A Poisson Model for Entanglement Optimization in the Quantum Internet
We define a nature-inspired model for entanglement optimization in the quantum Internet. The optimization model aims to maximize the entanglement fidelity and relative entropy of entanglement for the entangled connections of the entangled network structure of the quantum Internet. The cost functions...
Saved in:
Published in | Quantum information processing Vol. 18; no. 7; pp. 1 - 35 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We define a nature-inspired model for entanglement optimization in the quantum Internet. The optimization model aims to maximize the entanglement fidelity and relative entropy of entanglement for the entangled connections of the entangled network structure of the quantum Internet. The cost functions are subject of a minimization defined to cover and integrate the physical attributes of entanglement transmission, purification, and storage of entanglement in quantum memories. The method can be implemented with low complexity that allows a straightforward application in the quantum Internet and quantum networking scenarios. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1570-0755 1573-1332 |
DOI: | 10.1007/s11128-019-2335-1 |