The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches

In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of Amaranthus hybridus (green) were investigated. Graphene oxide (GO) was synthesized by modified Hummer’s method and was reduced by hydrazine (RGO-HZ), ascorbic acid (RGO-AA) and the ext...

Full description

Saved in:
Bibliographic Details
Published inSN applied sciences Vol. 1; no. 10; p. 1181
Main Authors Faniyi, I. O., Fasakin, O., Olofinjana, B., Adekunle, A. S., Oluwasusi, T. V., Eleruja, M. A., Ajayi, E. O. B.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of Amaranthus hybridus (green) were investigated. Graphene oxide (GO) was synthesized by modified Hummer’s method and was reduced by hydrazine (RGO-HZ), ascorbic acid (RGO-AA) and the extract of Amaranthus hybridus (RGO- AH ). GO, RGO-HZ, RGO-AA and RGO- AH were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy and ultraviolet visible spectrometry. The FTIR spectra showed the presence of oxygen functionality groups in GO which were reduced in all RGOs. The morphological properties showed that RGOs sheets were exfoliated forming clusters with roughened surfaces while the optical energy band gaps of 2.19, 3.90, 3.60, and 3.20 eV were estimated for GO, RGO-HZ, RGO-AA and RGO- AH respectively. It can be concluded that the three reductants demonstrated good reducing capacities. The ascorbic acid and the extract of Amaranthus hybridus , apart from being environmentally friendly, can also be good substitutes for the dangerous chemical hydrazine.
AbstractList In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of Amaranthus hybridus (green) were investigated. Graphene oxide (GO) was synthesized by modified Hummer’s method and was reduced by hydrazine (RGO-HZ), ascorbic acid (RGO-AA) and the extract of Amaranthus hybridus (RGO-AH). GO, RGO-HZ, RGO-AA and RGO-AH were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy and ultraviolet visible spectrometry. The FTIR spectra showed the presence of oxygen functionality groups in GO which were reduced in all RGOs. The morphological properties showed that RGOs sheets were exfoliated forming clusters with roughened surfaces while the optical energy band gaps of 2.19, 3.90, 3.60, and 3.20 eV were estimated for GO, RGO-HZ, RGO-AA and RGO-AH respectively. It can be concluded that the three reductants demonstrated good reducing capacities. The ascorbic acid and the extract of Amaranthus hybridus, apart from being environmentally friendly, can also be good substitutes for the dangerous chemical hydrazine.
In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of Amaranthus hybridus (green) were investigated. Graphene oxide (GO) was synthesized by modified Hummer’s method and was reduced by hydrazine (RGO-HZ), ascorbic acid (RGO-AA) and the extract of Amaranthus hybridus (RGO- AH ). GO, RGO-HZ, RGO-AA and RGO- AH were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy and ultraviolet visible spectrometry. The FTIR spectra showed the presence of oxygen functionality groups in GO which were reduced in all RGOs. The morphological properties showed that RGOs sheets were exfoliated forming clusters with roughened surfaces while the optical energy band gaps of 2.19, 3.90, 3.60, and 3.20 eV were estimated for GO, RGO-HZ, RGO-AA and RGO- AH respectively. It can be concluded that the three reductants demonstrated good reducing capacities. The ascorbic acid and the extract of Amaranthus hybridus , apart from being environmentally friendly, can also be good substitutes for the dangerous chemical hydrazine.
ArticleNumber 1181
Author Oluwasusi, T. V.
Faniyi, I. O.
Eleruja, M. A.
Adekunle, A. S.
Fasakin, O.
Olofinjana, B.
Ajayi, E. O. B.
Author_xml – sequence: 1
  givenname: I. O.
  surname: Faniyi
  fullname: Faniyi, I. O.
  organization: Department of Physics and Engineering Physics, Obafemi Awolowo University
– sequence: 2
  givenname: O.
  surname: Fasakin
  fullname: Fasakin, O.
  email: fasakinoladepo@gmail.com
  organization: Department of Physics and Engineering Physics, Obafemi Awolowo University
– sequence: 3
  givenname: B.
  surname: Olofinjana
  fullname: Olofinjana, B.
  organization: Department of Physics and Engineering Physics, Obafemi Awolowo University
– sequence: 4
  givenname: A. S.
  surname: Adekunle
  fullname: Adekunle, A. S.
  organization: Department of Chemistry, Obafemi Awolowo University
– sequence: 5
  givenname: T. V.
  surname: Oluwasusi
  fullname: Oluwasusi, T. V.
  organization: Department of Physics, Bingham University
– sequence: 6
  givenname: M. A.
  surname: Eleruja
  fullname: Eleruja, M. A.
  organization: Department of Physics and Engineering Physics, Obafemi Awolowo University
– sequence: 7
  givenname: E. O. B.
  surname: Ajayi
  fullname: Ajayi, E. O. B.
  organization: Department of Physics and Engineering Physics, Obafemi Awolowo University
BookMark eNp9kE1LAzEQhoNU8PMHeAt4UXB1kmya3aOIVkEoSD2HMTtrI9vdNdkW--9NqSgIesqEvM9M5jlgo7ZribETAZcCwFzFXOZaZiDKTIiiyMwO25daqkyVRoy-67HaY8cxvgGANKXKC7XP_GxO3HWLHgMOfkUcW2zWkSLvah6oWjqq-GvAfk4t8e7DV8TPnibTc94HSlB6XXlMCaL2gi98U6UOFXdzWniHDce-Dx2mazxiuzU2kY6_zkP2fHc7u7nPHqeTh5vrx8wpXQ4ZljlKIStDUDoBRoDT2hVIVQFaS-1ErWqoDRZS50jjsSIJYzBEFbwo5dQhO932TYPflxQH-9YtQ9oqWmmKIhdlCSqlzDblQhdjoNo6PyQDXTsE9I0VYDdq7VatTWrtRq01iRS_yD74BYb1v4zcMjFl21cKP3_6G_oEXK2MoQ
CitedBy_id crossref_primary_10_1007_s10450_024_00582_4
crossref_primary_10_1016_j_ssc_2024_115578
crossref_primary_10_1016_j_apsusc_2022_153162
crossref_primary_10_1016_j_jddst_2023_104397
crossref_primary_10_1007_s10854_021_07416_x
crossref_primary_10_1016_j_apsadv_2023_100545
crossref_primary_10_1007_s11356_022_21018_y
crossref_primary_10_1021_acsomega_1c01429
crossref_primary_10_3390_su14052699
crossref_primary_10_1016_j_catcom_2023_106690
crossref_primary_10_1021_acsomega_2c03144
crossref_primary_10_1039_D4RA02217C
crossref_primary_10_1016_j_ceramint_2022_08_156
crossref_primary_10_3390_cryst11111308
crossref_primary_10_1016_j_microc_2023_108467
crossref_primary_10_1016_j_jallcom_2024_175466
crossref_primary_10_1021_acsaem_2c02462
crossref_primary_10_1021_acsomega_2c01919
crossref_primary_10_1016_j_ijhydene_2024_04_072
crossref_primary_10_1021_acsami_1c24475
crossref_primary_10_1016_j_diamond_2025_111944
crossref_primary_10_1039_D2NJ01974D
crossref_primary_10_1039_D4TB02553A
crossref_primary_10_1016_j_rechem_2023_101270
crossref_primary_10_1007_s42250_023_00586_7
crossref_primary_10_3390_nano12173025
crossref_primary_10_1039_D3MA00399J
crossref_primary_10_1016_j_cattod_2022_11_026
crossref_primary_10_1007_s11051_023_05679_5
crossref_primary_10_1016_j_ces_2024_120383
crossref_primary_10_1007_s10854_021_05786_w
crossref_primary_10_1016_j_inoche_2022_110040
crossref_primary_10_1016_j_matchemphys_2023_128818
crossref_primary_10_1007_s10853_023_09006_0
crossref_primary_10_3390_ma15082749
crossref_primary_10_1016_j_cej_2024_158178
crossref_primary_10_1515_ijmr_2024_0200
crossref_primary_10_1016_j_enmm_2022_100719
crossref_primary_10_3390_app15063257
crossref_primary_10_1007_s42114_025_01281_6
crossref_primary_10_1038_s41598_024_73734_9
crossref_primary_10_1002_adfm_202408441
crossref_primary_10_1038_s41598_024_76507_6
crossref_primary_10_1016_j_renene_2024_121457
crossref_primary_10_1007_s43621_024_00392_2
crossref_primary_10_1016_j_bios_2023_115291
crossref_primary_10_1016_j_inoche_2024_113037
crossref_primary_10_1016_j_ijbiomac_2023_124566
crossref_primary_10_1007_s12034_021_02462_x
crossref_primary_10_3390_applnano5030012
crossref_primary_10_1016_j_diamond_2024_111779
crossref_primary_10_3390_separations8050068
crossref_primary_10_1016_j_toxrep_2022_05_010
crossref_primary_10_1088_2043_6262_ad2dc7
crossref_primary_10_1021_acs_iecr_4c04507
crossref_primary_10_1039_D2RA02391A
crossref_primary_10_1080_1536383X_2023_2292705
crossref_primary_10_1039_D2RA04405F
crossref_primary_10_1088_2053_1591_ada41d
crossref_primary_10_1016_j_matchemphys_2024_129914
crossref_primary_10_1016_j_electacta_2022_141642
crossref_primary_10_1016_j_molliq_2024_125041
crossref_primary_10_1016_j_jece_2024_111935
crossref_primary_10_1039_D3RA08044G
crossref_primary_10_1002_ange_202404401
crossref_primary_10_1002_open_202400128
crossref_primary_10_1016_j_jallcom_2023_172699
crossref_primary_10_3390_polym15122752
crossref_primary_10_1007_s00339_022_05821_5
crossref_primary_10_1016_j_matlet_2024_137131
crossref_primary_10_1039_D4CP00028E
crossref_primary_10_1016_j_ijbiomac_2025_141177
crossref_primary_10_1007_s00604_021_04921_y
crossref_primary_10_1016_j_mtsust_2023_100595
crossref_primary_10_1016_j_saa_2022_122260
crossref_primary_10_1016_j_surfin_2024_105611
crossref_primary_10_1016_j_cscee_2024_100915
crossref_primary_10_1016_j_synthmet_2023_117450
crossref_primary_10_1016_j_matchar_2024_113695
crossref_primary_10_1007_s11356_023_30078_7
crossref_primary_10_1016_j_ceramint_2023_03_249
crossref_primary_10_1007_s10971_024_06634_z
crossref_primary_10_1016_j_ceramint_2025_01_578
crossref_primary_10_1007_s13762_023_04881_1
crossref_primary_10_1016_j_compositesb_2021_109384
crossref_primary_10_1016_j_est_2024_110721
crossref_primary_10_1016_j_flatc_2024_100802
crossref_primary_10_1557_s43580_024_00999_7
crossref_primary_10_1002_anie_202404401
crossref_primary_10_1016_j_indcrop_2023_116614
crossref_primary_10_1080_23311916_2024_2342442
crossref_primary_10_1016_j_jelechem_2024_118099
crossref_primary_10_1016_j_jnoncrysol_2023_122747
crossref_primary_10_15671_hjbc_1372446
crossref_primary_10_3390_molecules28030926
crossref_primary_10_1038_s41598_024_53626_8
crossref_primary_10_1063_5_0142476
crossref_primary_10_1016_j_bios_2024_116447
crossref_primary_10_3390_jcs7060217
crossref_primary_10_1002_jccs_202200478
crossref_primary_10_1016_j_seppur_2021_119630
crossref_primary_10_1002_sia_7044
crossref_primary_10_1016_j_cplett_2024_141240
crossref_primary_10_1016_j_molliq_2021_117429
crossref_primary_10_1021_acsaem_3c02808
crossref_primary_10_3390_membranes13030345
crossref_primary_10_1016_j_heliyon_2024_e33317
crossref_primary_10_1016_j_mset_2023_10_005
crossref_primary_10_1038_s41598_025_88072_7
crossref_primary_10_1039_D4RE00314D
crossref_primary_10_1002_adma_202211856
crossref_primary_10_3390_ma15113924
crossref_primary_10_1021_acs_langmuir_3c02285
crossref_primary_10_1016_j_inoche_2025_114317
crossref_primary_10_1021_acsomega_4c07850
crossref_primary_10_1039_D3NA00682D
crossref_primary_10_1177_09673911221103419
crossref_primary_10_1016_j_est_2021_103802
crossref_primary_10_1088_1402_4896_ad0fca
crossref_primary_10_1016_j_jallcom_2025_179467
crossref_primary_10_1016_j_ijbiomac_2023_125121
crossref_primary_10_3390_ma17205000
crossref_primary_10_1007_s12034_023_02989_1
crossref_primary_10_1021_acsaem_4c00564
crossref_primary_10_1557_s43580_024_00982_2
crossref_primary_10_3390_nano14221777
crossref_primary_10_1016_j_apmt_2023_102035
crossref_primary_10_3390_coatings10070693
crossref_primary_10_1021_acsomega_3c06094
crossref_primary_10_1016_j_jece_2024_113215
crossref_primary_10_1007_s42823_022_00321_1
crossref_primary_10_1016_j_ijleo_2021_168164
crossref_primary_10_1016_j_jics_2024_101548
crossref_primary_10_1016_j_electacta_2022_139868
crossref_primary_10_3390_cryst14070654
crossref_primary_10_1080_10298436_2024_2337303
crossref_primary_10_1007_s10800_024_02139_3
crossref_primary_10_1021_acs_jpcc_4c03838
crossref_primary_10_1016_j_nanoms_2024_01_006
crossref_primary_10_1016_j_apmt_2022_101648
crossref_primary_10_1002_slct_202203424
crossref_primary_10_1021_acsaem_4c00210
crossref_primary_10_1021_acsomega_3c08349
crossref_primary_10_1016_j_inoche_2025_114133
crossref_primary_10_1016_j_snb_2024_135300
crossref_primary_10_1016_j_envres_2023_117966
crossref_primary_10_1016_j_inoche_2024_112791
crossref_primary_10_1016_j_ijhydene_2023_08_300
crossref_primary_10_1016_j_nanoso_2023_101011
crossref_primary_10_1080_09276440_2023_2229594
crossref_primary_10_1016_j_enmm_2023_100842
crossref_primary_10_1021_acs_energyfuels_1c04234
crossref_primary_10_1016_j_electacta_2023_143464
crossref_primary_10_3390_nano13222923
crossref_primary_10_1002_smll_202408972
crossref_primary_10_1016_j_jece_2024_113525
crossref_primary_10_1016_j_chemosphere_2022_136934
crossref_primary_10_1039_D3RA03172A
crossref_primary_10_1007_s11237_021_09697_z
crossref_primary_10_1061_JMCEE7_MTENG_19388
crossref_primary_10_1016_j_diamond_2024_110910
crossref_primary_10_1021_acsami_3c16010
crossref_primary_10_3390_mi15091125
crossref_primary_10_12677_JAPC_2024_131007
crossref_primary_10_1016_j_colsurfb_2023_113546
crossref_primary_10_1016_j_surfin_2023_103331
crossref_primary_10_1016_j_talanta_2023_124315
crossref_primary_10_1002_cssc_202400845
crossref_primary_10_1016_j_envres_2022_114044
crossref_primary_10_1039_D4RA01437E
crossref_primary_10_1016_j_jece_2023_111670
crossref_primary_10_1016_j_elecom_2024_107703
crossref_primary_10_1016_j_surfin_2022_101812
crossref_primary_10_1016_j_aej_2024_03_001
crossref_primary_10_1021_acsaenm_2c00086
crossref_primary_10_1016_j_synthmet_2020_116624
crossref_primary_10_1007_s40033_022_00429_8
crossref_primary_10_1016_j_catcom_2023_106799
crossref_primary_10_3390_pr12081684
crossref_primary_10_1016_j_diamond_2021_108456
crossref_primary_10_1016_j_seppur_2024_130351
crossref_primary_10_1016_j_cej_2023_145396
crossref_primary_10_3390_molecules26164831
crossref_primary_10_1016_j_sna_2023_114314
crossref_primary_10_1021_acsomega_1c06297
crossref_primary_10_1038_s41598_022_17697_9
crossref_primary_10_1080_03067319_2021_2022132
Cites_doi 10.1021/nn1002387
10.1016/j.mspro.2015.11.104
10.1016/j.jhazmat.2011.06.068
10.1016/j.carbon.2011.11.010
10.1021/ja100938r
10.1371/journal.pone.0144842
10.1002/jrs.4998
10.1016/j.memsci.2018.10.085
10.1021/tx960189l
10.1039/c1jm10151j
10.1016/j.mseb.2014.11.002
10.1021/ja902348k
10.1038/nature04969
10.1021/jp807989b
10.1021/nn101081t
10.1021/cm9006603
10.1021/jp100603h
10.1021/am1012613
10.1016/j.carbon.2012.02.087
10.1016/j.carbon.2010.08.030
10.1039/c0jm03710a
10.1021/acs.chemmater.5b04713
10.1039/c2jm31396k
10.1016/S1369-7021(12),70047-0
10.1016/j.carbon.2007.02.034
10.1016/j.mtener.2019.06.006
10.1016/S1452-3981(23)19612-X
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
Springer Nature Switzerland AG 2019.
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: Springer Nature Switzerland AG 2019.
DBID AAYXX
CITATION
DOI 10.1007/s42452-019-1188-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2523-3971
ExternalDocumentID 10_1007_s42452_019_1188_7
GroupedDBID -EM
0R~
88I
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTEG
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACULB
ADKNI
ADMLS
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C24
C6C
CCPQU
DWQXO
EBLON
EBS
EJD
FINBP
FNLPD
FSGXE
GNUQQ
GNWQR
GROUPED_DOAJ
H13
HCIFZ
J-C
KB.
KOV
M2P
M4Y
M7S
NQJWS
NU0
OK1
PATMY
PCBAR
PDBOC
PIMPY
PTHSS
PYCSY
RSV
SOJ
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ACSTC
CITATION
PHGZM
PHGZT
ID FETCH-LOGICAL-c359t-a94a212d7e09c10710c55c8aed805525c1f3f0f7a8254ae663e20607eed0b33c3
ISSN 2523-3963
IngestDate Wed Aug 13 09:14:39 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Tue Jul 01 04:23:05 EDT 2025
Fri Feb 21 02:30:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Graphene oxide
Ascorbic acid
Reduced graphene oxide
Hydrazine
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c359t-a94a212d7e09c10710c55c8aed805525c1f3f0f7a8254ae663e20607eed0b33c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s42452-019-1188-7.pdf
PQID 2788419903
PQPubID 5758472
ParticipantIDs proquest_journals_2788419903
crossref_citationtrail_10_1007_s42452_019_1188_7
crossref_primary_10_1007_s42452_019_1188_7
springer_journals_10_1007_s42452_019_1188_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191000
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle SN applied sciences
PublicationTitleAbbrev SN Appl. Sci
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Cote, Silva, Huang (CR4) 2009; 131
Huang, Joshi, De Silva, Badam, Yoshimura (CR12) 2019; 572
Ghorbani, Abdizadeh, Golobostanfard (CR10) 2015; 11
Mohan, Reuben, Krishnan, Debes (CR27) 2014; 198
Salas, Sun, Lüttge, Tour (CR23) 2010; 4
Wang, Hu, Song, Yang, Xing, Lu (CR29) 2011; 21
Lyu, Mayyas, Salim, Zhu, Chu, Joshi (CR7) 2019; 13
Xu, Qin, Xiaohua, Chunlan, Moatian, Yong (CR28) 2012; 7
Akhavan, Kalaee, Alavi, Ghiasi, Esfandiar (CR21) 2012; 50
Xu, Shi, Ji, Shi, Zhou, Cui (CR1) 2015; 10
Zhu, Guo, Fang, Dong (CR19) 2010; 4
Xu, Wang, Zhu (CR5) 2008; 112
Wang, Shi, Yin (CR20) 2011; 3
Renu, Shweta, Amish, Nupur, Divi, Kedar, Sukhvir, Sandeep (CR26) 2012
Esfandiar, Akhavan, Irajizad (CR18) 2011; 21
Fernandez-merino, Guardia, Paredes, Villar, Solis, Martinez, Tanson (CR17) 2010; 114
Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach, Piner, Nguyen, Ruoff (CR13) 2006; 442
Hu, Xie, Szkopek, Cerruti (CR9) 2016; 28
Jianguo, Xinzhi, Chang-Tang (CR25) 2014; 2014
Ai, Zhang, Chen (CR3) 2011; 192
Liu, Fu, Yuan, Li, Deng (CR22) 2010; 132
Pei, Cheng (CR8) 2012; 50
Reilly, Aust (CR16) 1997; 10
Gurunathan, Jae, Eppakayala, Ahmed, Kwon, Kim (CR24) 2013; 8
Zheng, Peng, Yang, Chen, Tian, Cui, Zheng (CR11) 2016; 48
Stankovich, Dikin, Piner (CR14) 2007; 45
Zhou, Bao, Tang, Zhong, Loh (CR2) 2009; 21
Akhavan, Ghaderi, Aghayee, Fereydooni, Talebi (CR15) 2012; 22
Akhavan (CR6) 2011; 49
Z Xu (1188_CR28) 2012; 7
X Wang (1188_CR29) 2011; 21
O Akhavan (1188_CR6) 2011; 49
S Stankovich (1188_CR14) 2007; 45
VB Mohan (1188_CR27) 2014; 198
K Hu (1188_CR9) 2016; 28
CA Reilly (1188_CR16) 1997; 10
O Akhavan (1188_CR21) 2012; 50
MJ Fernandez-merino (1188_CR17) 2010; 114
EC Salas (1188_CR23) 2010; 4
S Pei (1188_CR8) 2012; 50
Y Wang (1188_CR20) 2011; 3
C Xu (1188_CR1) 2015; 10
C Xu (1188_CR5) 2008; 112
C Zhu (1188_CR19) 2010; 4
JB Liu (1188_CR22) 2010; 132
S Stankovich (1188_CR13) 2006; 442
Y Zhou (1188_CR2) 2009; 21
X Zheng (1188_CR11) 2016; 48
J Lyu (1188_CR7) 2019; 13
S Gurunathan (1188_CR24) 2013; 8
S Jianguo (1188_CR25) 2014; 2014
H-H Huang (1188_CR12) 2019; 572
O Akhavan (1188_CR15) 2012; 22
L Ai (1188_CR3) 2011; 192
M Ghorbani (1188_CR10) 2015; 11
A Esfandiar (1188_CR18) 2011; 21
P Renu (1188_CR26) 2012
L Cote (1188_CR4) 2009; 131
References_xml – volume: 4
  start-page: 2429
  year: 2010
  end-page: 2437
  ident: CR19
  article-title: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets
  publication-title: ACS Nano
  doi: 10.1021/nn1002387
– volume: 8
  start-page: 1
  issue: 393
  year: 2013
  end-page: 13
  ident: CR24
  article-title: Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells
  publication-title: Nanoscale Res Lett
– volume: 11
  start-page: 326
  year: 2015
  end-page: 330
  ident: CR10
  article-title: Reduction of graphene oxide via modified hydrothermal method
  publication-title: Procedia Mater Sci
  doi: 10.1016/j.mspro.2015.11.104
– volume: 192
  start-page: 1515
  issue: 3
  year: 2011
  end-page: 1524
  ident: CR3
  article-title: Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2011.06.068
– volume: 50
  start-page: 3210
  year: 2012
  end-page: 3228
  ident: CR8
  article-title: The reduction of graphene oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.11.010
– volume: 132
  start-page: 7279
  year: 2010
  end-page: 7281
  ident: CR22
  article-title: Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide
  publication-title: J Am Chem Soc
  doi: 10.1021/ja100938r
– volume: 10
  start-page: 0144842
  issue: 12
  year: 2015
  ident: CR1
  article-title: Fabrication and characteristics of reduced graphene oxide produced with different green reductants
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0144842
– volume: 48
  start-page: 97
  year: 2016
  end-page: 103
  ident: CR11
  article-title: Hydrothermal reduction of graphene oxide; effect on surface-enhanced Raman scattering
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.4998
– volume: 7
  start-page: 5172
  year: 2012
  end-page: 5184
  ident: CR28
  article-title: Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid
  publication-title: Int J Electrochem Sci
– volume: 572
  start-page: 12
  year: 2019
  end-page: 19
  ident: CR12
  article-title: Fabrication of reduced graphene oxide membranes for water desalination
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2018.10.085
– volume: 10
  start-page: 328
  issue: 3
  year: 1997
  end-page: 334
  ident: CR16
  article-title: Peroxidase substrates stimulate the oxidation of hydralazine to metabolites which cause single-strand breaks in DNA
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx960189l
– volume: 21
  start-page: 10907
  year: 2011
  end-page: 10914
  ident: CR18
  article-title: Melatonin as a powerful bio-antioxidant for reduction of graphene oxide
  publication-title: J Mater Chem
  doi: 10.1039/c1jm10151j
– volume: 198
  start-page: 49
  year: 2014
  end-page: 60
  ident: CR27
  article-title: Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity
  publication-title: Mater Sci Eng B
  doi: 10.1016/j.mseb.2014.11.002
– volume: 131
  start-page: 11027
  year: 2009
  end-page: 11032
  ident: CR4
  article-title: Flash reduction and patterning of graphite oxide and its polymer composite
  publication-title: J Am Chem Soc
  doi: 10.1021/ja902348k
– volume: 2014
  start-page: 6
  issue: 276143
  year: 2014
  ident: CR25
  article-title: Preparation and characterization of graphene oxide
  publication-title: Nanomaterials
– volume: 442
  start-page: 282
  issue: 7100
  year: 2006
  end-page: 286
  ident: CR13
  article-title: Graphene-based composite materials
  publication-title: Nature
  doi: 10.1038/nature04969
– volume: 112
  start-page: 19841
  issue: 50
  year: 2008
  end-page: 19845
  ident: CR5
  article-title: Graphene–metal particle nanocomposites
  publication-title: J Phys Chem C
  doi: 10.1021/jp807989b
– volume: 4
  start-page: 4852
  issue: 8
  year: 2010
  end-page: 4856
  ident: CR23
  article-title: Reduction of graphene oxide via bacterial respiration
  publication-title: ACS Nano
  doi: 10.1021/nn101081t
– volume: 21
  start-page: 2950
  year: 2009
  end-page: 2956
  ident: CR2
  article-title: Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties
  publication-title: Chem Mater
  doi: 10.1021/cm9006603
– volume: 114
  start-page: 6426
  year: 2010
  end-page: 6432
  ident: CR17
  article-title: Vitamin C is an ideal substitute for hydrazine in the reduction of Graphene Oxide suspensions
  publication-title: J Phys Chem C
  doi: 10.1021/jp100603h
– volume: 3
  start-page: 1127
  issue: 4
  year: 2011
  end-page: 1133
  ident: CR20
  article-title: Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites
  publication-title: J ACS Appl Mater Interfaces
  doi: 10.1021/am1012613
– volume: 50
  start-page: 3015
  issue: 80
  year: 2012
  end-page: 3025
  ident: CR21
  article-title: Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.02.087
– volume: 49
  start-page: 11
  issue: 1
  year: 2011
  end-page: 18
  ident: CR6
  article-title: Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.08.030
– volume: 21
  start-page: 4222
  year: 2011
  end-page: 4227
  ident: CR29
  article-title: In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties
  publication-title: J Mater Chem
  doi: 10.1039/c0jm03710a
– volume: 28
  start-page: 1756
  issue: 6
  year: 2016
  end-page: 1768
  ident: CR9
  article-title: Understanding hydrothermally reduced graphene oxide hydrogels: from reaction products to hydrogel properties
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04713
– volume: 22
  start-page: 13773
  year: 2012
  end-page: 13781
  ident: CR15
  article-title: The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy
  publication-title: Mater Chem
  doi: 10.1039/c2jm31396k
– year: 2012
  ident: CR26
  publication-title: Directed nanoparticle reduction on graphene
  doi: 10.1016/S1369-7021(12),70047-0
– volume: 45
  start-page: 1558
  year: 2007
  end-page: 1565
  ident: CR14
  article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.02.034
– volume: 13
  start-page: 277
  year: 2019
  end-page: 284
  ident: CR7
  article-title: Electrochemical performance of hydrothermally synthesized rGO based electrodes
  publication-title: Mater Today Energy
  doi: 10.1016/j.mtener.2019.06.006
– volume: 13
  start-page: 277
  year: 2019
  ident: 1188_CR7
  publication-title: Mater Today Energy
  doi: 10.1016/j.mtener.2019.06.006
– volume: 21
  start-page: 4222
  year: 2011
  ident: 1188_CR29
  publication-title: J Mater Chem
  doi: 10.1039/c0jm03710a
– volume: 2014
  start-page: 6
  issue: 276143
  year: 2014
  ident: 1188_CR25
  publication-title: Nanomaterials
– volume: 10
  start-page: 328
  issue: 3
  year: 1997
  ident: 1188_CR16
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx960189l
– volume: 3
  start-page: 1127
  issue: 4
  year: 2011
  ident: 1188_CR20
  publication-title: J ACS Appl Mater Interfaces
  doi: 10.1021/am1012613
– volume: 4
  start-page: 4852
  issue: 8
  year: 2010
  ident: 1188_CR23
  publication-title: ACS Nano
  doi: 10.1021/nn101081t
– volume: 4
  start-page: 2429
  year: 2010
  ident: 1188_CR19
  publication-title: ACS Nano
  doi: 10.1021/nn1002387
– volume: 48
  start-page: 97
  year: 2016
  ident: 1188_CR11
  publication-title: J Raman Spectrosc
  doi: 10.1002/jrs.4998
– volume: 21
  start-page: 10907
  year: 2011
  ident: 1188_CR18
  publication-title: J Mater Chem
  doi: 10.1039/c1jm10151j
– volume: 21
  start-page: 2950
  year: 2009
  ident: 1188_CR2
  publication-title: Chem Mater
  doi: 10.1021/cm9006603
– volume: 198
  start-page: 49
  year: 2014
  ident: 1188_CR27
  publication-title: Mater Sci Eng B
  doi: 10.1016/j.mseb.2014.11.002
– volume: 45
  start-page: 1558
  year: 2007
  ident: 1188_CR14
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.02.034
– volume: 22
  start-page: 13773
  year: 2012
  ident: 1188_CR15
  publication-title: Mater Chem
  doi: 10.1039/c2jm31396k
– volume: 50
  start-page: 3015
  issue: 80
  year: 2012
  ident: 1188_CR21
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.02.087
– volume: 11
  start-page: 326
  year: 2015
  ident: 1188_CR10
  publication-title: Procedia Mater Sci
  doi: 10.1016/j.mspro.2015.11.104
– volume: 572
  start-page: 12
  year: 2019
  ident: 1188_CR12
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2018.10.085
– volume: 7
  start-page: 5172
  year: 2012
  ident: 1188_CR28
  publication-title: Int J Electrochem Sci
  doi: 10.1016/S1452-3981(23)19612-X
– volume: 112
  start-page: 19841
  issue: 50
  year: 2008
  ident: 1188_CR5
  publication-title: J Phys Chem C
  doi: 10.1021/jp807989b
– volume: 442
  start-page: 282
  issue: 7100
  year: 2006
  ident: 1188_CR13
  publication-title: Nature
  doi: 10.1038/nature04969
– volume: 192
  start-page: 1515
  issue: 3
  year: 2011
  ident: 1188_CR3
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2011.06.068
– volume: 49
  start-page: 11
  issue: 1
  year: 2011
  ident: 1188_CR6
  publication-title: Carbon
  doi: 10.1016/j.carbon.2010.08.030
– volume: 114
  start-page: 6426
  year: 2010
  ident: 1188_CR17
  publication-title: J Phys Chem C
  doi: 10.1021/jp100603h
– year: 2012
  ident: 1188_CR26
  publication-title: Directed nanoparticle reduction on graphene
  doi: 10.1016/S1369-7021(12),70047-0
– volume: 132
  start-page: 7279
  year: 2010
  ident: 1188_CR22
  publication-title: J Am Chem Soc
  doi: 10.1021/ja100938r
– volume: 131
  start-page: 11027
  year: 2009
  ident: 1188_CR4
  publication-title: J Am Chem Soc
  doi: 10.1021/ja902348k
– volume: 50
  start-page: 3210
  year: 2012
  ident: 1188_CR8
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.11.010
– volume: 8
  start-page: 1
  issue: 393
  year: 2013
  ident: 1188_CR24
  publication-title: Nanoscale Res Lett
– volume: 10
  start-page: 0144842
  issue: 12
  year: 2015
  ident: 1188_CR1
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0144842
– volume: 28
  start-page: 1756
  issue: 6
  year: 2016
  ident: 1188_CR9
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.5b04713
SSID ssj0002793483
ssib051670015
Score 2.5286293
Snippet In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of Amaranthus hybridus (green) were...
In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of Amaranthus hybridus (green) were...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1181
SubjectTerms Acids
Amaranthus hybridus
Antioxidants
Applied and Technical Physics
Ascorbic acid
Chemistry/Food Science
Chemistry: Green Chemistry: Multidisciplinary Research Approach
Comparative analysis
Earth Sciences
Energy bands
Energy consumption
Energy gap
Engineering
Environment
Fourier transforms
Graphene
Graphite
Hydrazine
Hydrazines
Infrared spectroscopy
Materials Science
Reducing agents
Research Article
Scanning electron microscopy
Spectrometry
Vitamin C
Title The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches
URI https://link.springer.com/article/10.1007/s42452-019-1188-7
https://www.proquest.com/docview/2788419903
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoED4ikWCvKBAxASOXG8iY8LKhSkdiXaSr1FjuNIKUu22gcCDvwH_jFjx7HTVYsol2jlzFpW5svk83geCL0AhhxLUvIwSUgZpjWvQ06lCCeECwZGM81Nb8CDw8n-SfrplJ2ORr8HUUubdRnJn5fmlfyPVmEM9KqzZK-hWTcpDMBv0C9cQcNw_Wcdy0H5bmEqjHRlZJe6JiuwSVORGgxasPjeVIZQfv4w076A86Xqos-_NQKkbIP6r8286nLdXCUBW3XcBhtaInt0GAhLYO1H1CeSiLb5YYIEPkbBLPLDK2F7f_nB2RweQHsmusy0t258Wqkvm7YLdZ5GwVE09E7E3MW5XfRObvk3vYvNm7sEtsQh5dbcqeFY16TF2eshLMmln4Eu8mOlT3V14AmsKgboZP6b5yIRXdVmI1uAbKFli-wGupnAzkM3xTj4tdebKBbrtCbLoM7MuS0HPOs4Brf-_uxcJ2hur-Ai-_Fbmq1TeENuju-iO3ZXgqcdxO6hkWrvo9uDWpUPUANgwwOw4R5seFFjCzbcgw0bsOGXALVXuAcaBqBhA7Q3WMMMZqhwDzPsYfYQnbzfO363H9o-HaGkjK9DwVMBDKjKFOEy1pxVMiZzoaqcMJYwGde0JnUmtDdCKOC4KiETkgE9IyWlkj5CO-2iVY8RVkrRGCbNKIe9hgR7IXRfXSJBXiTVZIxI__wKaYvY614q8-JKRY7Ra_eX866Cy9-Ed3ulFPZFXxVJludpDLSNjlHQK8rfvnKyJ9eSfopu-RdoF-2slxv1DAjvunxuIPgHs6Khmg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+comparative+analyses+of+reduced+graphene+oxide+%28RGO%29+prepared+via+green%2C+mild+and+chemical+approaches&rft.jtitle=SN+applied+sciences&rft.au=Faniyi%2C+I.+O.&rft.au=Fasakin%2C+O.&rft.au=Olofinjana%2C+B.&rft.au=Adekunle%2C+A.+S.&rft.date=2019-10-01&rft.pub=Springer+International+Publishing&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=1&rft.issue=10&rft_id=info:doi/10.1007%2Fs42452-019-1188-7&rft.externalDocID=10_1007_s42452_019_1188_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon