An Unsupervised Remote Sensing Image Change Detection Method Based on RVMamba and Posterior Probability Space Change Vector

Change vector analysis in posterior probability space (CVAPS) is an effective change detection (CD) framework that does not require sound radiometric correction and is robust against accumulated classification errors. Based on training samples within target images, CVAPS can generate a uniformly sca...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 24; p. 4656
Main Authors Song, Jiaxin, Yang, Shuwen, Li, Yikun, Li, Xiaojun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Change vector analysis in posterior probability space (CVAPS) is an effective change detection (CD) framework that does not require sound radiometric correction and is robust against accumulated classification errors. Based on training samples within target images, CVAPS can generate a uniformly scaled change-magnitude map that is suitable for a global threshold. However, vigorous user intervention is required to achieve optimal performance. Therefore, to eliminate user intervention and retain the merit of CVAPS, an unsupervised CVAPS (UCVAPS) CD method, RFCC, which does not require rigorous user training, is proposed in this study. In the RFCC, we propose an unsupervised remote sensing image segmentation algorithm based on the Mamba model, i.e., RVMamba differentiable feature clustering, which introduces two loss functions as constraints to ensure that RVMamba achieves accurate segmentation results and to supply the CSBN module with high-quality training samples. In the CD module, the fuzzy C-means clustering (FCM) algorithm decomposes mixed pixels into multiple signal classes, thereby alleviating cumulative clustering errors. Then, a context-sensitive Bayesian network (CSBN) model is introduced to incorporate spatial information at the pixel level to estimate the corresponding posterior probability vector. Thus, it is suitable for high-resolution remote sensing (HRRS) imagery. Finally, the UCVAPS framework can generate a uniformly scaled change-magnitude map that is suitable for the global threshold and can produce accurate CD results. The experimental results on seven change detection datasets confirmed that the proposed method outperforms five state-of-the-art competitive CD methods.
AbstractList Change vector analysis in posterior probability space (CVAPS) is an effective change detection (CD) framework that does not require sound radiometric correction and is robust against accumulated classification errors. Based on training samples within target images, CVAPS can generate a uniformly scaled change-magnitude map that is suitable for a global threshold. However, vigorous user intervention is required to achieve optimal performance. Therefore, to eliminate user intervention and retain the merit of CVAPS, an unsupervised CVAPS (UCVAPS) CD method, RFCC, which does not require rigorous user training, is proposed in this study. In the RFCC, we propose an unsupervised remote sensing image segmentation algorithm based on the Mamba model, i.e., RVMamba differentiable feature clustering, which introduces two loss functions as constraints to ensure that RVMamba achieves accurate segmentation results and to supply the CSBN module with high-quality training samples. In the CD module, the fuzzy C-means clustering (FCM) algorithm decomposes mixed pixels into multiple signal classes, thereby alleviating cumulative clustering errors. Then, a context-sensitive Bayesian network (CSBN) model is introduced to incorporate spatial information at the pixel level to estimate the corresponding posterior probability vector. Thus, it is suitable for high-resolution remote sensing (HRRS) imagery. Finally, the UCVAPS framework can generate a uniformly scaled change-magnitude map that is suitable for the global threshold and can produce accurate CD results. The experimental results on seven change detection datasets confirmed that the proposed method outperforms five state-of-the-art competitive CD methods.
Audience Academic
Author Li, Yikun
Yang, Shuwen
Li, Xiaojun
Song, Jiaxin
Author_xml – sequence: 1
  givenname: Jiaxin
  surname: Song
  fullname: Song, Jiaxin
– sequence: 2
  givenname: Shuwen
  surname: Yang
  fullname: Yang, Shuwen
– sequence: 3
  givenname: Yikun
  surname: Li
  fullname: Li, Yikun
– sequence: 4
  givenname: Xiaojun
  orcidid: 0000-0002-3410-8891
  surname: Li
  fullname: Li, Xiaojun
BookMark eNpNkVtvGyEQhVGVSE2TvOQXIPWtktPltrs8um7aWErUKLfX1cAODpYXXMCVov75kLpKCw8DozkfB50P5CDEgIScseZcCN18Tpm1XMpWte_IEW86PpNc84P_zu_Jac7rpi4hmG7kEfk9D_Qh5N0W0y-fcaS3OMWC9A5D9mFFlxOskC6eINTyFQva4mOg11ie4ki_wKuk3m8fr2EyQCGM9CbmgsnHRG9SNGD8xpdnercF-wZ6rJiYTsihg03G07_1mNx_u7hfXM6ufnxfLuZXMyuULjOAFnkLRsHIsZUOOXAJ0LHWONBdZ7RqtNL1e0ZI1_RW9My6Xho0qnWjOCbLPXaMsB62yU-QnocIfvjTiGk1QCrebnDosANlnXYdSNmJEZwGZqyqRhzWxyrr4561TfHnDnMZ1nGXQnU_CCZ1p5hUsk6d76dWUKE-uFgS2LpHnLytoTlf-_Oes6poelUFn_YCm2LOCd2bTdYMr9kO_7IVL_LFmO0
Cites_doi 10.1080/01431161.2020.1723818
10.1109/LGRS.2023.3337879
10.1016/j.patrec.2006.08.010
10.1109/TCYB.2021.3086884
10.1109/TGRS.2021.3130842
10.1109/LGRS.2024.3404645
10.1109/LGRS.2010.2068537
10.1109/LGRS.2016.2611001
10.1109/JSTARS.2024.3487137
10.1080/01431161.2023.2225228
10.1007/s41651-023-00163-z
10.1109/LGRS.2020.2976551
10.1109/TIP.2020.3011269
10.1109/TIP.2013.2297027
10.1109/TGRS.2021.3106381
10.1109/JSTARS.2023.3291490
10.1109/ACCESS.2020.3008036
10.1109/TGRS.2024.3412154
10.1109/TGRS.2013.2245900
10.1109/LGRS.2022.3188636
10.1109/LGRS.2022.3179400
10.1109/TGRS.2022.3221492
10.1049/ipr2.13133
10.1109/LGRS.2024.3414293
10.3390/rs15174205
10.1109/TGRS.2007.892008
10.1109/LGRS.2024.3505253
10.3390/s20102764
10.3390/rs12101574
10.1109/JSTARS.2023.3260112
10.1109/TGRS.2020.3011913
10.1109/JSTARS.2023.3241157
10.1109/TGRS.2018.2886643
10.1016/j.isprsjprs.2022.05.001
10.1109/TGRS.2022.3156041
10.1109/LGRS.2020.3027382
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs16244656
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_7e7a5cf9f7a4473daf9a1bc5c35fefa9
A821975085
10_3390_rs16244656
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c359t-aa6e26ab5ad2e64fe2a24aa716bfa977b950959292b34f08c381cf84beb56fd3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:18:39 EDT 2025
Fri Jul 25 11:42:33 EDT 2025
Tue Jun 10 21:10:21 EDT 2025
Tue Jul 01 01:33:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-aa6e26ab5ad2e64fe2a24aa716bfa977b950959292b34f08c381cf84beb56fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3410-8891
OpenAccessLink https://doaj.org/article/7e7a5cf9f7a4473daf9a1bc5c35fefa9
PQID 3149751454
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_7e7a5cf9f7a4473daf9a1bc5c35fefa9
proquest_journals_3149751454
gale_infotracacademiconefile_A821975085
crossref_primary_10_3390_rs16244656
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Vinholi (ref_12) 2022; 19
Zhang (ref_20) 2022; 60
Tang (ref_28) 2022; 60
Shen (ref_18) 2022; 189
Mohammadian (ref_15) 2023; 44
Lv (ref_22) 2024; 21
Zuo (ref_9) 2025; 18
Li (ref_32) 2023; 16
Kim (ref_34) 2020; 29
Peng (ref_41) 2021; 59
Ou (ref_35) 2022; 60
ref_31
Chen (ref_23) 2025; 22
Ma (ref_36) 2024; 21
Li (ref_39) 2007; 45
Xu (ref_8) 2023; 16
Li (ref_10) 2024; 62
Saha (ref_27) 2019; 57
Yang (ref_40) 2022; 60
ref_16
ref_38
ref_37
Chen (ref_11) 2024; 21
Sun (ref_17) 2022; 19
Zhang (ref_14) 2020; 41
ref_24
Kondmann (ref_42) 2022; 60
Jiang (ref_4) 2024; 62
ref_1
ref_3
Jiang (ref_21) 2022; 19
Gao (ref_5) 2023; 16
Castellana (ref_7) 2007; 28
Chen (ref_25) 2024; 62
Khelifi (ref_26) 2020; 8
Yousif (ref_6) 2013; 51
Liu (ref_33) 2014; 23
Chen (ref_30) 2011; 8
Kumar (ref_19) 2024; 21
Qin (ref_2) 2023; 8
Tan (ref_13) 2021; 18
Wu (ref_44) 2022; 52
Yuan (ref_29) 2024; 18
Gao (ref_43) 2016; 13
References_xml – volume: 41
  start-page: 4755
  year: 2020
  ident: ref_14
  article-title: Change detection in very high-resolution images based on ensemble CNNs
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1723818
– volume: 21
  start-page: 8000305
  year: 2024
  ident: ref_19
  article-title: RSSGLT: Remote Sensing Image Segmentation Network Based on Global–Local Transformer
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2023.3337879
– volume: 28
  start-page: 405
  year: 2007
  ident: ref_7
  article-title: A composed supervised/unsupervised approach to improve change detection from remote sensing
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2006.08.010
– ident: ref_24
– volume: 52
  start-page: 12084
  year: 2022
  ident: ref_44
  article-title: Unsupervised change detection in multitemporal VHR images based on deep kernel PCA convolutional mapping network
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3086884
– volume: 60
  start-page: 5614615
  year: 2022
  ident: ref_42
  article-title: Spatial context awareness for unsupervised change detection in optical satellite images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3130842
– volume: 21
  start-page: 2503305
  year: 2024
  ident: ref_22
  article-title: A Semi-Supervised pyramid Cross-Temporal attention transformer for change detection in high-resolution remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2024.3404645
– volume: 21
  start-page: 4004405
  year: 2024
  ident: ref_11
  article-title: Statistic ratio attention-guided siamese U-Net for SAR image semantic change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 8
  start-page: 317
  year: 2011
  ident: ref_30
  article-title: Change vector analysis in posterior probability space: A new method for land cover change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2010.2068537
– volume: 13
  start-page: 1792
  year: 2016
  ident: ref_43
  article-title: Automatic change detection in synthetic aperture radar images based on PCANet
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2611001
– volume: 18
  start-page: 61
  year: 2025
  ident: ref_9
  article-title: Multitask siamese network guided by enhanced change information for semantic change detection in bitemporal remote sensing images
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2024.3487137
– volume: 44
  start-page: 3660
  year: 2023
  ident: ref_15
  article-title: SiamixFormer: A Fully-Transformer siamese network with temporal fusion for accurate building detection and change detection in bi-temporal remote sensing images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2023.2225228
– volume: 60
  start-page: 5609818
  year: 2022
  ident: ref_40
  article-title: Asymmetric siamese networks for semantic change detection in aerial images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 62
  start-page: 5611617
  year: 2024
  ident: ref_10
  article-title: STADE-CDNet: Spatial–Temporal attention with difference enhancement-Based network for remote sensing image change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 8
  start-page: 2
  year: 2023
  ident: ref_2
  article-title: An improved faster R-CNN method for landslide detection in remote sensing images
  publication-title: J. Geovisualization Spat. Anal.
  doi: 10.1007/s41651-023-00163-z
– ident: ref_37
– volume: 18
  start-page: 533
  year: 2021
  ident: ref_13
  article-title: Scale sensitive neural network for road segmentation in high-resolution remote sensing images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2976551
– volume: 29
  start-page: 8055
  year: 2020
  ident: ref_34
  article-title: Unsupervised learning of image segmentation based on differentiable feature clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3011269
– volume: 23
  start-page: 2159
  year: 2014
  ident: ref_33
  article-title: MsLRR: A unified multiscale low-rank representation for image segmentation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2297027
– volume: 60
  start-page: 5609715
  year: 2022
  ident: ref_28
  article-title: An unsupervised remote sensing change detection method based on multiscale graph convolutional network and metric learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3106381
– volume: 16
  start-page: 1
  year: 2023
  ident: ref_5
  article-title: Landslide risk evaluation in shenzhen based on stacking ensemble learning and InSAR
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2023.3291490
– volume: 8
  start-page: 126385
  year: 2020
  ident: ref_26
  article-title: Deep learning for change detection in remote sensing images: Comprehensive review and Meta-Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008036
– volume: 62
  start-page: 5406114
  year: 2024
  ident: ref_4
  article-title: Spatiotemporal image fusion with spectrally preserved Pre-Prediction: Tackling complex Land-Cover changes
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3412154
– volume: 51
  start-page: 2032
  year: 2013
  ident: ref_6
  article-title: Improving urban change detection from multitemporal SAR images using PCA-NLM
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2245900
– volume: 19
  start-page: 2506005
  year: 2022
  ident: ref_21
  article-title: Forest-CD: Forest change detection network based on VHR images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3188636
– ident: ref_31
– volume: 19
  start-page: 8004505
  year: 2022
  ident: ref_17
  article-title: L-UNet: An LSTM network for remote sensing image change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3179400
– volume: 60
  start-page: 5224713
  year: 2022
  ident: ref_20
  article-title: SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3221492
– volume: 18
  start-page: 2754
  year: 2024
  ident: ref_29
  article-title: Change detection in SAR image based on weighted difference image generation and optimized random forest
  publication-title: IET Image Process.
  doi: 10.1049/ipr2.13133
– volume: 21
  start-page: 6011405
  year: 2024
  ident: ref_36
  article-title: RS3Mamba: Visual state space model for remote sensing image semantic segmentation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2024.3414293
– ident: ref_3
  doi: 10.3390/rs15174205
– volume: 45
  start-page: 853
  year: 2007
  ident: ref_39
  article-title: Semantic-Sensitive satellite image retrieval
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.892008
– volume: 22
  start-page: 6000905
  year: 2025
  ident: ref_23
  article-title: A hierarchical local-global-aware transformer with scratch learning capabilities for change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2024.3505253
– volume: 62
  start-page: 4409720
  year: 2024
  ident: ref_25
  article-title: ChangeMamba: Remote sensing change detection with spatiotemporal state space model
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: ref_1
  doi: 10.3390/s20102764
– ident: ref_16
  doi: 10.3390/rs12101574
– volume: 16
  start-page: 3198
  year: 2023
  ident: ref_32
  article-title: Remote-Sensing-Based change detection using change vector analysis in posterior probability space: A Context-Sensitive bayesian network approach
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2023.3260112
– volume: 59
  start-page: 5891
  year: 2021
  ident: ref_41
  article-title: SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3011913
– volume: 16
  start-page: 1951
  year: 2023
  ident: ref_8
  article-title: TCIANet: Transformer-Based context information aggregation network for remote sensing image change detection
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2023.3241157
– ident: ref_38
– volume: 57
  start-page: 3677
  year: 2019
  ident: ref_27
  article-title: Unsupervised deep change vector analysis for multiple-change detection in VHR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2886643
– volume: 189
  start-page: 78
  year: 2022
  ident: ref_18
  article-title: Semantic feature-constrained multitask siamese network for building change detection in high-spatial-resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.05.001
– volume: 60
  start-page: 5524716
  year: 2022
  ident: ref_35
  article-title: A CNN framework with slow-fast band selection and feature fusion grouping for hyperspectral image change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3156041
– volume: 19
  start-page: 4003005
  year: 2022
  ident: ref_12
  article-title: CNN-Based change detection algorithm for wavelength-resolution SAR images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.3027382
SSID ssj0000331904
Score 2.3886068
Snippet Change vector analysis in posterior probability space (CVAPS) is an effective change detection (CD) framework that does not require sound radiometric...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 4656
SubjectTerms Accuracy
Algorithms
Bayesian analysis
Change detection
Classification
Clustering
Conditional probability
context-sensitive Bayesian network (CSBN)
Datasets
Deep learning
Errors
Image processing
Image quality
Image resolution
Image segmentation
Mamba
Methods
Modules
Neural networks
Pixels
Radiometric correction
Remote sensing
Semantics
Spatial data
Support vector machines
Target detection
Training
unsupervised change vector analysis in posterior probability space
Unsupervised learning
Vector analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagPcCl4imWFmQJJE5RN7Ed2ye0C60K0lbV9qHerHFst5dmlyQ9VPx5xo53Kw5wzFPOeB7fTOZByGenBDpdTBYWwXLBdQmFlc4XDEJpK26npYvFyYvT-uSS_7wW1zng1ue0yo1OTIrarZoYIz9kCOUlWnfBv65_FXFqVPy7mkdoPCW7qIIVOl-786PTs-U2yjJlyGJTPvYlZejfH3Z9WVepS9hflig17P-XWk625vgF2csgkc7GXX1Jnvj2FXmW55XfPrwmv2ctvWz7-3WU9N47uvRIck_PYzp6e0N_3KGaoGPlAP3uh5Rv1dJFGhdN5xAfwePl1QLuLFBoHY1Te5EbVx0961DGU87sAz1Hl3r7oqsU4X9DLo6PLr6dFHmMQtEwoYcCoPZVDVaAq3zNg6-g4gDoKNkACP-sFjEYWOnKMh6mqkEj3gTFrbeiDo69JTvtqvXvCNXSqVo7qUomEMiA4sIzW5cAXjfo103Ipw1FzXpslmHQyYh0N490n5B5JPb2jtjgOp1YdTcmy4uRXoJogg4SOJfMQdBQ2kbgJwWPy56QL3GrTBTDoYMGcjUBLjQ2tDIzhaoY0ZASE3Kw2U2T5bM3j9z0_v-X98nzCmHMmMByQHaG7t5_QBgy2I-Z1_4ADbLeqw
  priority: 102
  providerName: ProQuest
Title An Unsupervised Remote Sensing Image Change Detection Method Based on RVMamba and Posterior Probability Space Change Vector
URI https://www.proquest.com/docview/3149751454
https://doaj.org/article/7e7a5cf9f7a4473daf9a1bc5c35fefa9
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaemgvVelD3ZauLLVSTxEbP2L7uFvYAuoitAuImzWObXohoGw4IP48YydQOFS99BQlSiLrG8_js-ZByDevJZIurgqHwXIhTAmFUz4UHGLpmHCT0qfi5MVhtXciDs7k2aNRXyknrG8P3AO3rYICWUcTFQihuIdooHS1rLmMIUIu3UOf94hMZRvMcWtNRN-PlCOv327XZcVyd7AnHig36v-bOc4-Zv6GvB6CQzrtF7VJnoXmLXk5zCn_ffOO3E4betKsr6-Shq-Dp8uAUAe6SmnozTndv0DzQPuKAboTupxn1dBFHhNNZ5A-wfvl6QIuHFBoPE3TenEXXrb0qEXdzrmyN3SFVPrhR6f5ZP89OZ7vHv_YK4bxCQViY7oCoAqsAifBs1CJGBgwAYAEySFuSjkj0yEgM8xxESe6RuddRy1ccLKKnn8gG81lEz4SapTXlfFKl1xiAANayMBdVQIEUyOfG5Gv94jaq75JhkVykXC3f3AfkVkC--GN1Ng6P0Bx20Hc9l_iHpHvSVQ2qV_XQg1DFQEuNDWyslONJhijIC1HZOtemnbQy7XlSAgVxohSfPofq_lMXjEMcvr0li2y0bXX4QsGKZ0bk-d6_nNMXkx3Fr9WeJ3tHh4tx3mX3gFEVOvu
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWClgCxClq4kcSHxDaUpZd2q1Qu616s8axXS7NLkkqtOI38R8Z57EVB7j1mJflzIxnvrHnQchbm0t0ungWGQTLkVAJRCazLuLgE8OEiRMbkpPnx-n0THy9kBdb5PeQCxPCKged2CpquyzCHvkeRyifoXWX4uPqRxS6RoXT1aGFRicWh279E122-sPsAPn7jrHJ58WnadR3FYgKLlUTAaSOpWAkWOZS4R0DJgDQbzAeEA0ZJcPeGFPMcOHjvECbVvhcGGdk6i3HYe-Qu4JzFRZUPvmy2dKJOcpzLLoiqPg83qvqJGVtSbK_zF7bHeBfNqA1bJMH5H6PSOm4E6GHZMuVj8hO3xz9-_ox-TUu6VlZX6-CWqmdpScO-evoaYh9Ly_p7Ap1Eu3SFOiBa9rgrpLO297UdB_CJ3h9cj6HKwMUSktDi2AU_WVFv1WoUNoA3TU9Rf99M9B5e5zwhCxug7pPyXa5LN0zQlVm81TZLE-4RNQEuZCOmzQBcKpAJ3JE3gwU1auuModGjybQXd_QfUT2A7E3b4Rq2u2NZXWp-8WpM5eBLLzyGQiRcQteQWIKib_kHU57RN4HVumw5psKCuhTF3CioXqWHueo9xF65XJEdgdu6l4Z1PpGdJ____FrsjNdzI_00ez48AW5xxA_dZEzu2S7qa7dS8Q_jXnVSh0l-pal_A8f0BrG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKgEXxFMNFLAEiNMqu37s44BQQho1lERR-lBv1nhtl0s3YbMVivhl_DvG-0jFAW497svyzoxnvrHnQch7k0p0ungSaATLgcgiCHRibMDBRZoJHUbGJyfP5vHxufh6KS_3yO8uF8aHVXY6sVbUZpX7PfIBRyifoHWXYuDasIjFePJ5_SPwHaT8SWvXTqMRkRO7_Ynu2-bTdIy8_sDY5Ojsy3HQdhgIci6zKgCILYtBSzDMxsJZBkwAoA-hHSAy0pn0-2QsY5oLF6Y52rfcpUJbLWNnOA57j-wn6BSFPbI_OpovlrsNnpCjdIeiKYnKeRYOyk0Us7pA2V9GsO4V8C-LUJu5yWPyqMWndNgI1BOyZ4un5EHbKv379hn5NSzoebG5WXsls7GGLi1y29JTHwlfXNHpNWoo2iQt0LGt6lCvgs7qTtV0BP4TvF5ezOBaA4XCUN8wGBfCqqSLEtVLHa67pafoze8GuqgPF56Ts7ug7wvSK1aFPSA0S0waZyZJIy4RQ0EqpOU6jgBslqNL2SfvOoqqdVOnQ6F_4-mubuneJyNP7N0bvrZ2fWNVXql2qarEJiBzl7kEhEi4AZdBpHOJv-QsTrtPPnpWKa8BqhJyaBMZcKK-lpYapmgFEIilsk8OO26qVjVs1K0gv_z_47fkPkq4-jadn7wiDxmCqSaM5pD0qvLGvkYwVOk3rdhRou5Y0P8AsWEgWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Unsupervised+Remote+Sensing+Image+Change+Detection+Method+Based+on+RVMamba+and+Posterior+Probability+Space+Change+Vector&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jiaxin+Song&rft.au=Shuwen+Yang&rft.au=Yikun+Li&rft.au=Xiaojun+Li&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=24&rft.spage=4656&rft_id=info:doi/10.3390%2Frs16244656&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7e7a5cf9f7a4473daf9a1bc5c35fefa9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon