Graphs Drawn With Some Vertices per Face: Density and Relationships

Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric representations of non-planar graphs. This research area stems from the study of graph layouts with fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 68828 - 68846
Main Authors Binucci, Carla, Di Battista, Giuseppe, Didimo, Walter, Dujmovic, Vida, Hong, Seok-Hee, Kaufmann, Michael, Liotta, Giuseppe, Morin, Pat, Tappini, Alessandra
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric representations of non-planar graphs. This research area stems from the study of graph layouts with forbidden crossing configurations, a well-established subject in geometric and topological graph theory. In this context, the contribution of this paper is as follows: 1) We introduce a new hierarchy of graph families, called <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs; for any integer <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>, a graph G is a <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graph if it admits a drawing <inline-formula> <tex-math notation="LaTeX">\Gamma </tex-math></inline-formula> in the plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k vertices of G ("<inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>" stands for k or more); 2) We give tight upper bounds on the edge density of <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs, namely we prove that n-vertex <inline-formula> <tex-math notation="LaTeX">1^{+} </tex-math></inline-formula>-real face and <inline-formula> <tex-math notation="LaTeX">2^{+} </tex-math></inline-formula>-real face graphs have at most <inline-formula> <tex-math notation="LaTeX">5n-10 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">4n-8 </tex-math></inline-formula> edges, respectively. Furthermore, in a constrained scenario in which all vertices must lie on the boundary of the external face, <inline-formula> <tex-math notation="LaTeX">1^{+} </tex-math></inline-formula>-real face and <inline-formula> <tex-math notation="LaTeX">2^{+} </tex-math></inline-formula>-real face graphs have at most <inline-formula> <tex-math notation="LaTeX">3n-6 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">2.5n-4 </tex-math></inline-formula> edges, respectively; 3) We characterize the complete graphs that admit a <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face drawing or an outer <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face drawing for any <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>. We also provide a clear picture for the majority of complete bipartite graphs; and 4) We establish relationships between <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs and other prominent beyond-planar graph families; notably, we show that for any <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>, the class of <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs is not included in any family of beyond-planar graphs with hereditary property.
AbstractList Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric representations of non-planar graphs. This research area stems from the study of graph layouts with forbidden crossing configurations, a well-established subject in geometric and topological graph theory. In this context, the contribution of this paper is as follows: 1) We introduce a new hierarchy of graph families, called <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs; for any integer <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>, a graph G is a <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graph if it admits a drawing <inline-formula> <tex-math notation="LaTeX">\Gamma </tex-math></inline-formula> in the plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k vertices of G ("<inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>" stands for k or more); 2) We give tight upper bounds on the edge density of <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs, namely we prove that n-vertex <inline-formula> <tex-math notation="LaTeX">1^{+} </tex-math></inline-formula>-real face and <inline-formula> <tex-math notation="LaTeX">2^{+} </tex-math></inline-formula>-real face graphs have at most <inline-formula> <tex-math notation="LaTeX">5n-10 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">4n-8 </tex-math></inline-formula> edges, respectively. Furthermore, in a constrained scenario in which all vertices must lie on the boundary of the external face, <inline-formula> <tex-math notation="LaTeX">1^{+} </tex-math></inline-formula>-real face and <inline-formula> <tex-math notation="LaTeX">2^{+} </tex-math></inline-formula>-real face graphs have at most <inline-formula> <tex-math notation="LaTeX">3n-6 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">2.5n-4 </tex-math></inline-formula> edges, respectively; 3) We characterize the complete graphs that admit a <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face drawing or an outer <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face drawing for any <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>. We also provide a clear picture for the majority of complete bipartite graphs; and 4) We establish relationships between <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs and other prominent beyond-planar graph families; notably, we show that for any <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>, the class of <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs is not included in any family of beyond-planar graphs with hereditary property.
Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric representations of non-planar graphs. This research area stems from the study of graph layouts with forbidden crossing configurations, a well-established subject in geometric and topological graph theory. In this context, the contribution of this paper is as follows: 1) We introduce a new hierarchy of graph families, called [Formula Omitted]-real face graphs; for any integer [Formula Omitted], a graph G is a [Formula Omitted]-real face graph if it admits a drawing [Formula Omitted] in the plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k vertices of G (“[Formula Omitted]” stands for k or more); 2) We give tight upper bounds on the edge density of [Formula Omitted]-real face graphs, namely we prove that n-vertex [Formula Omitted]-real face and [Formula Omitted]-real face graphs have at most [Formula Omitted] and [Formula Omitted] edges, respectively. Furthermore, in a constrained scenario in which all vertices must lie on the boundary of the external face, [Formula Omitted]-real face and [Formula Omitted]-real face graphs have at most [Formula Omitted] and [Formula Omitted] edges, respectively; 3) We characterize the complete graphs that admit a [Formula Omitted]-real face drawing or an outer [Formula Omitted]-real face drawing for any [Formula Omitted]. We also provide a clear picture for the majority of complete bipartite graphs; and 4) We establish relationships between [Formula Omitted]-real face graphs and other prominent beyond-planar graph families; notably, we show that for any [Formula Omitted], the class of [Formula Omitted]-real face graphs is not included in any family of beyond-planar graphs with hereditary property.
Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric representations of non-planar graphs. This research area stems from the study of graph layouts with forbidden crossing configurations, a well-established subject in geometric and topological graph theory. In this context, the contribution of this paper is as follows: 1) We introduce a new hierarchy of graph families, called <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face graphs; for any integer <tex-math notation="LaTeX">$k \geq 1$ </tex-math>, a graph G is a <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face graph if it admits a drawing <tex-math notation="LaTeX">$\Gamma $ </tex-math> in the plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k vertices of G (" <tex-math notation="LaTeX">$k^{+}$ </tex-math>" stands for k or more); 2) We give tight upper bounds on the edge density of <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face graphs, namely we prove that n-vertex <tex-math notation="LaTeX">$1^{+}$ </tex-math>-real face and <tex-math notation="LaTeX">$2^{+}$ </tex-math>-real face graphs have at most <tex-math notation="LaTeX">$5n-10$ </tex-math> and <tex-math notation="LaTeX">$4n-8$ </tex-math> edges, respectively. Furthermore, in a constrained scenario in which all vertices must lie on the boundary of the external face, <tex-math notation="LaTeX">$1^{+}$ </tex-math>-real face and <tex-math notation="LaTeX">$2^{+}$ </tex-math>-real face graphs have at most <tex-math notation="LaTeX">$3n-6$ </tex-math> and <tex-math notation="LaTeX">$2.5n-4$ </tex-math> edges, respectively; 3) We characterize the complete graphs that admit a <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face drawing or an outer <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face drawing for any <tex-math notation="LaTeX">$k \geq 1$ </tex-math>. We also provide a clear picture for the majority of complete bipartite graphs; and 4) We establish relationships between <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face graphs and other prominent beyond-planar graph families; notably, we show that for any <tex-math notation="LaTeX">$k \geq 1$ </tex-math>, the class of <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face graphs is not included in any family of beyond-planar graphs with hereditary property.
Author Binucci, Carla
Morin, Pat
Di Battista, Giuseppe
Liotta, Giuseppe
Didimo, Walter
Dujmovic, Vida
Hong, Seok-Hee
Kaufmann, Michael
Tappini, Alessandra
Author_xml – sequence: 1
  givenname: Carla
  orcidid: 0000-0002-5320-9110
  surname: Binucci
  fullname: Binucci, Carla
  organization: Department of Engineering, University of Perugia, Perugia, Italy
– sequence: 2
  givenname: Giuseppe
  orcidid: 0000-0003-4224-1550
  surname: Di Battista
  fullname: Di Battista, Giuseppe
  organization: Department of Civil, Computer Science and Aeronautical Technologies Engineering, University "Roma Tre", Roma, Italy
– sequence: 3
  givenname: Walter
  orcidid: 0000-0002-4379-6059
  surname: Didimo
  fullname: Didimo, Walter
  organization: Department of Engineering, University of Perugia, Perugia, Italy
– sequence: 4
  givenname: Vida
  orcidid: 0000-0001-7250-0600
  surname: Dujmovic
  fullname: Dujmovic, Vida
  organization: School of Computer Science and Electrical Engineering, University of Ottawa, Ottawa, ON, Canada
– sequence: 5
  givenname: Seok-Hee
  orcidid: 0000-0003-1698-3868
  surname: Hong
  fullname: Hong, Seok-Hee
  organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia
– sequence: 6
  givenname: Michael
  orcidid: 0000-0001-9186-3538
  surname: Kaufmann
  fullname: Kaufmann, Michael
  organization: Wilhelm-Schickard Institut für Informatik, University of Tübingen, Tübingen, Germany
– sequence: 7
  givenname: Giuseppe
  orcidid: 0000-0002-2886-9694
  surname: Liotta
  fullname: Liotta, Giuseppe
  organization: Department of Engineering, University of Perugia, Perugia, Italy
– sequence: 8
  givenname: Pat
  orcidid: 0000-0003-0471-4118
  surname: Morin
  fullname: Morin, Pat
  organization: School of Computer Science, Carleton University, Ottawa, ON, Canada
– sequence: 9
  givenname: Alessandra
  orcidid: 0000-0001-9192-2067
  surname: Tappini
  fullname: Tappini, Alessandra
  email: alessandra.tappini@unipg.it
  organization: Department of Engineering, University of Perugia, Perugia, Italy
BookMark eNpNUMtKBDEQDKLg8wv0EPC8a54zE28yrqsgCK6PY0gyHXeWdTIms4h_b9YRsS_dNFXV1XWIdrvQAUKnlEwpJeriqq5ni8WUESamXBBKymoHHTBaqAmXvNj9N--jk5RWJFeVV7I8QPU8mn6Z8HU0nx1-bYclXoR3wC8Qh9ZBwj1EfGMcXOJr6FI7fGHTNfgR1mZoQ5eWbZ-O0Z436wQnv_0IPd_Mnurbyf3D_K6-up84LtUwMawE6ryVXFW8KZSAilnHGuYpeKIcZ0I66qRRjWqE9fmTBlTGF4pTmjlH6G7UbYJZ6T627yZ-6WBa_bMI8U2bres16KKsrDOV9Y0VQtnSeinAuUoYroS3RdY6H7X6GD42kAa9CpvYZfuaE1kxlU2qjOIjysWQUgT_d5USvQ1fj-Hrbfj6N_zMOhtZLQD8Y0ieUZR_A9CLgTw
CODEN IAECCG
Cites_doi 10.1109/aike48582.2020.00034
10.1002/9780470073049.ch3
10.1007/978-3-319-21840-3_25
10.1007/s00454-009-9143-9
10.1016/j.cosrev.2017.06.002
10.1007/s00453-016-0226-8
10.1016/j.disc.2009.07.016
10.1016/j.comgeo.2019.101574
10.1016/j.dam.2018.08.018
10.1109/tvcg.2022.3222186
10.1007/978-3-031-43380-1_7
10.1007/978-3-662-45803-7_16
10.1007/978-3-319-03841-4_7
10.1016/j.comgeo.2015.06.001
10.1007/978-3-031-49272-3_17
10.1112/jlms/s1-10.37.26
10.1007/s00454-006-1264-9
10.1016/j.jvlc.2014.03.001
10.1016/j.ipl.2013.01.013
10.1007/BF01215922
10.1007/3-540-44969-8
10.1016/j.jctb.2019.08.006
10.1016/j.tcs.2015.04.020
10.1201/b16132-57
10.1007/3-540-62495-3_59
10.1002/jgt.3190170602
10.1201/b15385
10.1007/978-981-15-6533-5_1
10.1016/j.tcs.2021.09.015
10.1016/j.disc.2017.01.022
10.7155/jgaa.00457
10.1201/9781420035315.ch10
10.1007/s00373-018-1932-6
10.1007/978-981-15-6533-5_4
10.1016/S0021-9800(70)80087-4
10.37236/8255
10.1016/S0925-7721(03)00027-0
10.1145/3301281
10.1007/978-981-15-6533-5_9
10.1111/j.1467-8659.2011.01898.x
10.1016/j.dam.2012.11.019
10.1016/j.tcs.2016.04.026
10.1016/j.dam.2014.05.025
10.7155/jgaa.00398
10.1007/978-3-642-11805-0_4
10.1007/BF02187731
10.1007/978-3-642-18469-7_1
10.37236/10521
10.1016/j.tcs.2018.05.029
10.1007/978-3-642-32241-9_29
10.1109/iisa.2016.7785427
10.1002/jgt.3190120306
10.1007/978-3-319-91908-9_6
10.1109/tvcg.2017.2743858
10.1111/cgf.14733
10.1007/s00224-010-9275-6
10.1007/s00453-014-9890-8
10.1007/978-3-319-13075-0_50
10.1016/j.tcs.2011.05.025
10.1016/j.disc.2023.113553
10.1016/j.jcta.2006.08.002
10.1007/BF02574361
10.1016/j.disc.2012.08.019
10.1007/s00453-016-0200-5
10.1007/978-3-031-49272-3_3
10.1007/s00453-015-0002-1
10.1109/access.2020.3047616
10.1016/j.disc.2018.12.002
10.1109/access.2020.2967974
10.1007/978-3-319-27261-0_24
10.4064/fm-41-1-137-145
10.1007/978-3-662-45803-7_17
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3401078
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 68846
ExternalDocumentID oai_doaj_org_article_678bca8bfdb449b7bf54ecc84a394fb6
10_1109_ACCESS_2024_3401078
10530241
Genre orig-research
GrantInformation_xml – fundername: Department of Engineering, University of Perugia, Ricerca di Base, “Modelli, algoritmi e sistemi per la visualizzazione e l’analisi di grafi e reti”
  grantid: RICBA22CB
– fundername: Summer Workshop on Graph Drawing (SWGD) 2022
– fundername: Italian Ministry for Universities and Research (MUR) Research Projects of National Relevance (PRIN)—“EXPAND: scalable algorithms for EXPloratory Analyses of heterogeneous and dynamic Networked Data”
  grantid: 2022TS4Y3N
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-a27e1cfb53983d694e82bc2d2f1ef09c3245c1c5a9d9d4bf010de9fb569311983
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:28 EDT 2025
Mon Jun 30 05:10:20 EDT 2025
Tue Jul 01 04:14:35 EDT 2025
Wed Aug 27 02:05:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a27e1cfb53983d694e82bc2d2f1ef09c3245c1c5a9d9d4bf010de9fb569311983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5320-9110
0000-0002-2886-9694
0000-0003-0471-4118
0000-0003-4224-1550
0000-0001-7250-0600
0000-0003-1698-3868
0000-0002-4379-6059
0000-0001-9192-2067
0000-0001-9186-3538
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10530241
PQID 3058293989
PQPubID 4845423
PageCount 19
ParticipantIDs ieee_primary_10530241
crossref_primary_10_1109_ACCESS_2024_3401078
doaj_primary_oai_doaj_org_article_678bca8bfdb449b7bf54ecc84a394fb6
proquest_journals_3058293989
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
Consalvi (ref6); 3340
ref53
ref52
ref11
ref55
ref10
ref54
Hong (ref18) 2016; 6
Bachmaier (ref36) 2018; 11282
ref17
ref16
ref19
Fáry (ref70) 1948; 11
Bekos (ref76); 77
ref51
ref50
ref45
ref47
ref42
ref86
ref41
Kaufmann (ref65) 2023
ref85
ref43
Kaufmann (ref4) 2001; 2025
Di Battista (ref3) 1999
ref49
ref8
Du Preez (ref60) 2021; 80
ref9
ref5
ref82
ref81
ref40
ref84
Didimo (ref7) 2006
ref83
ref80
ref35
ref79
ref34
ref78
ref31
ref75
ref30
ref74
ref33
ref77
ref32
Dujmovic (ref44) 2011; 2011
ref1
Bae (ref37) 2017; 10692
ref39
ref38
ref71
ref73
ref72
Avital (ref46) 1966; 3
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
Tamassia (ref2) 2013
ref28
ref27
ref29
Kupitz (ref48) 1979
ref62
ref61
References_xml – ident: ref12
  doi: 10.1109/aike48582.2020.00034
– volume: 6
  start-page: 35
  issue: 11
  volume-title: Dagstuhl Rep.
  year: 2016
  ident: ref18
  article-title: Beyond-planar graphs: Algorithmics and combinatorics (Dagstuhl seminar 16452)
– start-page: 35
  volume-title: Graph Visualization and Data Mining
  year: 2006
  ident: ref7
  doi: 10.1002/9780470073049.ch3
– ident: ref71
  doi: 10.1007/978-3-319-21840-3_25
– volume: 11
  start-page: 229
  year: 1948
  ident: ref70
  article-title: On straight-line representation of planar graphs
  publication-title: Acta Sci. Math.
– ident: ref21
  doi: 10.1007/s00454-009-9143-9
– ident: ref19
  doi: 10.1016/j.cosrev.2017.06.002
– ident: ref49
  doi: 10.1007/s00453-016-0226-8
– volume: 80
  start-page: 401
  issue: 3
  year: 2021
  ident: ref60
  article-title: Plane graphs with large faces and small diameter
  publication-title: Australas. J. Combinatorics
– ident: ref56
  doi: 10.1016/j.disc.2009.07.016
– ident: ref67
  doi: 10.1016/j.comgeo.2019.101574
– ident: ref81
  doi: 10.1016/j.dam.2018.08.018
– ident: ref10
  doi: 10.1109/tvcg.2022.3222186
– ident: ref1
  doi: 10.1007/978-3-031-43380-1_7
– ident: ref34
  doi: 10.1007/978-3-662-45803-7_16
– ident: ref64
  doi: 10.1007/978-3-319-03841-4_7
– ident: ref25
  doi: 10.1016/j.comgeo.2015.06.001
– ident: ref85
  doi: 10.1007/978-3-031-49272-3_17
– ident: ref69
  doi: 10.1112/jlms/s1-10.37.26
– volume: 2011
  issue: 4
  year: 2011
  ident: ref44
  article-title: Notes on large angle crossing graphs
  publication-title: Chicago J. Theor. Comput. Sci.
– ident: ref66
  doi: 10.1007/s00454-006-1264-9
– volume: 3340
  start-page: 27
  volume-title: Proc. 1st Italian Conf. Big Data Data Sci.
  ident: ref6
  article-title: In-browser visualization of large-scale graphs
– ident: ref45
  doi: 10.1016/j.jvlc.2014.03.001
– ident: ref63
  doi: 10.1016/j.ipl.2013.01.013
– ident: ref20
  doi: 10.1007/BF01215922
– volume: 2025
  volume-title: Drawing Graphs: Methods and Models
  year: 2001
  ident: ref4
  doi: 10.1007/3-540-44969-8
– ident: ref58
  doi: 10.1016/j.jctb.2019.08.006
– ident: ref33
  doi: 10.1016/j.tcs.2015.04.020
– ident: ref47
  doi: 10.1201/b16132-57
– ident: ref52
  doi: 10.1007/3-540-62495-3_59
– ident: ref80
  doi: 10.1002/jgt.3190170602
– volume-title: Extremal Problems in Combinatorial Geometry
  year: 1979
  ident: ref48
– volume: 3
  start-page: 2
  year: 1966
  ident: ref46
  article-title: Graphs
  publication-title: Gilyonot Lematematika
– volume-title: Handbook on Graph Drawing and Visualization
  year: 2013
  ident: ref2
  doi: 10.1201/b15385
– ident: ref17
  doi: 10.1007/978-981-15-6533-5_1
– ident: ref73
  doi: 10.1016/j.tcs.2021.09.015
– ident: ref57
  doi: 10.1016/j.disc.2017.01.022
– ident: ref82
  doi: 10.7155/jgaa.00457
– ident: ref14
  doi: 10.1201/9781420035315.ch10
– ident: ref54
  doi: 10.1007/s00373-018-1932-6
– ident: ref75
  doi: 10.1007/978-981-15-6533-5_4
– ident: ref79
  doi: 10.1016/S0021-9800(70)80087-4
– ident: ref61
  doi: 10.37236/8255
– ident: ref62
  doi: 10.1016/S0925-7721(03)00027-0
– ident: ref16
  doi: 10.1145/3301281
– ident: ref39
  doi: 10.1007/978-981-15-6533-5_9
– ident: ref9
  doi: 10.1111/j.1467-8659.2011.01898.x
– ident: ref68
  doi: 10.1016/j.dam.2012.11.019
– ident: ref50
  doi: 10.1016/j.tcs.2016.04.026
– ident: ref84
  doi: 10.1016/j.dam.2014.05.025
– ident: ref32
  doi: 10.7155/jgaa.00398
– ident: ref42
  doi: 10.1007/978-3-642-11805-0_4
– volume: 77
  start-page: 1
  volume-title: Proc. SoCG
  ident: ref76
  article-title: On optimal 2- and 3-planar graphs
– ident: ref23
  doi: 10.1007/BF02187731
– ident: ref41
  doi: 10.1007/978-3-642-18469-7_1
– ident: ref35
  doi: 10.37236/10521
– ident: ref38
  doi: 10.1016/j.tcs.2018.05.029
– ident: ref72
  doi: 10.1007/978-3-642-32241-9_29
– ident: ref86
  doi: 10.1109/iisa.2016.7785427
– ident: ref74
  doi: 10.1002/jgt.3190120306
– ident: ref5
  doi: 10.1007/978-3-319-91908-9_6
– ident: ref13
  doi: 10.1109/tvcg.2017.2743858
– volume: 10692
  start-page: 531
  volume-title: Graph Drawing
  year: 2017
  ident: ref37
  article-title: Gap-planar graphs
– ident: ref11
  doi: 10.1111/cgf.14733
– year: 2023
  ident: ref65
  article-title: The density formula: One lemma to bound them all
  publication-title: arXiv:2311.06193
– volume-title: Graph Drawing: Algorithms for the Visualization of Graphs
  year: 1999
  ident: ref3
– ident: ref43
  doi: 10.1007/s00224-010-9275-6
– ident: ref51
  doi: 10.1007/s00453-014-9890-8
– ident: ref83
  doi: 10.1007/978-3-319-13075-0_50
– ident: ref26
  doi: 10.1016/j.comgeo.2015.06.001
– volume: 11282
  start-page: 646
  volume-title: Graph Drawing and Network Visualization
  year: 2018
  ident: ref36
  article-title: 1-gap planarity of complete bipartite graphs
– ident: ref40
  doi: 10.1016/j.tcs.2011.05.025
– ident: ref55
  doi: 10.1016/j.disc.2023.113553
– ident: ref22
  doi: 10.1016/j.jcta.2006.08.002
– ident: ref24
  doi: 10.1007/BF02574361
– ident: ref59
  doi: 10.1016/j.disc.2012.08.019
– ident: ref30
  doi: 10.1007/s00453-016-0200-5
– ident: ref28
  doi: 10.1007/978-3-031-49272-3_3
– ident: ref77
  doi: 10.1007/s00453-015-0002-1
– ident: ref27
  doi: 10.1007/978-3-031-49272-3_3
– ident: ref15
  doi: 10.1109/access.2020.3047616
– ident: ref53
  doi: 10.1016/j.disc.2018.12.002
– ident: ref8
  doi: 10.1109/access.2020.2967974
– ident: ref31
  doi: 10.1007/978-3-319-27261-0_24
– ident: ref78
  doi: 10.4064/fm-41-1-137-145
– ident: ref29
  doi: 10.1007/978-3-662-45803-7_17
SSID ssj0000816957
Score 2.3066068
Snippet Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 68828
SubjectTerms Apexes
Beyond-planar graph drawing
Computational modeling
Density
edge density
Face recognition
geometric graph theory
Graph drawing
Graph theory
graph visualization
Graphical representations
Graphs
inclusion relationships
Surveys
Upper bound
Upper bounds
Visualization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyIKBXlgJBC_EpsNWkqFBAsUull-qh0IVRuE-PfYSYoiMbCwRo7O911yD-fyHQBnJGNUEeESY7BJIiNXwn0uEqx8bjDWlPn4c_LDYzae0Pspm7ZGfcWesJoeuAbuMjhTbRTX3mpKhc61ZzSI5VEC9boi2w4xr1VMVT6Yo0ywvKEZQqm4vB4MgkahIMT0goSiIo2D1VqhqGLsb0as_PLLVbAZ7YDtJkuE1_XudsGGK_bAVos7cB8M7iLV9AoOl-qzgK_zcgaf3t8cfKkapd0KLtwSjpRxV3AYm9TLL6gKC3-a32bzxaoLJqPb58E4aSYiJIYwUSYK5w4ZrxkRnNhMUMexNthij5xPhQnZETPIMCWssFT7oKZ1IqzPBEEo3HMAOsV74Q4B5MYSbjDyPn54S3NFEEU6x5Yqn2Jte-B8DY5c1MQXsioYUiFrLGXEUjZY9sBNBPBnaWStri4EW8rGlvIvW_ZAN8LfkhdnGlHUA_21PWTziq1kcFQ85CqCi6P_kH0MNqM-9elKH3TK5Yc7CflGqU-rR-sbx9HRAQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Graphs Drawn With Some Vertices per Face: Density and Relationships
URI https://ieeexplore.ieee.org/document/10530241
https://www.proquest.com/docview/3058293989
https://doaj.org/article/678bca8bfdb449b7bf54ecc84a394fb6
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJ3ooFKi6QJEPPTbb-JXYvcHSBVWCS3ndLD8Fqppd7WaF4NfX42RXq1aVuEWRrUxmxp4Ze-YbhD6zSnDDVCico64ARK5CxloV1MTaUWq5iFCcfHlVXdzwH_fivi9Wz7UwIYScfBaG8Jjv8v3ELeCoLK1w6HEDZepvUuTWFWutDlSgg4QSdY8sREr19WQ0Sj-RYkDKhyzFESX0UluzPhmkv--q8s9WnO3LeBtdLSnr0kp-DRetHbqXv0AbX036DnrXe5r4pFON92gjNLvo7Rr-4B4anQNc9RyfzcxTg-8e2wf8c_I74NucbB3meBpmeGxc-IbPING9fcam8XiVQPfwOJ3vo5vx9-vRRdF3VSgcE6otDK0DcdEKpiTzleJBUuuop5GEWCqXPCzhiBNGeeW5jYlvPqg0vlKMkDTnA9psJk34iLB0nklHSYxweVfWhhFObE09N7Gk1g_QlyW39bQDz9A56CiV7oSjQTi6F84AnYJEVkMB-Tq_SJzU_ULSybhaZ6SN3nKubG2j4EkNJWgcj7YaoH3g_tr3OsYP0NFSwLpfpnOdNjuZ_B0l1cF_ph2iLSCxO3Q5QpvtbBE-JTektcc5fD_OSvgH9TfaIA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQewAOtEBRQwv4wJEN69euza2kDQHaXGihN8tPtUJsomSjCn49Hu8mikBI3FYrWzs7M_bM2DPfIPSaVYIbpkLhHHUFIHIVMtaqoCbWjlLLRYTi5ItpNbnin67FdV-snmthQgg5-SwM4THf5fuZW8FRWVrh0OMGytR3k-EXpCvX2hypQA8JJeoeW4iU6u3JaJR-I0WBlA9ZiiRK6Ka2ZX8yTH_fV-WvzThbmPEemq5p6xJLvg9XrR26X3_ANv438fvoUe9r4pNOOR6je6F5gh5uIRA-RaMPAFi9xKcLc9fgb7ftDf4y-xHw15xuHZZ4HhZ4bFx4h08h1b39iU3j8SaF7uZ2vjxAV-Ozy9Gk6PsqFI4J1RaG1oG4aAVTkvlK8SCpddTTSEIslUs-lnDECaO88tzGxDcfVBpfKUZImvMM7TSzJhwiLJ1n0lESI1zflbVhhBNbU89NLKn1A_RmzW097-AzdA47SqU74WgQju6FM0DvQSKboYB9nV8kTup-KelkXq0z0kZvOVe2tlHwpIgSdI5HWw3QAXB_63sd4wfoeC1g3S_UpU7bnUwej5Lq-T-mvUL3J5cX5_r84_TzEXoA5HZHMMdop12swovklLT2ZVbF31mA3HQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphs+Drawn+With+Some+Vertices+per+Face%3A+Density+and+Relationships&rft.jtitle=IEEE+access&rft.au=Binucci%2C+Carla&rft.au=Di+Battista%2C+Giuseppe&rft.au=Didimo%2C+Walter&rft.au=Dujmovic%2C+Vida&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=68828&rft.epage=68846&rft_id=info:doi/10.1109%2FACCESS.2024.3401078&rft.externalDocID=10530241
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon