doi: 10.1109/TMAG.2007.892480
– ident: ref11
  doi: 10.1109/TMTT.2005.855742
– ident: ref41
  doi: 10.1561/2200000006
– ident: ref13
  doi: 10.1109/TMTT.2010.2098041
– ident: ref29
  doi: 10.1109/TPAMI.2012.231
– ident: ref14
  doi: 10.1109/TMTT.2017.2657501
– ident: ref48
  doi: 10.1109/MWSYM.2004.1338824
– year: 2001
  ident: ref36
  article-title: Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
  publication-title: A Field Guide to Dynamical Recurrent Neural Networks
– ident: ref9
  doi: 10.1109/MMM.2010.936079
– ident: ref6
  doi: 10.1109/LMWC.2016.2623248
– ident: ref31
  doi: 10.1145/1390156.1390177
– ident: ref32
  doi: 10.3115/v1/D14-1179
– ident: ref5
  doi: 10.1002/mop.27447
– ident: ref22
  doi: 10.1109/TMTT.2008.2007318
– start-page: 1097
  year: 2012
  ident: ref26
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref49
  doi: 10.1109/NEMO.2016.7561591
– ident: ref21
  doi: 10.1109/22.643868
– ident: ref19
  doi: 10.1109/TMTT.2016.2630059
– ident: ref51
  doi: 10.1109/TMTT.1986.1133540
– ident: ref8
  doi: 10.1109/TMTT.2003.820897
– ident: ref30
  doi: 10.1109/TASLP.2015.2422573
SSID ssj0014508
Score 2.6262925
Snippet This article introduces the deep neural network method into the field of high-dimensional microwave modeling. Deep learning is nowadays highly successful in...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4140
SubjectTerms Activation
Algorithms
Artificial neural networks
Biological neural networks
Deep learning
deep neural networks
high dimension
Machine learning
Mathematical models
Microwave circuits
Microwave filters
microwave modeling
Modelling
Neural networks
Neurons
parameter extraction
Parameters
Pattern recognition
Switching theory
Training
Title Deep Neural Network Technique for High-Dimensional Microwave Modeling and Applications to Parameter Extraction of Microwave Filters
URI https://ieeexplore.ieee.org/document/8798884
https://www.proquest.com/docview/2303949284
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3Ukx78FqtVcvAkbt2P7GZzLGopQouHLfS2JNkERGlL3ap49Y-b2eyWoiLe9pCEwCSZmX1v3gBcpEoVRRAJj3FjE5RQcg-7FHoioTY4jnhKNSK6g2HSH9H7cTxeg6tlLYzWuiKf6Q5-Vlh-MVUL_FV2naK4VkrXYd0mbq5Wa4kY0NivX117gWnaIJiBz6-zQZYhiYt3rG9zpSgrPqhqqvLjJa7cS28HBs3GHKvkqbMoZUd9fNNs_O_Od2G7jjNJ1x2MPVjTk33YWlEfPIDPW61nBNU57MCho4OTrNF0JTaaJcgC8W6xAYAT7yAD5O-9iVdNsIkalrITMSlIdwUGJ-WUPAjkfFmTkbv3cu5qJ8jUrEzvPSJM_3IIo95ddtP36p4MnopiXnpCilDQwAgdJsLmVkpGSaJSw1IVGJboQqhQWZ_HmNRBjMEQ47LwpUhjpigroiPYmEwn-hgIIqz2cTXSSE254TJigQo1M0zYuEiELfAbK-WqFizHvhnPeZW4-DxHw-Zo2Lw2bAsul1NmTq3jr8EHaKjlwNpGLWg3RyGv7_NLbhO1iFNuffnJ77NOYRPXdjS_NmyU84U-s-FKKc-rc_oFiIHpOA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9QwEB2VcoAe-CqoCwV8gAtStonjxPGBQ8V2taXdFYdU6i3Yji0h0G7VzVLgyt_gr_DfmImT1QoQt0rccrATyXmZj8ybNwAvCmvrOkl1JJXHBIUbFdGUwkjnAoPjVBXCUUV3OssnZ-LteXa-BT_WvTDOuZZ85oZ02dby64Vd0a-yg4LEtQrRUShP3NcrTNCWr49H-DZfcj4-Kt9Mom6GQGTTTDWRNpprkXjteK4xF7AmzXNbeFnYxMvc1dpyizZaSuOSjJy3VKaOjS4yaYWsU7zvDbiJcUbGQ3fYukYhsriz82gyRNHXTJNYHZTTsiTamBqiNw3NLxterx3j8oftbx3a-C787I8i8Fg-DleNGdpvv6lE_q9ndQ_udJE0OwzQvw9bbv4Adjb0FXfh-8i5C0b6I7hwFgjvrOxVaxnG64x4LtGIRhwEeRI2JYbilf7sGI2Jo2Z9puc1O9wo9LNmwd5pYrUhKNnRl-YydIewhd_YPv5ARITlQzi7llN4BNvzxdztAaMaMroPb7xxQnllUplY7qSXGiM_zQcQ96iobCfJTpNBPlVtaharioBUEZCqDkgDeLXechH0SP61eJeAsV7YYWIA-z30qs5iLStMRVMlFEYrj_--6zncmpTT0-r0eHbyBG7TcwKpcR-2m8uVe4rBWWOetd8Ig_fXDbRfxuZIWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Neural+Network+Technique+for+High-Dimensional+Microwave+Modeling+and+Applications+to+Parameter+Extraction+of+Microwave+Filters&rft.jtitle=IEEE+transactions+on+microwave+theory+and+techniques&rft.au=Jin%2C+Jing&rft.au=Zhang%2C+Chao&rft.au=Feng%2C+Feng&rft.au=Na%2C+Weicong&rft.date=2019-10-01&rft.pub=IEEE&rft.issn=0018-9480&rft.volume=67&rft.issue=10&rft.spage=4140&rft.epage=4155&rft_id=info:doi/10.1109%2FTMTT.2019.2932738&rft.externalDocID=8798884
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9480&client=summon