Min-Max Cost Optimization for Efficient Hierarchical Federated Learning in Wireless Edge Networks

Federated learning is a distributed machine learning technology that can protect users' data privacy, so it has attracted more and more attention in the industry and academia. Nonetheless, most of the existing works focused on the cost optimization of the entire process, while the cost of indiv...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on parallel and distributed systems Vol. 33; no. 11; pp. 2687 - 2700
Main Authors Feng, Jie, Liu, Lei, Pei, Qingqi, Li, Keqin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated learning is a distributed machine learning technology that can protect users' data privacy, so it has attracted more and more attention in the industry and academia. Nonetheless, most of the existing works focused on the cost optimization of the entire process, while the cost of individual participants cannot be considered. In this article, we explore a min-max cost-optimal problem to guarantee the convergence rate of federated learning in terms of cost in wireless edge networks. In particular, we minimize the cost of the worst-case participant subject to the delay, local CPU-cycle frequency, power allocation, local accuracy, and subcarrier assignment constraints. Considering that the formulated problem is a mixed-integer nonlinear programming problem, we decompose it into several sub-problems to derive its solutions, in which the subcarrier assignment and power allocation are obtained by utilizing the Lagrangian dual decomposition method, the CPU-cycle frequency is obtained by a heuristic algorithm, and the local accuracy is obtained by an iteration algorithm. Simulation results show the convergence of the proposed algorithm and reveal that the proposed scheme can accomplish a tradeoff between the cost and fairness by comparing the proposed scheme with the existing schemes.
AbstractList Federated learning is a distributed machine learning technology that can protect users' data privacy, so it has attracted more and more attention in the industry and academia. Nonetheless, most of the existing works focused on the cost optimization of the entire process, while the cost of individual participants cannot be considered. In this article, we explore a min-max cost-optimal problem to guarantee the convergence rate of federated learning in terms of cost in wireless edge networks. In particular, we minimize the cost of the worst-case participant subject to the delay, local CPU-cycle frequency, power allocation, local accuracy, and subcarrier assignment constraints. Considering that the formulated problem is a mixed-integer nonlinear programming problem, we decompose it into several sub-problems to derive its solutions, in which the subcarrier assignment and power allocation are obtained by utilizing the Lagrangian dual decomposition method, the CPU-cycle frequency is obtained by a heuristic algorithm, and the local accuracy is obtained by an iteration algorithm. Simulation results show the convergence of the proposed algorithm and reveal that the proposed scheme can accomplish a tradeoff between the cost and fairness by comparing the proposed scheme with the existing schemes.
Author Pei, Qingqi
Li, Keqin
Feng, Jie
Liu, Lei
Author_xml – sequence: 1
  givenname: Jie
  orcidid: 0000-0002-5474-3286
  surname: Feng
  fullname: Feng, Jie
  email: jiefengcl@163.com
  organization: State Key Laboratory of ISN, School of Telecommunication Engineering, Xidian University, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0001-8173-0408
  surname: Liu
  fullname: Liu, Lei
  email: tianjiaoliulei@163.com
  organization: State Key Laboratory of ISN, School of Telecommunication Engineering, Xidian University, Xi'an, Shannxi, China
– sequence: 3
  givenname: Qingqi
  orcidid: 0000-0001-7601-5434
  surname: Pei
  fullname: Pei, Qingqi
  email: qqpei@mail.xidian.edu.cn
  organization: State Key Laboratory of ISN, School of Telecommunication Engineering, Xidian University, Xi'an, Shannxi, China
– sequence: 4
  givenname: Keqin
  orcidid: 0000-0001-5224-4048
  surname: Li
  fullname: Li, Keqin
  email: lik@newpaltz.edu
  organization: Department of Computer Science, State University of New York, New Paltz, NY, USA
BookMark eNp9kE1LAzEQhoMo-PkDxEvA89ZMskk3R6mtCvUDVDwu2WRWozVbkxQ_fr1bKx48eJoZeJ954dkm66ELSMg-sAEA00e31yc3A844DAQIULJcI1sgZVVwqMR6v7NSFpqD3iTbKT0xBqVk5RYxFz4UF-adjrqU6dU8-xf_abLvAm27SMdt663HkOmZx2iiffTWzOgEXX9ldHSKJgYfHqgP9N5HnGFKdOwekF5ifuvic9olG62ZJdz7mTvkbjK-HZ0V06vT89HxtLBC6lwY7hqt0YEUYF2lLBMchBsqZZ1sKiOR8WqoNDbaqZK1gtmmFRyHDMBCxcQOOVz9ncfudYEp10_dIoa-suZKaVCsx_sUrFI2dilFbOt59C8mftTA6qXJemmyXpqsf0z2zPAPY33-dpSj8bN_yYMV6RHxt0krrkUf-QKd0IKX
CODEN ITDSEO
CitedBy_id crossref_primary_10_1109_TCOMM_2024_3420733
crossref_primary_10_1109_TMC_2023_3294180
crossref_primary_10_1109_TWC_2022_3190512
crossref_primary_10_1186_s13677_023_00411_z
crossref_primary_10_1109_JIOT_2021_3139222
crossref_primary_10_1109_ACCESS_2024_3452190
crossref_primary_10_1109_TCOMM_2023_3324029
crossref_primary_10_1109_JIOT_2022_3150042
crossref_primary_10_1109_JSAC_2023_3313195
crossref_primary_10_1109_TSUSC_2022_3217014
crossref_primary_10_1155_2022_8768928
crossref_primary_10_1109_JSAC_2023_3345382
crossref_primary_10_1155_2022_8482415
crossref_primary_10_1109_JIOT_2022_3204637
crossref_primary_10_1109_JIOT_2024_3410176
crossref_primary_10_1109_TPDS_2024_3413751
crossref_primary_10_1109_OJCOMS_2023_3290625
crossref_primary_10_1109_TNSM_2023_3240396
crossref_primary_10_1109_TII_2024_3441659
crossref_primary_10_1109_TNSE_2024_3447904
crossref_primary_10_1109_TGCN_2022_3158953
crossref_primary_10_1109_TNSM_2022_3197457
crossref_primary_10_1155_2022_7787866
crossref_primary_10_1109_TCOMM_2022_3163439
crossref_primary_10_1109_JIOT_2023_3314743
crossref_primary_10_1109_JIOT_2022_3222521
crossref_primary_10_1155_2022_9358531
crossref_primary_10_1109_TITS_2023_3249745
crossref_primary_10_1186_s13677_022_00375_6
crossref_primary_10_1109_TVT_2024_3427349
crossref_primary_10_1109_TWC_2022_3167263
crossref_primary_10_1109_JIOT_2022_3224533
crossref_primary_10_1109_JIOT_2024_3367791
crossref_primary_10_1109_TPDS_2023_3238049
crossref_primary_10_1109_TMC_2023_3273425
crossref_primary_10_1155_2022_3222979
crossref_primary_10_1109_TCC_2025_3530681
crossref_primary_10_1109_JIOT_2022_3188631
crossref_primary_10_1109_JIOT_2023_3271692
crossref_primary_10_1109_TCCN_2024_3451711
crossref_primary_10_1109_TITS_2023_3275741
crossref_primary_10_1155_2022_7494127
crossref_primary_10_1109_JIOT_2023_3330754
crossref_primary_10_1109_TCC_2023_3285534
crossref_primary_10_1109_TWC_2022_3233035
crossref_primary_10_1155_2022_4384954
crossref_primary_10_1155_2022_3091495
crossref_primary_10_1155_2022_8350006
crossref_primary_10_1109_TVT_2023_3246466
crossref_primary_10_1155_2022_7099494
crossref_primary_10_1109_TVT_2024_3379742
crossref_primary_10_1109_TPDS_2022_3218807
crossref_primary_10_1109_JIOT_2024_3455425
crossref_primary_10_1109_TWC_2023_3265458
crossref_primary_10_1109_COMST_2024_3352910
crossref_primary_10_1109_TCOMM_2023_3314892
crossref_primary_10_1109_JSAC_2023_3345397
crossref_primary_10_1155_2022_4542705
Cites_doi 10.1109/TNSE.2021.3053588
10.1109/TCOMM.2015.2450724
10.1887/0750308958/b386c48
10.1109/JIOT.2019.2961707
10.1109/TNET.2020.3035770
10.1109/INFOCOM.2019.8737464
10.1109/JIOT.2020.3048345
10.1109/TMC.2019.2921713
10.1007/s11036-020-01624-1
10.1017/CBO9780511804441
10.1109/MCOM.001.1900649
10.1109/TWC.2020.3031503
10.1109/TITS.2021.3099597
10.1007/BF01130406
10.1109/TIFS.2019.2929409
10.1287/mnsc.13.7.492
10.1109/JSAC.2020.3000372
10.1109/TII.2019.2945367
10.1109/TWC.2018.2868679
10.1007/BF00941314
10.1109/TWC.2020.3042530
10.1109/TWC.2020.2982627
10.1016/j.amc.2010.01.088
10.1080/10556788.2016.1278445
10.1109/TNNLS.2019.2919699
10.1109/GLOBECOM38437.2019.9013160
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TPDS.2021.3131654
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2183
EndPage 2700
ExternalDocumentID 10_1109_TPDS_2021_3131654
9629331
Genre orig-research
GrantInformation_xml – fundername: Guangdong Basic and Applied Basic Research Foundation
  grantid: 2020A1515110496; 2020A1515110079
– fundername: National Natural Science Foundation of China
  grantid: 62102297; 62001357
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2020YFB1807500
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M692501
  funderid: 10.13039/501100002858
– fundername: Fundamental Research Funds for the Central Universities
  grantid: XJS210105; XJS210107
  funderid: 10.13039/501100012226
– fundername: Open Project of Shaanxi Key Laboratory of Information Communication Network and Security
  grantid: ICNS202005
GroupedDBID --Z
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
TWZ
UHB
5VS
AAYOK
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
RIG
RNI
RZB
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-a2db99ed1531cd86c03213d766cd5b8a5e028769eb9d640f30cbf32e7011c1803
IEDL.DBID RIE
ISSN 1045-9219
IngestDate Mon Jun 30 05:54:54 EDT 2025
Tue Jul 01 03:58:40 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 02:36:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a2db99ed1531cd86c03213d766cd5b8a5e028769eb9d640f30cbf32e7011c1803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8173-0408
0000-0001-7601-5434
0000-0001-5224-4048
0000-0002-5474-3286
PQID 2669160876
PQPubID 85437
PageCount 14
ParticipantIDs ieee_primary_9629331
crossref_primary_10_1109_TPDS_2021_3131654
crossref_citationtrail_10_1109_TPDS_2021_3131654
proquest_journals_2669160876
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on parallel and distributed systems
PublicationTitleAbbrev TPDS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
mcmahan (ref13) 2017
ref20
kone?n? (ref4) 2016
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1109/TNSE.2021.3053588
– ident: ref25
  doi: 10.1109/TCOMM.2015.2450724
– ident: ref27
  doi: 10.1887/0750308958/b386c48
– ident: ref3
  doi: 10.1109/JIOT.2019.2961707
– ident: ref14
  doi: 10.1109/TNET.2020.3035770
– ident: ref12
  doi: 10.1109/INFOCOM.2019.8737464
– ident: ref19
  doi: 10.1109/JIOT.2020.3048345
– ident: ref2
  doi: 10.1109/TMC.2019.2921713
– start-page: 1273
  year: 2017
  ident: ref13
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– ident: ref18
  doi: 10.1007/s11036-020-01624-1
– ident: ref24
  doi: 10.1017/CBO9780511804441
– ident: ref11
  doi: 10.1109/MCOM.001.1900649
– ident: ref1
  doi: 10.1109/TWC.2020.3031503
– ident: ref5
  doi: 10.1109/TITS.2021.3099597
– ident: ref21
  doi: 10.1007/BF01130406
– ident: ref6
  doi: 10.1109/TIFS.2019.2929409
– year: 2016
  ident: ref4
  article-title: Federated optimization: Distributed machine learning for on-device intelligence
– ident: ref22
  doi: 10.1287/mnsc.13.7.492
– ident: ref7
  doi: 10.1109/JSAC.2020.3000372
– ident: ref9
  doi: 10.1109/TII.2019.2945367
– ident: ref28
  doi: 10.1109/TWC.2018.2868679
– ident: ref23
  doi: 10.1007/BF00941314
– ident: ref10
  doi: 10.1109/TWC.2020.3042530
– ident: ref20
  doi: 10.1109/TWC.2020.2982627
– ident: ref26
  doi: 10.1016/j.amc.2010.01.088
– ident: ref16
  doi: 10.1080/10556788.2016.1278445
– ident: ref8
  doi: 10.1109/TNNLS.2019.2919699
– ident: ref15
  doi: 10.1109/GLOBECOM38437.2019.9013160
SSID ssj0014504
Score 2.6547463
Snippet Federated learning is a distributed machine learning technology that can protect users' data privacy, so it has attracted more and more attention in the...
Federated learning is a distributed machine learning technology that can protect users’ data privacy, so it has attracted more and more attention in the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2687
SubjectTerms Algorithms
Collaborative work
Computational modeling
Convergence
CPU-cycle frequency
Data models
Decomposition
Federated learning
Heuristic methods
Iterative algorithms
local accuracy
Machine learning
min-max cost
Mixed integer
Nonlinear programming
Optimization
Resource management
Servers
Smart devices
Subcarriers
Training
wireless edge networks
Wireless networks
Title Min-Max Cost Optimization for Efficient Hierarchical Federated Learning in Wireless Edge Networks
URI https://ieeexplore.ieee.org/document/9629331
https://www.proquest.com/docview/2669160876
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx6sT6wvcvAkpmazr-YotaUIrYIK3pbNY6VYt2K3IP56J9m0-EK87SFhA99m8s1mvm8ATnJTJFypmDKjChoFKqVC5iFVPJA6LWReGFflO0z699HVQ_ywBGcLLYwxxhWfmZZ9dHf5eqJm9lfZuUjwcLKi6WVM3Gqt1uLGIIpdq0DMLmIqcBv6G8yAifO7m8tbzAR5gAlqaNU7X84g11TlRyR2x0uvAYP5wuqqkqfWrJIt9f7Ns_G_K9-Adc8zyUX9YWzCkim3oDHv4UD8lt6CtU-GhNuQD0YlHeRvpDOZVuQaw8mz12kSJLek6_wm8E2kP7LCZddHZUx61pACOasm3q31kYxKYutqxxhHSVc_GjKsy82nO3Df6951-tQ3YaAqjEVFc66lEEZjZAyUbieKhTwIdZokSseynccGGUqaCCOFTiJWhEzJIuQmxcChgjYLd2GlnJRmDwiThTU45KlREuGKhY4iJnU75yqwqVsT2ByWTHmHctsoY5y5TIWJzCKZWSQzj2QTThdTXmp7jr8Gb1tkFgM9KE04nGOf-Q08zZC3IHG2fn37v886gFVulRBOlngIK9XrzBwhP6nksfswPwCS4uGA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5C7LBxgA2G6MaYD5ymudhOnNRHBK26QcukFYlbFP8IqijptKbStL9-z45bwZjQbjnYsqXPfj_i930P4Lh0VSaMkZQ5U9GUm5wqXSbUCK5tXumycqHKd5wNr9OvN_JmAz6vuTDOuVB85rr-M7zl27lZ-l9lJypD5-RJ0y_Q70vesrXWbwapDM0CMb-QVOFFjG-YnKmTybfz75gLCo4pauL5O4-8UGir8sQWBwcz2IHRamttXcldd9norvn9l2rj_-79NWzHSJOctkfjDWy4ehd2Vl0cSLzUu7D1QJJwD8rRtKaj8hc5my8acoUG5T4yNQmGt6QfFCdwJTKceupy6KQyIwMvSYFRqyVRr_WWTGviK2tnaElJ3946Mm4Lzhdv4XrQn5wNaWzDQE0iVUNLYbVSzqJt5Mb2MsMSwRObZ5mxUvdK6TBGyTPltLJZyqqEGV0lwuVoOgzvsWQfNut57Q6AMF15iUORO6MRLqlsmjJte6Uw3CdvHWArWAoTNcp9q4xZEXIVpgqPZOGRLCKSHfi0nvKjFeh4bvCeR2Y9MILSgcMV9kW8wosCIxcMnb1i37t_z_oIL4eT0WVx-WV88R5eCc-LCCTFQ9hsfi7dB4xWGn0UDukfgIHkyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Min-Max+Cost+Optimization+for+Efficient+Hierarchical+Federated+Learning+in+Wireless+Edge+Networks&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Feng%2C+Jie&rft.au=Liu%2C+Lei&rft.au=Pei%2C+Qingqi&rft.au=Li%2C+Keqin&rft.date=2022-11-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTPDS.2021.3131654&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2021_3131654
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon