The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches
In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of Amaranthus hybridus (green) were investigated. Graphene oxide (GO) was synthesized by modified Hummer’s method and was reduced by hydrazine (RGO-HZ), ascorbic acid (RGO-AA) and the ext...
Saved in:
Published in | SN applied sciences Vol. 1; no. 10; p. 1181 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of
Amaranthus hybridus
(green) were investigated. Graphene oxide (GO) was synthesized by modified Hummer’s method and was reduced by hydrazine (RGO-HZ), ascorbic acid (RGO-AA) and the extract of
Amaranthus hybridus
(RGO-
AH
). GO, RGO-HZ, RGO-AA and RGO-
AH
were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy and ultraviolet visible spectrometry. The FTIR spectra showed the presence of oxygen functionality groups in GO which were reduced in all RGOs. The morphological properties showed that RGOs sheets were exfoliated forming clusters with roughened surfaces while the optical energy band gaps of 2.19, 3.90, 3.60, and 3.20 eV were estimated for GO, RGO-HZ, RGO-AA and RGO-
AH
respectively. It can be concluded that the three reductants demonstrated good reducing capacities. The ascorbic acid and the extract of
Amaranthus hybridus
, apart from being environmentally friendly, can also be good substitutes for the dangerous chemical hydrazine. |
---|---|
AbstractList | In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of Amaranthus hybridus (green) were investigated. Graphene oxide (GO) was synthesized by modified Hummer’s method and was reduced by hydrazine (RGO-HZ), ascorbic acid (RGO-AA) and the extract of Amaranthus hybridus (RGO-AH). GO, RGO-HZ, RGO-AA and RGO-AH were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy and ultraviolet visible spectrometry. The FTIR spectra showed the presence of oxygen functionality groups in GO which were reduced in all RGOs. The morphological properties showed that RGOs sheets were exfoliated forming clusters with roughened surfaces while the optical energy band gaps of 2.19, 3.90, 3.60, and 3.20 eV were estimated for GO, RGO-HZ, RGO-AA and RGO-AH respectively. It can be concluded that the three reductants demonstrated good reducing capacities. The ascorbic acid and the extract of Amaranthus hybridus, apart from being environmentally friendly, can also be good substitutes for the dangerous chemical hydrazine. In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of Amaranthus hybridus (green) were investigated. Graphene oxide (GO) was synthesized by modified Hummer’s method and was reduced by hydrazine (RGO-HZ), ascorbic acid (RGO-AA) and the extract of Amaranthus hybridus (RGO- AH ). GO, RGO-HZ, RGO-AA and RGO- AH were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy and ultraviolet visible spectrometry. The FTIR spectra showed the presence of oxygen functionality groups in GO which were reduced in all RGOs. The morphological properties showed that RGOs sheets were exfoliated forming clusters with roughened surfaces while the optical energy band gaps of 2.19, 3.90, 3.60, and 3.20 eV were estimated for GO, RGO-HZ, RGO-AA and RGO- AH respectively. It can be concluded that the three reductants demonstrated good reducing capacities. The ascorbic acid and the extract of Amaranthus hybridus , apart from being environmentally friendly, can also be good substitutes for the dangerous chemical hydrazine. |
ArticleNumber | 1181 |
Author | Oluwasusi, T. V. Faniyi, I. O. Eleruja, M. A. Adekunle, A. S. Fasakin, O. Olofinjana, B. Ajayi, E. O. B. |
Author_xml | – sequence: 1 givenname: I. O. surname: Faniyi fullname: Faniyi, I. O. organization: Department of Physics and Engineering Physics, Obafemi Awolowo University – sequence: 2 givenname: O. surname: Fasakin fullname: Fasakin, O. email: fasakinoladepo@gmail.com organization: Department of Physics and Engineering Physics, Obafemi Awolowo University – sequence: 3 givenname: B. surname: Olofinjana fullname: Olofinjana, B. organization: Department of Physics and Engineering Physics, Obafemi Awolowo University – sequence: 4 givenname: A. S. surname: Adekunle fullname: Adekunle, A. S. organization: Department of Chemistry, Obafemi Awolowo University – sequence: 5 givenname: T. V. surname: Oluwasusi fullname: Oluwasusi, T. V. organization: Department of Physics, Bingham University – sequence: 6 givenname: M. A. surname: Eleruja fullname: Eleruja, M. A. organization: Department of Physics and Engineering Physics, Obafemi Awolowo University – sequence: 7 givenname: E. O. B. surname: Ajayi fullname: Ajayi, E. O. B. organization: Department of Physics and Engineering Physics, Obafemi Awolowo University |
BookMark | eNp9kE1LAzEQhoNU8PMHeAt4UXB1kmya3aOIVkEoSD2HMTtrI9vdNdkW--9NqSgIesqEvM9M5jlgo7ZribETAZcCwFzFXOZaZiDKTIiiyMwO25daqkyVRoy-67HaY8cxvgGANKXKC7XP_GxO3HWLHgMOfkUcW2zWkSLvah6oWjqq-GvAfk4t8e7DV8TPnibTc94HSlB6XXlMCaL2gi98U6UOFXdzWniHDce-Dx2mazxiuzU2kY6_zkP2fHc7u7nPHqeTh5vrx8wpXQ4ZljlKIStDUDoBRoDT2hVIVQFaS-1ErWqoDRZS50jjsSIJYzBEFbwo5dQhO932TYPflxQH-9YtQ9oqWmmKIhdlCSqlzDblQhdjoNo6PyQDXTsE9I0VYDdq7VatTWrtRq01iRS_yD74BYb1v4zcMjFl21cKP3_6G_oEXK2MoQ |
CitedBy_id | crossref_primary_10_1007_s10450_024_00582_4 crossref_primary_10_1016_j_ssc_2024_115578 crossref_primary_10_1016_j_apsusc_2022_153162 crossref_primary_10_1016_j_jddst_2023_104397 crossref_primary_10_1007_s10854_021_07416_x crossref_primary_10_1016_j_apsadv_2023_100545 crossref_primary_10_1007_s11356_022_21018_y crossref_primary_10_1021_acsomega_1c01429 crossref_primary_10_3390_su14052699 crossref_primary_10_1016_j_catcom_2023_106690 crossref_primary_10_1021_acsomega_2c03144 crossref_primary_10_1039_D4RA02217C crossref_primary_10_1016_j_ceramint_2022_08_156 crossref_primary_10_3390_cryst11111308 crossref_primary_10_1016_j_microc_2023_108467 crossref_primary_10_1016_j_jallcom_2024_175466 crossref_primary_10_1021_acsaem_2c02462 crossref_primary_10_1021_acsomega_2c01919 crossref_primary_10_1016_j_ijhydene_2024_04_072 crossref_primary_10_1021_acsami_1c24475 crossref_primary_10_1016_j_diamond_2025_111944 crossref_primary_10_1039_D2NJ01974D crossref_primary_10_1039_D4TB02553A crossref_primary_10_1016_j_rechem_2023_101270 crossref_primary_10_1007_s42250_023_00586_7 crossref_primary_10_3390_nano12173025 crossref_primary_10_1039_D3MA00399J crossref_primary_10_1016_j_cattod_2022_11_026 crossref_primary_10_1007_s11051_023_05679_5 crossref_primary_10_1016_j_ces_2024_120383 crossref_primary_10_1007_s10854_021_05786_w crossref_primary_10_1016_j_inoche_2022_110040 crossref_primary_10_1016_j_matchemphys_2023_128818 crossref_primary_10_1007_s10853_023_09006_0 crossref_primary_10_3390_ma15082749 crossref_primary_10_1016_j_cej_2024_158178 crossref_primary_10_1515_ijmr_2024_0200 crossref_primary_10_1016_j_enmm_2022_100719 crossref_primary_10_3390_app15063257 crossref_primary_10_1007_s42114_025_01281_6 crossref_primary_10_1038_s41598_024_73734_9 crossref_primary_10_1002_adfm_202408441 crossref_primary_10_1038_s41598_024_76507_6 crossref_primary_10_1016_j_renene_2024_121457 crossref_primary_10_1007_s43621_024_00392_2 crossref_primary_10_1016_j_bios_2023_115291 crossref_primary_10_1016_j_inoche_2024_113037 crossref_primary_10_1016_j_ijbiomac_2023_124566 crossref_primary_10_1007_s12034_021_02462_x crossref_primary_10_3390_applnano5030012 crossref_primary_10_1016_j_diamond_2024_111779 crossref_primary_10_3390_separations8050068 crossref_primary_10_1016_j_toxrep_2022_05_010 crossref_primary_10_1088_2043_6262_ad2dc7 crossref_primary_10_1021_acs_iecr_4c04507 crossref_primary_10_1039_D2RA02391A crossref_primary_10_1080_1536383X_2023_2292705 crossref_primary_10_1039_D2RA04405F crossref_primary_10_1088_2053_1591_ada41d crossref_primary_10_1016_j_matchemphys_2024_129914 crossref_primary_10_1016_j_electacta_2022_141642 crossref_primary_10_1016_j_molliq_2024_125041 crossref_primary_10_1016_j_jece_2024_111935 crossref_primary_10_1039_D3RA08044G crossref_primary_10_1002_ange_202404401 crossref_primary_10_1002_open_202400128 crossref_primary_10_1016_j_jallcom_2023_172699 crossref_primary_10_3390_polym15122752 crossref_primary_10_1007_s00339_022_05821_5 crossref_primary_10_1016_j_matlet_2024_137131 crossref_primary_10_1039_D4CP00028E crossref_primary_10_1016_j_ijbiomac_2025_141177 crossref_primary_10_1007_s00604_021_04921_y crossref_primary_10_1016_j_mtsust_2023_100595 crossref_primary_10_1016_j_saa_2022_122260 crossref_primary_10_1016_j_surfin_2024_105611 crossref_primary_10_1016_j_cscee_2024_100915 crossref_primary_10_1016_j_synthmet_2023_117450 crossref_primary_10_1016_j_matchar_2024_113695 crossref_primary_10_1007_s11356_023_30078_7 crossref_primary_10_1016_j_ceramint_2023_03_249 crossref_primary_10_1007_s10971_024_06634_z crossref_primary_10_1016_j_ceramint_2025_01_578 crossref_primary_10_1007_s13762_023_04881_1 crossref_primary_10_1016_j_compositesb_2021_109384 crossref_primary_10_1016_j_est_2024_110721 crossref_primary_10_1016_j_flatc_2024_100802 crossref_primary_10_1557_s43580_024_00999_7 crossref_primary_10_1002_anie_202404401 crossref_primary_10_1016_j_indcrop_2023_116614 crossref_primary_10_1080_23311916_2024_2342442 crossref_primary_10_1016_j_jelechem_2024_118099 crossref_primary_10_1016_j_jnoncrysol_2023_122747 crossref_primary_10_15671_hjbc_1372446 crossref_primary_10_3390_molecules28030926 crossref_primary_10_1038_s41598_024_53626_8 crossref_primary_10_1063_5_0142476 crossref_primary_10_1016_j_bios_2024_116447 crossref_primary_10_3390_jcs7060217 crossref_primary_10_1002_jccs_202200478 crossref_primary_10_1016_j_seppur_2021_119630 crossref_primary_10_1002_sia_7044 crossref_primary_10_1016_j_cplett_2024_141240 crossref_primary_10_1016_j_molliq_2021_117429 crossref_primary_10_1021_acsaem_3c02808 crossref_primary_10_3390_membranes13030345 crossref_primary_10_1016_j_heliyon_2024_e33317 crossref_primary_10_1016_j_mset_2023_10_005 crossref_primary_10_1038_s41598_025_88072_7 crossref_primary_10_1039_D4RE00314D crossref_primary_10_1002_adma_202211856 crossref_primary_10_3390_ma15113924 crossref_primary_10_1021_acs_langmuir_3c02285 crossref_primary_10_1016_j_inoche_2025_114317 crossref_primary_10_1021_acsomega_4c07850 crossref_primary_10_1039_D3NA00682D crossref_primary_10_1177_09673911221103419 crossref_primary_10_1016_j_est_2021_103802 crossref_primary_10_1088_1402_4896_ad0fca crossref_primary_10_1016_j_jallcom_2025_179467 crossref_primary_10_1016_j_ijbiomac_2023_125121 crossref_primary_10_3390_ma17205000 crossref_primary_10_1007_s12034_023_02989_1 crossref_primary_10_1021_acsaem_4c00564 crossref_primary_10_1557_s43580_024_00982_2 crossref_primary_10_3390_nano14221777 crossref_primary_10_1016_j_apmt_2023_102035 crossref_primary_10_3390_coatings10070693 crossref_primary_10_1021_acsomega_3c06094 crossref_primary_10_1016_j_jece_2024_113215 crossref_primary_10_1007_s42823_022_00321_1 crossref_primary_10_1016_j_ijleo_2021_168164 crossref_primary_10_1016_j_jics_2024_101548 crossref_primary_10_1016_j_electacta_2022_139868 crossref_primary_10_3390_cryst14070654 crossref_primary_10_1080_10298436_2024_2337303 crossref_primary_10_1007_s10800_024_02139_3 crossref_primary_10_1021_acs_jpcc_4c03838 crossref_primary_10_1016_j_nanoms_2024_01_006 crossref_primary_10_1016_j_apmt_2022_101648 crossref_primary_10_1002_slct_202203424 crossref_primary_10_1021_acsaem_4c00210 crossref_primary_10_1021_acsomega_3c08349 crossref_primary_10_1016_j_inoche_2025_114133 crossref_primary_10_1016_j_snb_2024_135300 crossref_primary_10_1016_j_envres_2023_117966 crossref_primary_10_1016_j_inoche_2024_112791 crossref_primary_10_1016_j_ijhydene_2023_08_300 crossref_primary_10_1016_j_nanoso_2023_101011 crossref_primary_10_1080_09276440_2023_2229594 crossref_primary_10_1016_j_enmm_2023_100842 crossref_primary_10_1021_acs_energyfuels_1c04234 crossref_primary_10_1016_j_electacta_2023_143464 crossref_primary_10_3390_nano13222923 crossref_primary_10_1002_smll_202408972 crossref_primary_10_1016_j_jece_2024_113525 crossref_primary_10_1016_j_chemosphere_2022_136934 crossref_primary_10_1039_D3RA03172A crossref_primary_10_1007_s11237_021_09697_z crossref_primary_10_1061_JMCEE7_MTENG_19388 crossref_primary_10_1016_j_diamond_2024_110910 crossref_primary_10_1021_acsami_3c16010 crossref_primary_10_3390_mi15091125 crossref_primary_10_12677_JAPC_2024_131007 crossref_primary_10_1016_j_colsurfb_2023_113546 crossref_primary_10_1016_j_surfin_2023_103331 crossref_primary_10_1016_j_talanta_2023_124315 crossref_primary_10_1002_cssc_202400845 crossref_primary_10_1016_j_envres_2022_114044 crossref_primary_10_1039_D4RA01437E crossref_primary_10_1016_j_jece_2023_111670 crossref_primary_10_1016_j_elecom_2024_107703 crossref_primary_10_1016_j_surfin_2022_101812 crossref_primary_10_1016_j_aej_2024_03_001 crossref_primary_10_1021_acsaenm_2c00086 crossref_primary_10_1016_j_synthmet_2020_116624 crossref_primary_10_1007_s40033_022_00429_8 crossref_primary_10_1016_j_catcom_2023_106799 crossref_primary_10_3390_pr12081684 crossref_primary_10_1016_j_diamond_2021_108456 crossref_primary_10_1016_j_seppur_2024_130351 crossref_primary_10_1016_j_cej_2023_145396 crossref_primary_10_3390_molecules26164831 crossref_primary_10_1016_j_sna_2023_114314 crossref_primary_10_1021_acsomega_1c06297 crossref_primary_10_1038_s41598_022_17697_9 crossref_primary_10_1080_03067319_2021_2022132 |
Cites_doi | 10.1021/nn1002387 10.1016/j.mspro.2015.11.104 10.1016/j.jhazmat.2011.06.068 10.1016/j.carbon.2011.11.010 10.1021/ja100938r 10.1371/journal.pone.0144842 10.1002/jrs.4998 10.1016/j.memsci.2018.10.085 10.1021/tx960189l 10.1039/c1jm10151j 10.1016/j.mseb.2014.11.002 10.1021/ja902348k 10.1038/nature04969 10.1021/jp807989b 10.1021/nn101081t 10.1021/cm9006603 10.1021/jp100603h 10.1021/am1012613 10.1016/j.carbon.2012.02.087 10.1016/j.carbon.2010.08.030 10.1039/c0jm03710a 10.1021/acs.chemmater.5b04713 10.1039/c2jm31396k 10.1016/S1369-7021(12),70047-0 10.1016/j.carbon.2007.02.034 10.1016/j.mtener.2019.06.006 10.1016/S1452-3981(23)19612-X |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 Springer Nature Switzerland AG 2019. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: Springer Nature Switzerland AG 2019. |
DBID | AAYXX CITATION |
DOI | 10.1007/s42452-019-1188-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2523-3971 |
ExternalDocumentID | 10_1007_s42452_019_1188_7 |
GroupedDBID | -EM 0R~ 88I AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTEG ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACULB ADKNI ADMLS ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BGNMA BHPHI BKSAR C24 C6C CCPQU DWQXO EBLON EBS EJD FINBP FNLPD FSGXE GNUQQ GNWQR GROUPED_DOAJ H13 HCIFZ J-C KB. KOV M2P M4Y M7S NQJWS NU0 OK1 PATMY PCBAR PDBOC PIMPY PTHSS PYCSY RSV SOJ STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ACSTC CITATION PHGZM PHGZT |
ID | FETCH-LOGICAL-c359t-a94a212d7e09c10710c55c8aed805525c1f3f0f7a8254ae663e20607eed0b33c3 |
ISSN | 2523-3963 |
IngestDate | Wed Aug 13 09:14:39 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Tue Jul 01 04:23:05 EDT 2025 Fri Feb 21 02:30:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Graphene oxide Ascorbic acid Reduced graphene oxide Hydrazine |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c359t-a94a212d7e09c10710c55c8aed805525c1f3f0f7a8254ae663e20607eed0b33c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s42452-019-1188-7.pdf |
PQID | 2788419903 |
PQPubID | 5758472 |
ParticipantIDs | proquest_journals_2788419903 crossref_citationtrail_10_1007_s42452_019_1188_7 crossref_primary_10_1007_s42452_019_1188_7 springer_journals_10_1007_s42452_019_1188_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191000 2019-10-00 20191001 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191000 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | SN applied sciences |
PublicationTitleAbbrev | SN Appl. Sci |
PublicationYear | 2019 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Cote, Silva, Huang (CR4) 2009; 131 Huang, Joshi, De Silva, Badam, Yoshimura (CR12) 2019; 572 Ghorbani, Abdizadeh, Golobostanfard (CR10) 2015; 11 Mohan, Reuben, Krishnan, Debes (CR27) 2014; 198 Salas, Sun, Lüttge, Tour (CR23) 2010; 4 Wang, Hu, Song, Yang, Xing, Lu (CR29) 2011; 21 Lyu, Mayyas, Salim, Zhu, Chu, Joshi (CR7) 2019; 13 Xu, Qin, Xiaohua, Chunlan, Moatian, Yong (CR28) 2012; 7 Akhavan, Kalaee, Alavi, Ghiasi, Esfandiar (CR21) 2012; 50 Xu, Shi, Ji, Shi, Zhou, Cui (CR1) 2015; 10 Zhu, Guo, Fang, Dong (CR19) 2010; 4 Xu, Wang, Zhu (CR5) 2008; 112 Wang, Shi, Yin (CR20) 2011; 3 Renu, Shweta, Amish, Nupur, Divi, Kedar, Sukhvir, Sandeep (CR26) 2012 Esfandiar, Akhavan, Irajizad (CR18) 2011; 21 Fernandez-merino, Guardia, Paredes, Villar, Solis, Martinez, Tanson (CR17) 2010; 114 Stankovich, Dikin, Dommett, Kohlhaas, Zimney, Stach, Piner, Nguyen, Ruoff (CR13) 2006; 442 Hu, Xie, Szkopek, Cerruti (CR9) 2016; 28 Jianguo, Xinzhi, Chang-Tang (CR25) 2014; 2014 Ai, Zhang, Chen (CR3) 2011; 192 Liu, Fu, Yuan, Li, Deng (CR22) 2010; 132 Pei, Cheng (CR8) 2012; 50 Reilly, Aust (CR16) 1997; 10 Gurunathan, Jae, Eppakayala, Ahmed, Kwon, Kim (CR24) 2013; 8 Zheng, Peng, Yang, Chen, Tian, Cui, Zheng (CR11) 2016; 48 Stankovich, Dikin, Piner (CR14) 2007; 45 Zhou, Bao, Tang, Zhong, Loh (CR2) 2009; 21 Akhavan, Ghaderi, Aghayee, Fereydooni, Talebi (CR15) 2012; 22 Akhavan (CR6) 2011; 49 Z Xu (1188_CR28) 2012; 7 X Wang (1188_CR29) 2011; 21 O Akhavan (1188_CR6) 2011; 49 S Stankovich (1188_CR14) 2007; 45 VB Mohan (1188_CR27) 2014; 198 K Hu (1188_CR9) 2016; 28 CA Reilly (1188_CR16) 1997; 10 O Akhavan (1188_CR21) 2012; 50 MJ Fernandez-merino (1188_CR17) 2010; 114 EC Salas (1188_CR23) 2010; 4 S Pei (1188_CR8) 2012; 50 Y Wang (1188_CR20) 2011; 3 C Xu (1188_CR1) 2015; 10 C Xu (1188_CR5) 2008; 112 C Zhu (1188_CR19) 2010; 4 JB Liu (1188_CR22) 2010; 132 S Stankovich (1188_CR13) 2006; 442 Y Zhou (1188_CR2) 2009; 21 X Zheng (1188_CR11) 2016; 48 J Lyu (1188_CR7) 2019; 13 S Gurunathan (1188_CR24) 2013; 8 S Jianguo (1188_CR25) 2014; 2014 H-H Huang (1188_CR12) 2019; 572 O Akhavan (1188_CR15) 2012; 22 L Ai (1188_CR3) 2011; 192 M Ghorbani (1188_CR10) 2015; 11 A Esfandiar (1188_CR18) 2011; 21 P Renu (1188_CR26) 2012 L Cote (1188_CR4) 2009; 131 |
References_xml | – volume: 4 start-page: 2429 year: 2010 end-page: 2437 ident: CR19 article-title: Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets publication-title: ACS Nano doi: 10.1021/nn1002387 – volume: 8 start-page: 1 issue: 393 year: 2013 end-page: 13 ident: CR24 article-title: Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells publication-title: Nanoscale Res Lett – volume: 11 start-page: 326 year: 2015 end-page: 330 ident: CR10 article-title: Reduction of graphene oxide via modified hydrothermal method publication-title: Procedia Mater Sci doi: 10.1016/j.mspro.2015.11.104 – volume: 192 start-page: 1515 issue: 3 year: 2011 end-page: 1524 ident: CR3 article-title: Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2011.06.068 – volume: 50 start-page: 3210 year: 2012 end-page: 3228 ident: CR8 article-title: The reduction of graphene oxide publication-title: Carbon doi: 10.1016/j.carbon.2011.11.010 – volume: 132 start-page: 7279 year: 2010 end-page: 7281 ident: CR22 article-title: Toward a universal “adhesive nanosheet” for the assembly of multiple nanoparticles based on a protein-induced reduction/decoration of graphene oxide publication-title: J Am Chem Soc doi: 10.1021/ja100938r – volume: 10 start-page: 0144842 issue: 12 year: 2015 ident: CR1 article-title: Fabrication and characteristics of reduced graphene oxide produced with different green reductants publication-title: PLOS ONE doi: 10.1371/journal.pone.0144842 – volume: 48 start-page: 97 year: 2016 end-page: 103 ident: CR11 article-title: Hydrothermal reduction of graphene oxide; effect on surface-enhanced Raman scattering publication-title: J Raman Spectrosc doi: 10.1002/jrs.4998 – volume: 7 start-page: 5172 year: 2012 end-page: 5184 ident: CR28 article-title: Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid publication-title: Int J Electrochem Sci – volume: 572 start-page: 12 year: 2019 end-page: 19 ident: CR12 article-title: Fabrication of reduced graphene oxide membranes for water desalination publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.10.085 – volume: 10 start-page: 328 issue: 3 year: 1997 end-page: 334 ident: CR16 article-title: Peroxidase substrates stimulate the oxidation of hydralazine to metabolites which cause single-strand breaks in DNA publication-title: Chem Res Toxicol doi: 10.1021/tx960189l – volume: 21 start-page: 10907 year: 2011 end-page: 10914 ident: CR18 article-title: Melatonin as a powerful bio-antioxidant for reduction of graphene oxide publication-title: J Mater Chem doi: 10.1039/c1jm10151j – volume: 198 start-page: 49 year: 2014 end-page: 60 ident: CR27 article-title: Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity publication-title: Mater Sci Eng B doi: 10.1016/j.mseb.2014.11.002 – volume: 131 start-page: 11027 year: 2009 end-page: 11032 ident: CR4 article-title: Flash reduction and patterning of graphite oxide and its polymer composite publication-title: J Am Chem Soc doi: 10.1021/ja902348k – volume: 2014 start-page: 6 issue: 276143 year: 2014 ident: CR25 article-title: Preparation and characterization of graphene oxide publication-title: Nanomaterials – volume: 442 start-page: 282 issue: 7100 year: 2006 end-page: 286 ident: CR13 article-title: Graphene-based composite materials publication-title: Nature doi: 10.1038/nature04969 – volume: 112 start-page: 19841 issue: 50 year: 2008 end-page: 19845 ident: CR5 article-title: Graphene–metal particle nanocomposites publication-title: J Phys Chem C doi: 10.1021/jp807989b – volume: 4 start-page: 4852 issue: 8 year: 2010 end-page: 4856 ident: CR23 article-title: Reduction of graphene oxide via bacterial respiration publication-title: ACS Nano doi: 10.1021/nn101081t – volume: 21 start-page: 2950 year: 2009 end-page: 2956 ident: CR2 article-title: Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties publication-title: Chem Mater doi: 10.1021/cm9006603 – volume: 114 start-page: 6426 year: 2010 end-page: 6432 ident: CR17 article-title: Vitamin C is an ideal substitute for hydrazine in the reduction of Graphene Oxide suspensions publication-title: J Phys Chem C doi: 10.1021/jp100603h – volume: 3 start-page: 1127 issue: 4 year: 2011 end-page: 1133 ident: CR20 article-title: Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites publication-title: J ACS Appl Mater Interfaces doi: 10.1021/am1012613 – volume: 50 start-page: 3015 issue: 80 year: 2012 end-page: 3025 ident: CR21 article-title: Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide publication-title: Carbon doi: 10.1016/j.carbon.2012.02.087 – volume: 49 start-page: 11 issue: 1 year: 2011 end-page: 18 ident: CR6 article-title: Photocatalytic reduction of graphene oxides hybridized by ZnO nanoparticles in ethanol publication-title: Carbon doi: 10.1016/j.carbon.2010.08.030 – volume: 21 start-page: 4222 year: 2011 end-page: 4227 ident: CR29 article-title: In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties publication-title: J Mater Chem doi: 10.1039/c0jm03710a – volume: 28 start-page: 1756 issue: 6 year: 2016 end-page: 1768 ident: CR9 article-title: Understanding hydrothermally reduced graphene oxide hydrogels: from reaction products to hydrogel properties publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b04713 – volume: 22 start-page: 13773 year: 2012 end-page: 13781 ident: CR15 article-title: The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy publication-title: Mater Chem doi: 10.1039/c2jm31396k – year: 2012 ident: CR26 publication-title: Directed nanoparticle reduction on graphene doi: 10.1016/S1369-7021(12),70047-0 – volume: 45 start-page: 1558 year: 2007 end-page: 1565 ident: CR14 article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide publication-title: Carbon doi: 10.1016/j.carbon.2007.02.034 – volume: 13 start-page: 277 year: 2019 end-page: 284 ident: CR7 article-title: Electrochemical performance of hydrothermally synthesized rGO based electrodes publication-title: Mater Today Energy doi: 10.1016/j.mtener.2019.06.006 – volume: 13 start-page: 277 year: 2019 ident: 1188_CR7 publication-title: Mater Today Energy doi: 10.1016/j.mtener.2019.06.006 – volume: 21 start-page: 4222 year: 2011 ident: 1188_CR29 publication-title: J Mater Chem doi: 10.1039/c0jm03710a – volume: 2014 start-page: 6 issue: 276143 year: 2014 ident: 1188_CR25 publication-title: Nanomaterials – volume: 10 start-page: 328 issue: 3 year: 1997 ident: 1188_CR16 publication-title: Chem Res Toxicol doi: 10.1021/tx960189l – volume: 3 start-page: 1127 issue: 4 year: 2011 ident: 1188_CR20 publication-title: J ACS Appl Mater Interfaces doi: 10.1021/am1012613 – volume: 4 start-page: 4852 issue: 8 year: 2010 ident: 1188_CR23 publication-title: ACS Nano doi: 10.1021/nn101081t – volume: 4 start-page: 2429 year: 2010 ident: 1188_CR19 publication-title: ACS Nano doi: 10.1021/nn1002387 – volume: 48 start-page: 97 year: 2016 ident: 1188_CR11 publication-title: J Raman Spectrosc doi: 10.1002/jrs.4998 – volume: 21 start-page: 10907 year: 2011 ident: 1188_CR18 publication-title: J Mater Chem doi: 10.1039/c1jm10151j – volume: 21 start-page: 2950 year: 2009 ident: 1188_CR2 publication-title: Chem Mater doi: 10.1021/cm9006603 – volume: 198 start-page: 49 year: 2014 ident: 1188_CR27 publication-title: Mater Sci Eng B doi: 10.1016/j.mseb.2014.11.002 – volume: 45 start-page: 1558 year: 2007 ident: 1188_CR14 publication-title: Carbon doi: 10.1016/j.carbon.2007.02.034 – volume: 22 start-page: 13773 year: 2012 ident: 1188_CR15 publication-title: Mater Chem doi: 10.1039/c2jm31396k – volume: 50 start-page: 3015 issue: 80 year: 2012 ident: 1188_CR21 publication-title: Carbon doi: 10.1016/j.carbon.2012.02.087 – volume: 11 start-page: 326 year: 2015 ident: 1188_CR10 publication-title: Procedia Mater Sci doi: 10.1016/j.mspro.2015.11.104 – volume: 572 start-page: 12 year: 2019 ident: 1188_CR12 publication-title: J Membr Sci doi: 10.1016/j.memsci.2018.10.085 – volume: 7 start-page: 5172 year: 2012 ident: 1188_CR28 publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)19612-X – volume: 112 start-page: 19841 issue: 50 year: 2008 ident: 1188_CR5 publication-title: J Phys Chem C doi: 10.1021/jp807989b – volume: 442 start-page: 282 issue: 7100 year: 2006 ident: 1188_CR13 publication-title: Nature doi: 10.1038/nature04969 – volume: 192 start-page: 1515 issue: 3 year: 2011 ident: 1188_CR3 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2011.06.068 – volume: 49 start-page: 11 issue: 1 year: 2011 ident: 1188_CR6 publication-title: Carbon doi: 10.1016/j.carbon.2010.08.030 – volume: 114 start-page: 6426 year: 2010 ident: 1188_CR17 publication-title: J Phys Chem C doi: 10.1021/jp100603h – year: 2012 ident: 1188_CR26 publication-title: Directed nanoparticle reduction on graphene doi: 10.1016/S1369-7021(12),70047-0 – volume: 132 start-page: 7279 year: 2010 ident: 1188_CR22 publication-title: J Am Chem Soc doi: 10.1021/ja100938r – volume: 131 start-page: 11027 year: 2009 ident: 1188_CR4 publication-title: J Am Chem Soc doi: 10.1021/ja902348k – volume: 50 start-page: 3210 year: 2012 ident: 1188_CR8 publication-title: Carbon doi: 10.1016/j.carbon.2011.11.010 – volume: 8 start-page: 1 issue: 393 year: 2013 ident: 1188_CR24 publication-title: Nanoscale Res Lett – volume: 10 start-page: 0144842 issue: 12 year: 2015 ident: 1188_CR1 publication-title: PLOS ONE doi: 10.1371/journal.pone.0144842 – volume: 28 start-page: 1756 issue: 6 year: 2016 ident: 1188_CR9 publication-title: Chem Mater doi: 10.1021/acs.chemmater.5b04713 |
SSID | ssj0002793483 ssib051670015 |
Score | 2.5286293 |
Snippet | In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of
Amaranthus hybridus
(green) were... In this work, the reducing power of three reductants: hydrazine (chemical), ascorbic acid (mild) and the extract of Amaranthus hybridus (green) were... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1181 |
SubjectTerms | Acids Amaranthus hybridus Antioxidants Applied and Technical Physics Ascorbic acid Chemistry/Food Science Chemistry: Green Chemistry: Multidisciplinary Research Approach Comparative analysis Earth Sciences Energy bands Energy consumption Energy gap Engineering Environment Fourier transforms Graphene Graphite Hydrazine Hydrazines Infrared spectroscopy Materials Science Reducing agents Research Article Scanning electron microscopy Spectrometry Vitamin C |
Title | The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches |
URI | https://link.springer.com/article/10.1007/s42452-019-1188-7 https://www.proquest.com/docview/2788419903 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoED4ikWCvKBAxASOXG8iY8LKhSkdiXaSr1FjuNIKUu22gcCDvwH_jFjx7HTVYsol2jlzFpW5svk83geCL0AhhxLUvIwSUgZpjWvQ06lCCeECwZGM81Nb8CDw8n-SfrplJ2ORr8HUUubdRnJn5fmlfyPVmEM9KqzZK-hWTcpDMBv0C9cQcNw_Wcdy0H5bmEqjHRlZJe6JiuwSVORGgxasPjeVIZQfv4w076A86Xqos-_NQKkbIP6r8286nLdXCUBW3XcBhtaInt0GAhLYO1H1CeSiLb5YYIEPkbBLPLDK2F7f_nB2RweQHsmusy0t258Wqkvm7YLdZ5GwVE09E7E3MW5XfRObvk3vYvNm7sEtsQh5dbcqeFY16TF2eshLMmln4Eu8mOlT3V14AmsKgboZP6b5yIRXdVmI1uAbKFli-wGupnAzkM3xTj4tdebKBbrtCbLoM7MuS0HPOs4Brf-_uxcJ2hur-Ai-_Fbmq1TeENuju-iO3ZXgqcdxO6hkWrvo9uDWpUPUANgwwOw4R5seFFjCzbcgw0bsOGXALVXuAcaBqBhA7Q3WMMMZqhwDzPsYfYQnbzfO363H9o-HaGkjK9DwVMBDKjKFOEy1pxVMiZzoaqcMJYwGde0JnUmtDdCKOC4KiETkgE9IyWlkj5CO-2iVY8RVkrRGCbNKIe9hgR7IXRfXSJBXiTVZIxI__wKaYvY614q8-JKRY7Ra_eX866Cy9-Ed3ulFPZFXxVJludpDLSNjlHQK8rfvnKyJ9eSfopu-RdoF-2slxv1DAjvunxuIPgHs6Khmg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+comparative+analyses+of+reduced+graphene+oxide+%28RGO%29+prepared+via+green%2C+mild+and+chemical+approaches&rft.jtitle=SN+applied+sciences&rft.au=Faniyi%2C+I.+O.&rft.au=Fasakin%2C+O.&rft.au=Olofinjana%2C+B.&rft.au=Adekunle%2C+A.+S.&rft.date=2019-10-01&rft.pub=Springer+International+Publishing&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=1&rft.issue=10&rft_id=info:doi/10.1007%2Fs42452-019-1188-7&rft.externalDocID=10_1007_s42452_019_1188_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2523-3963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2523-3963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2523-3963&client=summon |