An Unsupervised Remote Sensing Image Change Detection Method Based on RVMamba and Posterior Probability Space Change Vector
Change vector analysis in posterior probability space (CVAPS) is an effective change detection (CD) framework that does not require sound radiometric correction and is robust against accumulated classification errors. Based on training samples within target images, CVAPS can generate a uniformly sca...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 24; p. 4656 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Change vector analysis in posterior probability space (CVAPS) is an effective change detection (CD) framework that does not require sound radiometric correction and is robust against accumulated classification errors. Based on training samples within target images, CVAPS can generate a uniformly scaled change-magnitude map that is suitable for a global threshold. However, vigorous user intervention is required to achieve optimal performance. Therefore, to eliminate user intervention and retain the merit of CVAPS, an unsupervised CVAPS (UCVAPS) CD method, RFCC, which does not require rigorous user training, is proposed in this study. In the RFCC, we propose an unsupervised remote sensing image segmentation algorithm based on the Mamba model, i.e., RVMamba differentiable feature clustering, which introduces two loss functions as constraints to ensure that RVMamba achieves accurate segmentation results and to supply the CSBN module with high-quality training samples. In the CD module, the fuzzy C-means clustering (FCM) algorithm decomposes mixed pixels into multiple signal classes, thereby alleviating cumulative clustering errors. Then, a context-sensitive Bayesian network (CSBN) model is introduced to incorporate spatial information at the pixel level to estimate the corresponding posterior probability vector. Thus, it is suitable for high-resolution remote sensing (HRRS) imagery. Finally, the UCVAPS framework can generate a uniformly scaled change-magnitude map that is suitable for the global threshold and can produce accurate CD results. The experimental results on seven change detection datasets confirmed that the proposed method outperforms five state-of-the-art competitive CD methods. |
---|---|
AbstractList | Change vector analysis in posterior probability space (CVAPS) is an effective change detection (CD) framework that does not require sound radiometric correction and is robust against accumulated classification errors. Based on training samples within target images, CVAPS can generate a uniformly scaled change-magnitude map that is suitable for a global threshold. However, vigorous user intervention is required to achieve optimal performance. Therefore, to eliminate user intervention and retain the merit of CVAPS, an unsupervised CVAPS (UCVAPS) CD method, RFCC, which does not require rigorous user training, is proposed in this study. In the RFCC, we propose an unsupervised remote sensing image segmentation algorithm based on the Mamba model, i.e., RVMamba differentiable feature clustering, which introduces two loss functions as constraints to ensure that RVMamba achieves accurate segmentation results and to supply the CSBN module with high-quality training samples. In the CD module, the fuzzy C-means clustering (FCM) algorithm decomposes mixed pixels into multiple signal classes, thereby alleviating cumulative clustering errors. Then, a context-sensitive Bayesian network (CSBN) model is introduced to incorporate spatial information at the pixel level to estimate the corresponding posterior probability vector. Thus, it is suitable for high-resolution remote sensing (HRRS) imagery. Finally, the UCVAPS framework can generate a uniformly scaled change-magnitude map that is suitable for the global threshold and can produce accurate CD results. The experimental results on seven change detection datasets confirmed that the proposed method outperforms five state-of-the-art competitive CD methods. |
Audience | Academic |
Author | Li, Yikun Yang, Shuwen Li, Xiaojun Song, Jiaxin |
Author_xml | – sequence: 1 givenname: Jiaxin surname: Song fullname: Song, Jiaxin – sequence: 2 givenname: Shuwen surname: Yang fullname: Yang, Shuwen – sequence: 3 givenname: Yikun surname: Li fullname: Li, Yikun – sequence: 4 givenname: Xiaojun orcidid: 0000-0002-3410-8891 surname: Li fullname: Li, Xiaojun |
BookMark | eNpNkVtvGyEQhVGVSE2TvOQXIPWtktPltrs8um7aWErUKLfX1cAODpYXXMCVov75kLpKCw8DozkfB50P5CDEgIScseZcCN18Tpm1XMpWte_IEW86PpNc84P_zu_Jac7rpi4hmG7kEfk9D_Qh5N0W0y-fcaS3OMWC9A5D9mFFlxOskC6eINTyFQva4mOg11ie4ki_wKuk3m8fr2EyQCGM9CbmgsnHRG9SNGD8xpdnercF-wZ6rJiYTsihg03G07_1mNx_u7hfXM6ufnxfLuZXMyuULjOAFnkLRsHIsZUOOXAJ0LHWONBdZ7RqtNL1e0ZI1_RW9My6Xho0qnWjOCbLPXaMsB62yU-QnocIfvjTiGk1QCrebnDosANlnXYdSNmJEZwGZqyqRhzWxyrr4561TfHnDnMZ1nGXQnU_CCZ1p5hUsk6d76dWUKE-uFgS2LpHnLytoTlf-_Oes6poelUFn_YCm2LOCd2bTdYMr9kO_7IVL_LFmO0 |
Cites_doi | 10.1080/01431161.2020.1723818 10.1109/LGRS.2023.3337879 10.1016/j.patrec.2006.08.010 10.1109/TCYB.2021.3086884 10.1109/TGRS.2021.3130842 10.1109/LGRS.2024.3404645 10.1109/LGRS.2010.2068537 10.1109/LGRS.2016.2611001 10.1109/JSTARS.2024.3487137 10.1080/01431161.2023.2225228 10.1007/s41651-023-00163-z 10.1109/LGRS.2020.2976551 10.1109/TIP.2020.3011269 10.1109/TIP.2013.2297027 10.1109/TGRS.2021.3106381 10.1109/JSTARS.2023.3291490 10.1109/ACCESS.2020.3008036 10.1109/TGRS.2024.3412154 10.1109/TGRS.2013.2245900 10.1109/LGRS.2022.3188636 10.1109/LGRS.2022.3179400 10.1109/TGRS.2022.3221492 10.1049/ipr2.13133 10.1109/LGRS.2024.3414293 10.3390/rs15174205 10.1109/TGRS.2007.892008 10.1109/LGRS.2024.3505253 10.3390/s20102764 10.3390/rs12101574 10.1109/JSTARS.2023.3260112 10.1109/TGRS.2020.3011913 10.1109/JSTARS.2023.3241157 10.1109/TGRS.2018.2886643 10.1016/j.isprsjprs.2022.05.001 10.1109/TGRS.2022.3156041 10.1109/LGRS.2020.3027382 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs16244656 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_7e7a5cf9f7a4473daf9a1bc5c35fefa9 A821975085 10_3390_rs16244656 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c359t-aa6e26ab5ad2e64fe2a24aa716bfa977b950959292b34f08c381cf84beb56fd3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:18:39 EDT 2025 Fri Jul 25 11:42:33 EDT 2025 Tue Jun 10 21:10:21 EDT 2025 Tue Jul 01 01:33:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-aa6e26ab5ad2e64fe2a24aa716bfa977b950959292b34f08c381cf84beb56fd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3410-8891 |
OpenAccessLink | https://doaj.org/article/7e7a5cf9f7a4473daf9a1bc5c35fefa9 |
PQID | 3149751454 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e7a5cf9f7a4473daf9a1bc5c35fefa9 proquest_journals_3149751454 gale_infotracacademiconefile_A821975085 crossref_primary_10_3390_rs16244656 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Vinholi (ref_12) 2022; 19 Zhang (ref_20) 2022; 60 Tang (ref_28) 2022; 60 Shen (ref_18) 2022; 189 Mohammadian (ref_15) 2023; 44 Lv (ref_22) 2024; 21 Zuo (ref_9) 2025; 18 Li (ref_32) 2023; 16 Kim (ref_34) 2020; 29 Peng (ref_41) 2021; 59 Ou (ref_35) 2022; 60 ref_31 Chen (ref_23) 2025; 22 Ma (ref_36) 2024; 21 Li (ref_39) 2007; 45 Xu (ref_8) 2023; 16 Li (ref_10) 2024; 62 Saha (ref_27) 2019; 57 Yang (ref_40) 2022; 60 ref_16 ref_38 ref_37 Chen (ref_11) 2024; 21 Sun (ref_17) 2022; 19 Zhang (ref_14) 2020; 41 ref_24 Kondmann (ref_42) 2022; 60 Jiang (ref_4) 2024; 62 ref_1 ref_3 Jiang (ref_21) 2022; 19 Gao (ref_5) 2023; 16 Castellana (ref_7) 2007; 28 Chen (ref_25) 2024; 62 Khelifi (ref_26) 2020; 8 Yousif (ref_6) 2013; 51 Liu (ref_33) 2014; 23 Chen (ref_30) 2011; 8 Kumar (ref_19) 2024; 21 Qin (ref_2) 2023; 8 Tan (ref_13) 2021; 18 Wu (ref_44) 2022; 52 Yuan (ref_29) 2024; 18 Gao (ref_43) 2016; 13 |
References_xml | – volume: 41 start-page: 4755 year: 2020 ident: ref_14 article-title: Change detection in very high-resolution images based on ensemble CNNs publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1723818 – volume: 21 start-page: 8000305 year: 2024 ident: ref_19 article-title: RSSGLT: Remote Sensing Image Segmentation Network Based on Global–Local Transformer publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2023.3337879 – volume: 28 start-page: 405 year: 2007 ident: ref_7 article-title: A composed supervised/unsupervised approach to improve change detection from remote sensing publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2006.08.010 – ident: ref_24 – volume: 52 start-page: 12084 year: 2022 ident: ref_44 article-title: Unsupervised change detection in multitemporal VHR images based on deep kernel PCA convolutional mapping network publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3086884 – volume: 60 start-page: 5614615 year: 2022 ident: ref_42 article-title: Spatial context awareness for unsupervised change detection in optical satellite images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3130842 – volume: 21 start-page: 2503305 year: 2024 ident: ref_22 article-title: A Semi-Supervised pyramid Cross-Temporal attention transformer for change detection in high-resolution remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2024.3404645 – volume: 21 start-page: 4004405 year: 2024 ident: ref_11 article-title: Statistic ratio attention-guided siamese U-Net for SAR image semantic change detection publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 8 start-page: 317 year: 2011 ident: ref_30 article-title: Change vector analysis in posterior probability space: A new method for land cover change detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2010.2068537 – volume: 13 start-page: 1792 year: 2016 ident: ref_43 article-title: Automatic change detection in synthetic aperture radar images based on PCANet publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2611001 – volume: 18 start-page: 61 year: 2025 ident: ref_9 article-title: Multitask siamese network guided by enhanced change information for semantic change detection in bitemporal remote sensing images publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2024.3487137 – volume: 44 start-page: 3660 year: 2023 ident: ref_15 article-title: SiamixFormer: A Fully-Transformer siamese network with temporal fusion for accurate building detection and change detection in bi-temporal remote sensing images publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2023.2225228 – volume: 60 start-page: 5609818 year: 2022 ident: ref_40 article-title: Asymmetric siamese networks for semantic change detection in aerial images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 62 start-page: 5611617 year: 2024 ident: ref_10 article-title: STADE-CDNet: Spatial–Temporal attention with difference enhancement-Based network for remote sensing image change detection publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 8 start-page: 2 year: 2023 ident: ref_2 article-title: An improved faster R-CNN method for landslide detection in remote sensing images publication-title: J. Geovisualization Spat. Anal. doi: 10.1007/s41651-023-00163-z – ident: ref_37 – volume: 18 start-page: 533 year: 2021 ident: ref_13 article-title: Scale sensitive neural network for road segmentation in high-resolution remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2976551 – volume: 29 start-page: 8055 year: 2020 ident: ref_34 article-title: Unsupervised learning of image segmentation based on differentiable feature clustering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3011269 – volume: 23 start-page: 2159 year: 2014 ident: ref_33 article-title: MsLRR: A unified multiscale low-rank representation for image segmentation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2297027 – volume: 60 start-page: 5609715 year: 2022 ident: ref_28 article-title: An unsupervised remote sensing change detection method based on multiscale graph convolutional network and metric learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3106381 – volume: 16 start-page: 1 year: 2023 ident: ref_5 article-title: Landslide risk evaluation in shenzhen based on stacking ensemble learning and InSAR publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2023.3291490 – volume: 8 start-page: 126385 year: 2020 ident: ref_26 article-title: Deep learning for change detection in remote sensing images: Comprehensive review and Meta-Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008036 – volume: 62 start-page: 5406114 year: 2024 ident: ref_4 article-title: Spatiotemporal image fusion with spectrally preserved Pre-Prediction: Tackling complex Land-Cover changes publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3412154 – volume: 51 start-page: 2032 year: 2013 ident: ref_6 article-title: Improving urban change detection from multitemporal SAR images using PCA-NLM publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2245900 – volume: 19 start-page: 2506005 year: 2022 ident: ref_21 article-title: Forest-CD: Forest change detection network based on VHR images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3188636 – ident: ref_31 – volume: 19 start-page: 8004505 year: 2022 ident: ref_17 article-title: L-UNet: An LSTM network for remote sensing image change detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2022.3179400 – volume: 60 start-page: 5224713 year: 2022 ident: ref_20 article-title: SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3221492 – volume: 18 start-page: 2754 year: 2024 ident: ref_29 article-title: Change detection in SAR image based on weighted difference image generation and optimized random forest publication-title: IET Image Process. doi: 10.1049/ipr2.13133 – volume: 21 start-page: 6011405 year: 2024 ident: ref_36 article-title: RS3Mamba: Visual state space model for remote sensing image semantic segmentation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2024.3414293 – ident: ref_3 doi: 10.3390/rs15174205 – volume: 45 start-page: 853 year: 2007 ident: ref_39 article-title: Semantic-Sensitive satellite image retrieval publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.892008 – volume: 22 start-page: 6000905 year: 2025 ident: ref_23 article-title: A hierarchical local-global-aware transformer with scratch learning capabilities for change detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2024.3505253 – volume: 62 start-page: 4409720 year: 2024 ident: ref_25 article-title: ChangeMamba: Remote sensing change detection with spatiotemporal state space model publication-title: IEEE Trans. Geosci. Remote Sens. – ident: ref_1 doi: 10.3390/s20102764 – ident: ref_16 doi: 10.3390/rs12101574 – volume: 16 start-page: 3198 year: 2023 ident: ref_32 article-title: Remote-Sensing-Based change detection using change vector analysis in posterior probability space: A Context-Sensitive bayesian network approach publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2023.3260112 – volume: 59 start-page: 5891 year: 2021 ident: ref_41 article-title: SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3011913 – volume: 16 start-page: 1951 year: 2023 ident: ref_8 article-title: TCIANet: Transformer-Based context information aggregation network for remote sensing image change detection publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2023.3241157 – ident: ref_38 – volume: 57 start-page: 3677 year: 2019 ident: ref_27 article-title: Unsupervised deep change vector analysis for multiple-change detection in VHR images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2886643 – volume: 189 start-page: 78 year: 2022 ident: ref_18 article-title: Semantic feature-constrained multitask siamese network for building change detection in high-spatial-resolution remote sensing imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.05.001 – volume: 60 start-page: 5524716 year: 2022 ident: ref_35 article-title: A CNN framework with slow-fast band selection and feature fusion grouping for hyperspectral image change detection publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3156041 – volume: 19 start-page: 4003005 year: 2022 ident: ref_12 article-title: CNN-Based change detection algorithm for wavelength-resolution SAR images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.3027382 |
SSID | ssj0000331904 |
Score | 2.3886068 |
Snippet | Change vector analysis in posterior probability space (CVAPS) is an effective change detection (CD) framework that does not require sound radiometric... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 4656 |
SubjectTerms | Accuracy Algorithms Bayesian analysis Change detection Classification Clustering Conditional probability context-sensitive Bayesian network (CSBN) Datasets Deep learning Errors Image processing Image quality Image resolution Image segmentation Mamba Methods Modules Neural networks Pixels Radiometric correction Remote sensing Semantics Spatial data Support vector machines Target detection Training unsupervised change vector analysis in posterior probability space Unsupervised learning Vector analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcCl4imWFmQJJE5RN7Ed2ye0C60K0lbV9qHerHFst5dmlyQ9VPx5xo53Kw5wzFPOeB7fTOZByGenBDpdTBYWwXLBdQmFlc4XDEJpK26npYvFyYvT-uSS_7wW1zng1ue0yo1OTIrarZoYIz9kCOUlWnfBv65_FXFqVPy7mkdoPCW7qIIVOl-786PTs-U2yjJlyGJTPvYlZejfH3Z9WVepS9hflig17P-XWk625vgF2csgkc7GXX1Jnvj2FXmW55XfPrwmv2ctvWz7-3WU9N47uvRIck_PYzp6e0N_3KGaoGPlAP3uh5Rv1dJFGhdN5xAfwePl1QLuLFBoHY1Te5EbVx0961DGU87sAz1Hl3r7oqsU4X9DLo6PLr6dFHmMQtEwoYcCoPZVDVaAq3zNg6-g4gDoKNkACP-sFjEYWOnKMh6mqkEj3gTFrbeiDo69JTvtqvXvCNXSqVo7qUomEMiA4sIzW5cAXjfo103Ipw1FzXpslmHQyYh0N490n5B5JPb2jtjgOp1YdTcmy4uRXoJogg4SOJfMQdBQ2kbgJwWPy56QL3GrTBTDoYMGcjUBLjQ2tDIzhaoY0ZASE3Kw2U2T5bM3j9z0_v-X98nzCmHMmMByQHaG7t5_QBgy2I-Z1_4ADbLeqw priority: 102 providerName: ProQuest |
Title | An Unsupervised Remote Sensing Image Change Detection Method Based on RVMamba and Posterior Probability Space Change Vector |
URI | https://www.proquest.com/docview/3149751454 https://doaj.org/article/7e7a5cf9f7a4473daf9a1bc5c35fefa9 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaemgvVelD3ZauLLVSTxEbP2L7uFvYAuoitAuImzWObXohoGw4IP48YydQOFS99BQlSiLrG8_js-ZByDevJZIurgqHwXIhTAmFUz4UHGLpmHCT0qfi5MVhtXciDs7k2aNRXyknrG8P3AO3rYICWUcTFQihuIdooHS1rLmMIUIu3UOf94hMZRvMcWtNRN-PlCOv327XZcVyd7AnHig36v-bOc4-Zv6GvB6CQzrtF7VJnoXmLXk5zCn_ffOO3E4betKsr6-Shq-Dp8uAUAe6SmnozTndv0DzQPuKAboTupxn1dBFHhNNZ5A-wfvl6QIuHFBoPE3TenEXXrb0qEXdzrmyN3SFVPrhR6f5ZP89OZ7vHv_YK4bxCQViY7oCoAqsAifBs1CJGBgwAYAEySFuSjkj0yEgM8xxESe6RuddRy1ccLKKnn8gG81lEz4SapTXlfFKl1xiAANayMBdVQIEUyOfG5Gv94jaq75JhkVykXC3f3AfkVkC--GN1Ng6P0Bx20Hc9l_iHpHvSVQ2qV_XQg1DFQEuNDWyslONJhijIC1HZOtemnbQy7XlSAgVxohSfPofq_lMXjEMcvr0li2y0bXX4QsGKZ0bk-d6_nNMXkx3Fr9WeJ3tHh4tx3mX3gFEVOvu |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWClgCxClq4kcSHxDaUpZd2q1Qu616s8axXS7NLkkqtOI38R8Z57EVB7j1mJflzIxnvrHnQchbm0t0ungWGQTLkVAJRCazLuLgE8OEiRMbkpPnx-n0THy9kBdb5PeQCxPCKged2CpquyzCHvkeRyifoXWX4uPqRxS6RoXT1aGFRicWh279E122-sPsAPn7jrHJ58WnadR3FYgKLlUTAaSOpWAkWOZS4R0DJgDQbzAeEA0ZJcPeGFPMcOHjvECbVvhcGGdk6i3HYe-Qu4JzFRZUPvmy2dKJOcpzLLoiqPg83qvqJGVtSbK_zF7bHeBfNqA1bJMH5H6PSOm4E6GHZMuVj8hO3xz9-_ox-TUu6VlZX6-CWqmdpScO-evoaYh9Ly_p7Ap1Eu3SFOiBa9rgrpLO297UdB_CJ3h9cj6HKwMUSktDi2AU_WVFv1WoUNoA3TU9Rf99M9B5e5zwhCxug7pPyXa5LN0zQlVm81TZLE-4RNQEuZCOmzQBcKpAJ3JE3gwU1auuModGjybQXd_QfUT2A7E3b4Rq2u2NZXWp-8WpM5eBLLzyGQiRcQteQWIKib_kHU57RN4HVumw5psKCuhTF3CioXqWHueo9xF65XJEdgdu6l4Z1PpGdJ____FrsjNdzI_00ez48AW5xxA_dZEzu2S7qa7dS8Q_jXnVSh0l-pal_A8f0BrG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgEXxFMNFLAEiNMqu37s44BQQho1lERR-lBv1nhtl0s3YbMVivhl_DvG-0jFAW497svyzoxnvrHnQch7k0p0ungSaATLgcgiCHRibMDBRZoJHUbGJyfP5vHxufh6KS_3yO8uF8aHVXY6sVbUZpX7PfIBRyifoHWXYuDasIjFePJ5_SPwHaT8SWvXTqMRkRO7_Ynu2-bTdIy8_sDY5Ojsy3HQdhgIci6zKgCILYtBSzDMxsJZBkwAoA-hHSAy0pn0-2QsY5oLF6Y52rfcpUJbLWNnOA57j-wn6BSFPbI_OpovlrsNnpCjdIeiKYnKeRYOyk0Us7pA2V9GsO4V8C-LUJu5yWPyqMWndNgI1BOyZ4un5EHbKv379hn5NSzoebG5WXsls7GGLi1y29JTHwlfXNHpNWoo2iQt0LGt6lCvgs7qTtV0BP4TvF5ezOBaA4XCUN8wGBfCqqSLEtVLHa67pafoze8GuqgPF56Ts7ug7wvSK1aFPSA0S0waZyZJIy4RQ0EqpOU6jgBslqNL2SfvOoqqdVOnQ6F_4-mubuneJyNP7N0bvrZ2fWNVXql2qarEJiBzl7kEhEi4AZdBpHOJv-QsTrtPPnpWKa8BqhJyaBMZcKK-lpYapmgFEIilsk8OO26qVjVs1K0gv_z_47fkPkq4-jadn7wiDxmCqSaM5pD0qvLGvkYwVOk3rdhRou5Y0P8AsWEgWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Unsupervised+Remote+Sensing+Image+Change+Detection+Method+Based+on+RVMamba+and+Posterior+Probability+Space+Change+Vector&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jiaxin+Song&rft.au=Shuwen+Yang&rft.au=Yikun+Li&rft.au=Xiaojun+Li&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=24&rft.spage=4656&rft_id=info:doi/10.3390%2Frs16244656&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e7a5cf9f7a4473daf9a1bc5c35fefa9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |