Min-Max Cost Optimization for Efficient Hierarchical Federated Learning in Wireless Edge Networks
Federated learning is a distributed machine learning technology that can protect users' data privacy, so it has attracted more and more attention in the industry and academia. Nonetheless, most of the existing works focused on the cost optimization of the entire process, while the cost of indiv...
Saved in:
Published in | IEEE transactions on parallel and distributed systems Vol. 33; no. 11; pp. 2687 - 2700 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Federated learning is a distributed machine learning technology that can protect users' data privacy, so it has attracted more and more attention in the industry and academia. Nonetheless, most of the existing works focused on the cost optimization of the entire process, while the cost of individual participants cannot be considered. In this article, we explore a min-max cost-optimal problem to guarantee the convergence rate of federated learning in terms of cost in wireless edge networks. In particular, we minimize the cost of the worst-case participant subject to the delay, local CPU-cycle frequency, power allocation, local accuracy, and subcarrier assignment constraints. Considering that the formulated problem is a mixed-integer nonlinear programming problem, we decompose it into several sub-problems to derive its solutions, in which the subcarrier assignment and power allocation are obtained by utilizing the Lagrangian dual decomposition method, the CPU-cycle frequency is obtained by a heuristic algorithm, and the local accuracy is obtained by an iteration algorithm. Simulation results show the convergence of the proposed algorithm and reveal that the proposed scheme can accomplish a tradeoff between the cost and fairness by comparing the proposed scheme with the existing schemes. |
---|---|
AbstractList | Federated learning is a distributed machine learning technology that can protect users' data privacy, so it has attracted more and more attention in the industry and academia. Nonetheless, most of the existing works focused on the cost optimization of the entire process, while the cost of individual participants cannot be considered. In this article, we explore a min-max cost-optimal problem to guarantee the convergence rate of federated learning in terms of cost in wireless edge networks. In particular, we minimize the cost of the worst-case participant subject to the delay, local CPU-cycle frequency, power allocation, local accuracy, and subcarrier assignment constraints. Considering that the formulated problem is a mixed-integer nonlinear programming problem, we decompose it into several sub-problems to derive its solutions, in which the subcarrier assignment and power allocation are obtained by utilizing the Lagrangian dual decomposition method, the CPU-cycle frequency is obtained by a heuristic algorithm, and the local accuracy is obtained by an iteration algorithm. Simulation results show the convergence of the proposed algorithm and reveal that the proposed scheme can accomplish a tradeoff between the cost and fairness by comparing the proposed scheme with the existing schemes. |
Author | Pei, Qingqi Li, Keqin Feng, Jie Liu, Lei |
Author_xml | – sequence: 1 givenname: Jie orcidid: 0000-0002-5474-3286 surname: Feng fullname: Feng, Jie email: jiefengcl@163.com organization: State Key Laboratory of ISN, School of Telecommunication Engineering, Xidian University, Xi'an, Shaanxi, China – sequence: 2 givenname: Lei orcidid: 0000-0001-8173-0408 surname: Liu fullname: Liu, Lei email: tianjiaoliulei@163.com organization: State Key Laboratory of ISN, School of Telecommunication Engineering, Xidian University, Xi'an, Shannxi, China – sequence: 3 givenname: Qingqi orcidid: 0000-0001-7601-5434 surname: Pei fullname: Pei, Qingqi email: qqpei@mail.xidian.edu.cn organization: State Key Laboratory of ISN, School of Telecommunication Engineering, Xidian University, Xi'an, Shannxi, China – sequence: 4 givenname: Keqin orcidid: 0000-0001-5224-4048 surname: Li fullname: Li, Keqin email: lik@newpaltz.edu organization: Department of Computer Science, State University of New York, New Paltz, NY, USA |
BookMark | eNp9kE1LAzEQhoMo-PkDxEvA89ZMskk3R6mtCvUDVDwu2WRWozVbkxQ_fr1bKx48eJoZeJ954dkm66ELSMg-sAEA00e31yc3A844DAQIULJcI1sgZVVwqMR6v7NSFpqD3iTbKT0xBqVk5RYxFz4UF-adjrqU6dU8-xf_abLvAm27SMdt663HkOmZx2iiffTWzOgEXX9ldHSKJgYfHqgP9N5HnGFKdOwekF5ifuvic9olG62ZJdz7mTvkbjK-HZ0V06vT89HxtLBC6lwY7hqt0YEUYF2lLBMchBsqZZ1sKiOR8WqoNDbaqZK1gtmmFRyHDMBCxcQOOVz9ncfudYEp10_dIoa-suZKaVCsx_sUrFI2dilFbOt59C8mftTA6qXJemmyXpqsf0z2zPAPY33-dpSj8bN_yYMV6RHxt0krrkUf-QKd0IKX |
CODEN | ITDSEO |
CitedBy_id | crossref_primary_10_1109_TCOMM_2024_3420733 crossref_primary_10_1109_TMC_2023_3294180 crossref_primary_10_1109_TWC_2022_3190512 crossref_primary_10_1186_s13677_023_00411_z crossref_primary_10_1109_JIOT_2021_3139222 crossref_primary_10_1109_ACCESS_2024_3452190 crossref_primary_10_1109_TCOMM_2023_3324029 crossref_primary_10_1109_JIOT_2022_3150042 crossref_primary_10_1109_JSAC_2023_3313195 crossref_primary_10_1109_TSUSC_2022_3217014 crossref_primary_10_1155_2022_8768928 crossref_primary_10_1109_JSAC_2023_3345382 crossref_primary_10_1155_2022_8482415 crossref_primary_10_1109_JIOT_2022_3204637 crossref_primary_10_1109_JIOT_2024_3410176 crossref_primary_10_1109_TPDS_2024_3413751 crossref_primary_10_1109_OJCOMS_2023_3290625 crossref_primary_10_1109_TNSM_2023_3240396 crossref_primary_10_1109_TII_2024_3441659 crossref_primary_10_1109_TNSE_2024_3447904 crossref_primary_10_1109_TGCN_2022_3158953 crossref_primary_10_1109_TNSM_2022_3197457 crossref_primary_10_1155_2022_7787866 crossref_primary_10_1109_TCOMM_2022_3163439 crossref_primary_10_1109_JIOT_2023_3314743 crossref_primary_10_1109_JIOT_2022_3222521 crossref_primary_10_1155_2022_9358531 crossref_primary_10_1109_TITS_2023_3249745 crossref_primary_10_1186_s13677_022_00375_6 crossref_primary_10_1109_TVT_2024_3427349 crossref_primary_10_1109_TWC_2022_3167263 crossref_primary_10_1109_JIOT_2022_3224533 crossref_primary_10_1109_JIOT_2024_3367791 crossref_primary_10_1109_TPDS_2023_3238049 crossref_primary_10_1109_TMC_2023_3273425 crossref_primary_10_1155_2022_3222979 crossref_primary_10_1109_TCC_2025_3530681 crossref_primary_10_1109_JIOT_2022_3188631 crossref_primary_10_1109_JIOT_2023_3271692 crossref_primary_10_1109_TCCN_2024_3451711 crossref_primary_10_1109_TITS_2023_3275741 crossref_primary_10_1155_2022_7494127 crossref_primary_10_1109_JIOT_2023_3330754 crossref_primary_10_1109_TCC_2023_3285534 crossref_primary_10_1109_TWC_2022_3233035 crossref_primary_10_1155_2022_4384954 crossref_primary_10_1155_2022_3091495 crossref_primary_10_1155_2022_8350006 crossref_primary_10_1109_TVT_2023_3246466 crossref_primary_10_1155_2022_7099494 crossref_primary_10_1109_TVT_2024_3379742 crossref_primary_10_1109_TPDS_2022_3218807 crossref_primary_10_1109_JIOT_2024_3455425 crossref_primary_10_1109_TWC_2023_3265458 crossref_primary_10_1109_COMST_2024_3352910 crossref_primary_10_1109_TCOMM_2023_3314892 crossref_primary_10_1109_JSAC_2023_3345397 crossref_primary_10_1155_2022_4542705 |
Cites_doi | 10.1109/TNSE.2021.3053588 10.1109/TCOMM.2015.2450724 10.1887/0750308958/b386c48 10.1109/JIOT.2019.2961707 10.1109/TNET.2020.3035770 10.1109/INFOCOM.2019.8737464 10.1109/JIOT.2020.3048345 10.1109/TMC.2019.2921713 10.1007/s11036-020-01624-1 10.1017/CBO9780511804441 10.1109/MCOM.001.1900649 10.1109/TWC.2020.3031503 10.1109/TITS.2021.3099597 10.1007/BF01130406 10.1109/TIFS.2019.2929409 10.1287/mnsc.13.7.492 10.1109/JSAC.2020.3000372 10.1109/TII.2019.2945367 10.1109/TWC.2018.2868679 10.1007/BF00941314 10.1109/TWC.2020.3042530 10.1109/TWC.2020.2982627 10.1016/j.amc.2010.01.088 10.1080/10556788.2016.1278445 10.1109/TNNLS.2019.2919699 10.1109/GLOBECOM38437.2019.9013160 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TPDS.2021.3131654 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1558-2183 |
EndPage | 2700 |
ExternalDocumentID | 10_1109_TPDS_2021_3131654 9629331 |
Genre | orig-research |
GrantInformation_xml | – fundername: Guangdong Basic and Applied Basic Research Foundation grantid: 2020A1515110496; 2020A1515110079 – fundername: National Natural Science Foundation of China grantid: 62102297; 62001357 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2020YFB1807500 – fundername: China Postdoctoral Science Foundation grantid: 2021M692501 funderid: 10.13039/501100002858 – fundername: Fundamental Research Funds for the Central Universities grantid: XJS210105; XJS210107 funderid: 10.13039/501100012226 – fundername: Open Project of Shaanxi Key Laboratory of Information Communication Network and Security grantid: ICNS202005 |
GroupedDBID | --Z -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS TN5 TWZ UHB 5VS AAYOK AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L H~9 ICLAB IFJZH RIG RNI RZB VH1 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-a2db99ed1531cd86c03213d766cd5b8a5e028769eb9d640f30cbf32e7011c1803 |
IEDL.DBID | RIE |
ISSN | 1045-9219 |
IngestDate | Mon Jun 30 05:54:54 EDT 2025 Tue Jul 01 03:58:40 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 02:36:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-a2db99ed1531cd86c03213d766cd5b8a5e028769eb9d640f30cbf32e7011c1803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8173-0408 0000-0001-7601-5434 0000-0001-5224-4048 0000-0002-5474-3286 |
PQID | 2669160876 |
PQPubID | 85437 |
PageCount | 14 |
ParticipantIDs | ieee_primary_9629331 crossref_primary_10_1109_TPDS_2021_3131654 crossref_citationtrail_10_1109_TPDS_2021_3131654 proquest_journals_2669160876 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-01 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on parallel and distributed systems |
PublicationTitleAbbrev | TPDS |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 mcmahan (ref13) 2017 ref20 kone?n? (ref4) 2016 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref3 ref6 ref5 |
References_xml | – ident: ref17 doi: 10.1109/TNSE.2021.3053588 – ident: ref25 doi: 10.1109/TCOMM.2015.2450724 – ident: ref27 doi: 10.1887/0750308958/b386c48 – ident: ref3 doi: 10.1109/JIOT.2019.2961707 – ident: ref14 doi: 10.1109/TNET.2020.3035770 – ident: ref12 doi: 10.1109/INFOCOM.2019.8737464 – ident: ref19 doi: 10.1109/JIOT.2020.3048345 – ident: ref2 doi: 10.1109/TMC.2019.2921713 – start-page: 1273 year: 2017 ident: ref13 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc 20th Int Conf Artif Intell Statist – ident: ref18 doi: 10.1007/s11036-020-01624-1 – ident: ref24 doi: 10.1017/CBO9780511804441 – ident: ref11 doi: 10.1109/MCOM.001.1900649 – ident: ref1 doi: 10.1109/TWC.2020.3031503 – ident: ref5 doi: 10.1109/TITS.2021.3099597 – ident: ref21 doi: 10.1007/BF01130406 – ident: ref6 doi: 10.1109/TIFS.2019.2929409 – year: 2016 ident: ref4 article-title: Federated optimization: Distributed machine learning for on-device intelligence – ident: ref22 doi: 10.1287/mnsc.13.7.492 – ident: ref7 doi: 10.1109/JSAC.2020.3000372 – ident: ref9 doi: 10.1109/TII.2019.2945367 – ident: ref28 doi: 10.1109/TWC.2018.2868679 – ident: ref23 doi: 10.1007/BF00941314 – ident: ref10 doi: 10.1109/TWC.2020.3042530 – ident: ref20 doi: 10.1109/TWC.2020.2982627 – ident: ref26 doi: 10.1016/j.amc.2010.01.088 – ident: ref16 doi: 10.1080/10556788.2016.1278445 – ident: ref8 doi: 10.1109/TNNLS.2019.2919699 – ident: ref15 doi: 10.1109/GLOBECOM38437.2019.9013160 |
SSID | ssj0014504 |
Score | 2.6547463 |
Snippet | Federated learning is a distributed machine learning technology that can protect users' data privacy, so it has attracted more and more attention in the... Federated learning is a distributed machine learning technology that can protect users’ data privacy, so it has attracted more and more attention in the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2687 |
SubjectTerms | Algorithms Collaborative work Computational modeling Convergence CPU-cycle frequency Data models Decomposition Federated learning Heuristic methods Iterative algorithms local accuracy Machine learning min-max cost Mixed integer Nonlinear programming Optimization Resource management Servers Smart devices Subcarriers Training wireless edge networks Wireless networks |
Title | Min-Max Cost Optimization for Efficient Hierarchical Federated Learning in Wireless Edge Networks |
URI | https://ieeexplore.ieee.org/document/9629331 https://www.proquest.com/docview/2669160876 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx6sT6wvcvAkpmazr-YotaUIrYIK3pbNY6VYt2K3IP56J9m0-EK87SFhA99m8s1mvm8ATnJTJFypmDKjChoFKqVC5iFVPJA6LWReGFflO0z699HVQ_ywBGcLLYwxxhWfmZZ9dHf5eqJm9lfZuUjwcLKi6WVM3Gqt1uLGIIpdq0DMLmIqcBv6G8yAifO7m8tbzAR5gAlqaNU7X84g11TlRyR2x0uvAYP5wuqqkqfWrJIt9f7Ns_G_K9-Adc8zyUX9YWzCkim3oDHv4UD8lt6CtU-GhNuQD0YlHeRvpDOZVuQaw8mz12kSJLek6_wm8E2kP7LCZddHZUx61pACOasm3q31kYxKYutqxxhHSVc_GjKsy82nO3Df6951-tQ3YaAqjEVFc66lEEZjZAyUbieKhTwIdZokSseynccGGUqaCCOFTiJWhEzJIuQmxcChgjYLd2GlnJRmDwiThTU45KlREuGKhY4iJnU75yqwqVsT2ByWTHmHctsoY5y5TIWJzCKZWSQzj2QTThdTXmp7jr8Gb1tkFgM9KE04nGOf-Q08zZC3IHG2fn37v886gFVulRBOlngIK9XrzBwhP6nksfswPwCS4uGA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5C7LBxgA2G6MaYD5ymudhOnNRHBK26QcukFYlbFP8IqijptKbStL9-z45bwZjQbjnYsqXPfj_i930P4Lh0VSaMkZQ5U9GUm5wqXSbUCK5tXumycqHKd5wNr9OvN_JmAz6vuTDOuVB85rr-M7zl27lZ-l9lJypD5-RJ0y_Q70vesrXWbwapDM0CMb-QVOFFjG-YnKmTybfz75gLCo4pauL5O4-8UGir8sQWBwcz2IHRamttXcldd9norvn9l2rj_-79NWzHSJOctkfjDWy4ehd2Vl0cSLzUu7D1QJJwD8rRtKaj8hc5my8acoUG5T4yNQmGt6QfFCdwJTKceupy6KQyIwMvSYFRqyVRr_WWTGviK2tnaElJ3946Mm4Lzhdv4XrQn5wNaWzDQE0iVUNLYbVSzqJt5Mb2MsMSwRObZ5mxUvdK6TBGyTPltLJZyqqEGV0lwuVoOgzvsWQfNut57Q6AMF15iUORO6MRLqlsmjJte6Uw3CdvHWArWAoTNcp9q4xZEXIVpgqPZOGRLCKSHfi0nvKjFeh4bvCeR2Y9MILSgcMV9kW8wosCIxcMnb1i37t_z_oIL4eT0WVx-WV88R5eCc-LCCTFQ9hsfi7dB4xWGn0UDukfgIHkyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Min-Max+Cost+Optimization+for+Efficient+Hierarchical+Federated+Learning+in+Wireless+Edge+Networks&rft.jtitle=IEEE+transactions+on+parallel+and+distributed+systems&rft.au=Feng%2C+Jie&rft.au=Liu%2C+Lei&rft.au=Pei%2C+Qingqi&rft.au=Li%2C+Keqin&rft.date=2022-11-01&rft.issn=1045-9219&rft.eissn=1558-2183&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTPDS.2021.3131654&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPDS_2021_3131654 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1045-9219&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1045-9219&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1045-9219&client=summon |