Graphs Drawn With Some Vertices per Face: Density and Relationships
Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric representations of non-planar graphs. This research area stems from the study of graph layouts with fo...
Saved in:
Published in | IEEE access Vol. 12; pp. 68828 - 68846 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric representations of non-planar graphs. This research area stems from the study of graph layouts with forbidden crossing configurations, a well-established subject in geometric and topological graph theory. In this context, the contribution of this paper is as follows: 1) We introduce a new hierarchy of graph families, called <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs; for any integer <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>, a graph G is a <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graph if it admits a drawing <inline-formula> <tex-math notation="LaTeX">\Gamma </tex-math></inline-formula> in the plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k vertices of G ("<inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>" stands for k or more); 2) We give tight upper bounds on the edge density of <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs, namely we prove that n-vertex <inline-formula> <tex-math notation="LaTeX">1^{+} </tex-math></inline-formula>-real face and <inline-formula> <tex-math notation="LaTeX">2^{+} </tex-math></inline-formula>-real face graphs have at most <inline-formula> <tex-math notation="LaTeX">5n-10 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">4n-8 </tex-math></inline-formula> edges, respectively. Furthermore, in a constrained scenario in which all vertices must lie on the boundary of the external face, <inline-formula> <tex-math notation="LaTeX">1^{+} </tex-math></inline-formula>-real face and <inline-formula> <tex-math notation="LaTeX">2^{+} </tex-math></inline-formula>-real face graphs have at most <inline-formula> <tex-math notation="LaTeX">3n-6 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">2.5n-4 </tex-math></inline-formula> edges, respectively; 3) We characterize the complete graphs that admit a <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face drawing or an outer <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face drawing for any <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>. We also provide a clear picture for the majority of complete bipartite graphs; and 4) We establish relationships between <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs and other prominent beyond-planar graph families; notably, we show that for any <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>, the class of <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs is not included in any family of beyond-planar graphs with hereditary property. |
---|---|
AbstractList | Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric representations of non-planar graphs. This research area stems from the study of graph layouts with forbidden crossing configurations, a well-established subject in geometric and topological graph theory. In this context, the contribution of this paper is as follows: 1) We introduce a new hierarchy of graph families, called <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs; for any integer <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>, a graph G is a <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graph if it admits a drawing <inline-formula> <tex-math notation="LaTeX">\Gamma </tex-math></inline-formula> in the plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k vertices of G ("<inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>" stands for k or more); 2) We give tight upper bounds on the edge density of <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs, namely we prove that n-vertex <inline-formula> <tex-math notation="LaTeX">1^{+} </tex-math></inline-formula>-real face and <inline-formula> <tex-math notation="LaTeX">2^{+} </tex-math></inline-formula>-real face graphs have at most <inline-formula> <tex-math notation="LaTeX">5n-10 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">4n-8 </tex-math></inline-formula> edges, respectively. Furthermore, in a constrained scenario in which all vertices must lie on the boundary of the external face, <inline-formula> <tex-math notation="LaTeX">1^{+} </tex-math></inline-formula>-real face and <inline-formula> <tex-math notation="LaTeX">2^{+} </tex-math></inline-formula>-real face graphs have at most <inline-formula> <tex-math notation="LaTeX">3n-6 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">2.5n-4 </tex-math></inline-formula> edges, respectively; 3) We characterize the complete graphs that admit a <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face drawing or an outer <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face drawing for any <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>. We also provide a clear picture for the majority of complete bipartite graphs; and 4) We establish relationships between <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs and other prominent beyond-planar graph families; notably, we show that for any <inline-formula> <tex-math notation="LaTeX">k \geq 1 </tex-math></inline-formula>, the class of <inline-formula> <tex-math notation="LaTeX">k^{+} </tex-math></inline-formula>-real face graphs is not included in any family of beyond-planar graphs with hereditary property. Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric representations of non-planar graphs. This research area stems from the study of graph layouts with forbidden crossing configurations, a well-established subject in geometric and topological graph theory. In this context, the contribution of this paper is as follows: 1) We introduce a new hierarchy of graph families, called [Formula Omitted]-real face graphs; for any integer [Formula Omitted], a graph G is a [Formula Omitted]-real face graph if it admits a drawing [Formula Omitted] in the plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k vertices of G (“[Formula Omitted]” stands for k or more); 2) We give tight upper bounds on the edge density of [Formula Omitted]-real face graphs, namely we prove that n-vertex [Formula Omitted]-real face and [Formula Omitted]-real face graphs have at most [Formula Omitted] and [Formula Omitted] edges, respectively. Furthermore, in a constrained scenario in which all vertices must lie on the boundary of the external face, [Formula Omitted]-real face and [Formula Omitted]-real face graphs have at most [Formula Omitted] and [Formula Omitted] edges, respectively; 3) We characterize the complete graphs that admit a [Formula Omitted]-real face drawing or an outer [Formula Omitted]-real face drawing for any [Formula Omitted]. We also provide a clear picture for the majority of complete bipartite graphs; and 4) We establish relationships between [Formula Omitted]-real face graphs and other prominent beyond-planar graph families; notably, we show that for any [Formula Omitted], the class of [Formula Omitted]-real face graphs is not included in any family of beyond-planar graphs with hereditary property. Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the visual complexity inherent in geometric representations of non-planar graphs. This research area stems from the study of graph layouts with forbidden crossing configurations, a well-established subject in geometric and topological graph theory. In this context, the contribution of this paper is as follows: 1) We introduce a new hierarchy of graph families, called <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face graphs; for any integer <tex-math notation="LaTeX">$k \geq 1$ </tex-math>, a graph G is a <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face graph if it admits a drawing <tex-math notation="LaTeX">$\Gamma $ </tex-math> in the plane such that the boundary of each face (formed by vertices, crossings, and edges) contains at least k vertices of G (" <tex-math notation="LaTeX">$k^{+}$ </tex-math>" stands for k or more); 2) We give tight upper bounds on the edge density of <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face graphs, namely we prove that n-vertex <tex-math notation="LaTeX">$1^{+}$ </tex-math>-real face and <tex-math notation="LaTeX">$2^{+}$ </tex-math>-real face graphs have at most <tex-math notation="LaTeX">$5n-10$ </tex-math> and <tex-math notation="LaTeX">$4n-8$ </tex-math> edges, respectively. Furthermore, in a constrained scenario in which all vertices must lie on the boundary of the external face, <tex-math notation="LaTeX">$1^{+}$ </tex-math>-real face and <tex-math notation="LaTeX">$2^{+}$ </tex-math>-real face graphs have at most <tex-math notation="LaTeX">$3n-6$ </tex-math> and <tex-math notation="LaTeX">$2.5n-4$ </tex-math> edges, respectively; 3) We characterize the complete graphs that admit a <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face drawing or an outer <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face drawing for any <tex-math notation="LaTeX">$k \geq 1$ </tex-math>. We also provide a clear picture for the majority of complete bipartite graphs; and 4) We establish relationships between <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face graphs and other prominent beyond-planar graph families; notably, we show that for any <tex-math notation="LaTeX">$k \geq 1$ </tex-math>, the class of <tex-math notation="LaTeX">$k^{+}$ </tex-math>-real face graphs is not included in any family of beyond-planar graphs with hereditary property. |
Author | Binucci, Carla Morin, Pat Di Battista, Giuseppe Liotta, Giuseppe Didimo, Walter Dujmovic, Vida Hong, Seok-Hee Kaufmann, Michael Tappini, Alessandra |
Author_xml | – sequence: 1 givenname: Carla orcidid: 0000-0002-5320-9110 surname: Binucci fullname: Binucci, Carla organization: Department of Engineering, University of Perugia, Perugia, Italy – sequence: 2 givenname: Giuseppe orcidid: 0000-0003-4224-1550 surname: Di Battista fullname: Di Battista, Giuseppe organization: Department of Civil, Computer Science and Aeronautical Technologies Engineering, University "Roma Tre", Roma, Italy – sequence: 3 givenname: Walter orcidid: 0000-0002-4379-6059 surname: Didimo fullname: Didimo, Walter organization: Department of Engineering, University of Perugia, Perugia, Italy – sequence: 4 givenname: Vida orcidid: 0000-0001-7250-0600 surname: Dujmovic fullname: Dujmovic, Vida organization: School of Computer Science and Electrical Engineering, University of Ottawa, Ottawa, ON, Canada – sequence: 5 givenname: Seok-Hee orcidid: 0000-0003-1698-3868 surname: Hong fullname: Hong, Seok-Hee organization: School of Computer Science, The University of Sydney, Sydney, NSW, Australia – sequence: 6 givenname: Michael orcidid: 0000-0001-9186-3538 surname: Kaufmann fullname: Kaufmann, Michael organization: Wilhelm-Schickard Institut für Informatik, University of Tübingen, Tübingen, Germany – sequence: 7 givenname: Giuseppe orcidid: 0000-0002-2886-9694 surname: Liotta fullname: Liotta, Giuseppe organization: Department of Engineering, University of Perugia, Perugia, Italy – sequence: 8 givenname: Pat orcidid: 0000-0003-0471-4118 surname: Morin fullname: Morin, Pat organization: School of Computer Science, Carleton University, Ottawa, ON, Canada – sequence: 9 givenname: Alessandra orcidid: 0000-0001-9192-2067 surname: Tappini fullname: Tappini, Alessandra email: alessandra.tappini@unipg.it organization: Department of Engineering, University of Perugia, Perugia, Italy |
BookMark | eNpNUMtKBDEQDKLg8wv0EPC8a54zE28yrqsgCK6PY0gyHXeWdTIms4h_b9YRsS_dNFXV1XWIdrvQAUKnlEwpJeriqq5ni8WUESamXBBKymoHHTBaqAmXvNj9N--jk5RWJFeVV7I8QPU8mn6Z8HU0nx1-bYclXoR3wC8Qh9ZBwj1EfGMcXOJr6FI7fGHTNfgR1mZoQ5eWbZ-O0Z436wQnv_0IPd_Mnurbyf3D_K6-up84LtUwMawE6ryVXFW8KZSAilnHGuYpeKIcZ0I66qRRjWqE9fmTBlTGF4pTmjlH6G7UbYJZ6T627yZ-6WBa_bMI8U2bres16KKsrDOV9Y0VQtnSeinAuUoYroS3RdY6H7X6GD42kAa9CpvYZfuaE1kxlU2qjOIjysWQUgT_d5USvQ1fj-Hrbfj6N_zMOhtZLQD8Y0ieUZR_A9CLgTw |
CODEN | IAECCG |
Cites_doi | 10.1109/aike48582.2020.00034 10.1002/9780470073049.ch3 10.1007/978-3-319-21840-3_25 10.1007/s00454-009-9143-9 10.1016/j.cosrev.2017.06.002 10.1007/s00453-016-0226-8 10.1016/j.disc.2009.07.016 10.1016/j.comgeo.2019.101574 10.1016/j.dam.2018.08.018 10.1109/tvcg.2022.3222186 10.1007/978-3-031-43380-1_7 10.1007/978-3-662-45803-7_16 10.1007/978-3-319-03841-4_7 10.1016/j.comgeo.2015.06.001 10.1007/978-3-031-49272-3_17 10.1112/jlms/s1-10.37.26 10.1007/s00454-006-1264-9 10.1016/j.jvlc.2014.03.001 10.1016/j.ipl.2013.01.013 10.1007/BF01215922 10.1007/3-540-44969-8 10.1016/j.jctb.2019.08.006 10.1016/j.tcs.2015.04.020 10.1201/b16132-57 10.1007/3-540-62495-3_59 10.1002/jgt.3190170602 10.1201/b15385 10.1007/978-981-15-6533-5_1 10.1016/j.tcs.2021.09.015 10.1016/j.disc.2017.01.022 10.7155/jgaa.00457 10.1201/9781420035315.ch10 10.1007/s00373-018-1932-6 10.1007/978-981-15-6533-5_4 10.1016/S0021-9800(70)80087-4 10.37236/8255 10.1016/S0925-7721(03)00027-0 10.1145/3301281 10.1007/978-981-15-6533-5_9 10.1111/j.1467-8659.2011.01898.x 10.1016/j.dam.2012.11.019 10.1016/j.tcs.2016.04.026 10.1016/j.dam.2014.05.025 10.7155/jgaa.00398 10.1007/978-3-642-11805-0_4 10.1007/BF02187731 10.1007/978-3-642-18469-7_1 10.37236/10521 10.1016/j.tcs.2018.05.029 10.1007/978-3-642-32241-9_29 10.1109/iisa.2016.7785427 10.1002/jgt.3190120306 10.1007/978-3-319-91908-9_6 10.1109/tvcg.2017.2743858 10.1111/cgf.14733 10.1007/s00224-010-9275-6 10.1007/s00453-014-9890-8 10.1007/978-3-319-13075-0_50 10.1016/j.tcs.2011.05.025 10.1016/j.disc.2023.113553 10.1016/j.jcta.2006.08.002 10.1007/BF02574361 10.1016/j.disc.2012.08.019 10.1007/s00453-016-0200-5 10.1007/978-3-031-49272-3_3 10.1007/s00453-015-0002-1 10.1109/access.2020.3047616 10.1016/j.disc.2018.12.002 10.1109/access.2020.2967974 10.1007/978-3-319-27261-0_24 10.4064/fm-41-1-137-145 10.1007/978-3-662-45803-7_17 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3401078 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 68846 |
ExternalDocumentID | oai_doaj_org_article_678bca8bfdb449b7bf54ecc84a394fb6 10_1109_ACCESS_2024_3401078 10530241 |
Genre | orig-research |
GrantInformation_xml | – fundername: Department of Engineering, University of Perugia, Ricerca di Base, “Modelli, algoritmi e sistemi per la visualizzazione e l’analisi di grafi e reti” grantid: RICBA22CB – fundername: Summer Workshop on Graph Drawing (SWGD) 2022 – fundername: Italian Ministry for Universities and Research (MUR) Research Projects of National Relevance (PRIN)—“EXPAND: scalable algorithms for EXPloratory Analyses of heterogeneous and dynamic Networked Data” grantid: 2022TS4Y3N |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-a27e1cfb53983d694e82bc2d2f1ef09c3245c1c5a9d9d4bf010de9fb569311983 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:28 EDT 2025 Mon Jun 30 05:10:20 EDT 2025 Tue Jul 01 04:14:35 EDT 2025 Wed Aug 27 02:05:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-a27e1cfb53983d694e82bc2d2f1ef09c3245c1c5a9d9d4bf010de9fb569311983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5320-9110 0000-0002-2886-9694 0000-0003-0471-4118 0000-0003-4224-1550 0000-0001-7250-0600 0000-0003-1698-3868 0000-0002-4379-6059 0000-0001-9192-2067 0000-0001-9186-3538 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10530241 |
PQID | 3058293989 |
PQPubID | 4845423 |
PageCount | 19 |
ParticipantIDs | ieee_primary_10530241 crossref_primary_10_1109_ACCESS_2024_3401078 doaj_primary_oai_doaj_org_article_678bca8bfdb449b7bf54ecc84a394fb6 proquest_journals_3058293989 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 Consalvi (ref6); 3340 ref53 ref52 ref11 ref55 ref10 ref54 Hong (ref18) 2016; 6 Bachmaier (ref36) 2018; 11282 ref17 ref16 ref19 Fáry (ref70) 1948; 11 Bekos (ref76); 77 ref51 ref50 ref45 ref47 ref42 ref86 ref41 Kaufmann (ref65) 2023 ref85 ref43 Kaufmann (ref4) 2001; 2025 Di Battista (ref3) 1999 ref49 ref8 Du Preez (ref60) 2021; 80 ref9 ref5 ref82 ref81 ref40 ref84 Didimo (ref7) 2006 ref83 ref80 ref35 ref79 ref34 ref78 ref31 ref75 ref30 ref74 ref33 ref77 ref32 Dujmovic (ref44) 2011; 2011 ref1 Bae (ref37) 2017; 10692 ref39 ref38 ref71 ref73 ref72 Avital (ref46) 1966; 3 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 Tamassia (ref2) 2013 ref28 ref27 ref29 Kupitz (ref48) 1979 ref62 ref61 |
References_xml | – ident: ref12 doi: 10.1109/aike48582.2020.00034 – volume: 6 start-page: 35 issue: 11 volume-title: Dagstuhl Rep. year: 2016 ident: ref18 article-title: Beyond-planar graphs: Algorithmics and combinatorics (Dagstuhl seminar 16452) – start-page: 35 volume-title: Graph Visualization and Data Mining year: 2006 ident: ref7 doi: 10.1002/9780470073049.ch3 – ident: ref71 doi: 10.1007/978-3-319-21840-3_25 – volume: 11 start-page: 229 year: 1948 ident: ref70 article-title: On straight-line representation of planar graphs publication-title: Acta Sci. Math. – ident: ref21 doi: 10.1007/s00454-009-9143-9 – ident: ref19 doi: 10.1016/j.cosrev.2017.06.002 – ident: ref49 doi: 10.1007/s00453-016-0226-8 – volume: 80 start-page: 401 issue: 3 year: 2021 ident: ref60 article-title: Plane graphs with large faces and small diameter publication-title: Australas. J. Combinatorics – ident: ref56 doi: 10.1016/j.disc.2009.07.016 – ident: ref67 doi: 10.1016/j.comgeo.2019.101574 – ident: ref81 doi: 10.1016/j.dam.2018.08.018 – ident: ref10 doi: 10.1109/tvcg.2022.3222186 – ident: ref1 doi: 10.1007/978-3-031-43380-1_7 – ident: ref34 doi: 10.1007/978-3-662-45803-7_16 – ident: ref64 doi: 10.1007/978-3-319-03841-4_7 – ident: ref25 doi: 10.1016/j.comgeo.2015.06.001 – ident: ref85 doi: 10.1007/978-3-031-49272-3_17 – ident: ref69 doi: 10.1112/jlms/s1-10.37.26 – volume: 2011 issue: 4 year: 2011 ident: ref44 article-title: Notes on large angle crossing graphs publication-title: Chicago J. Theor. Comput. Sci. – ident: ref66 doi: 10.1007/s00454-006-1264-9 – volume: 3340 start-page: 27 volume-title: Proc. 1st Italian Conf. Big Data Data Sci. ident: ref6 article-title: In-browser visualization of large-scale graphs – ident: ref45 doi: 10.1016/j.jvlc.2014.03.001 – ident: ref63 doi: 10.1016/j.ipl.2013.01.013 – ident: ref20 doi: 10.1007/BF01215922 – volume: 2025 volume-title: Drawing Graphs: Methods and Models year: 2001 ident: ref4 doi: 10.1007/3-540-44969-8 – ident: ref58 doi: 10.1016/j.jctb.2019.08.006 – ident: ref33 doi: 10.1016/j.tcs.2015.04.020 – ident: ref47 doi: 10.1201/b16132-57 – ident: ref52 doi: 10.1007/3-540-62495-3_59 – ident: ref80 doi: 10.1002/jgt.3190170602 – volume-title: Extremal Problems in Combinatorial Geometry year: 1979 ident: ref48 – volume: 3 start-page: 2 year: 1966 ident: ref46 article-title: Graphs publication-title: Gilyonot Lematematika – volume-title: Handbook on Graph Drawing and Visualization year: 2013 ident: ref2 doi: 10.1201/b15385 – ident: ref17 doi: 10.1007/978-981-15-6533-5_1 – ident: ref73 doi: 10.1016/j.tcs.2021.09.015 – ident: ref57 doi: 10.1016/j.disc.2017.01.022 – ident: ref82 doi: 10.7155/jgaa.00457 – ident: ref14 doi: 10.1201/9781420035315.ch10 – ident: ref54 doi: 10.1007/s00373-018-1932-6 – ident: ref75 doi: 10.1007/978-981-15-6533-5_4 – ident: ref79 doi: 10.1016/S0021-9800(70)80087-4 – ident: ref61 doi: 10.37236/8255 – ident: ref62 doi: 10.1016/S0925-7721(03)00027-0 – ident: ref16 doi: 10.1145/3301281 – ident: ref39 doi: 10.1007/978-981-15-6533-5_9 – ident: ref9 doi: 10.1111/j.1467-8659.2011.01898.x – ident: ref68 doi: 10.1016/j.dam.2012.11.019 – ident: ref50 doi: 10.1016/j.tcs.2016.04.026 – ident: ref84 doi: 10.1016/j.dam.2014.05.025 – ident: ref32 doi: 10.7155/jgaa.00398 – ident: ref42 doi: 10.1007/978-3-642-11805-0_4 – volume: 77 start-page: 1 volume-title: Proc. SoCG ident: ref76 article-title: On optimal 2- and 3-planar graphs – ident: ref23 doi: 10.1007/BF02187731 – ident: ref41 doi: 10.1007/978-3-642-18469-7_1 – ident: ref35 doi: 10.37236/10521 – ident: ref38 doi: 10.1016/j.tcs.2018.05.029 – ident: ref72 doi: 10.1007/978-3-642-32241-9_29 – ident: ref86 doi: 10.1109/iisa.2016.7785427 – ident: ref74 doi: 10.1002/jgt.3190120306 – ident: ref5 doi: 10.1007/978-3-319-91908-9_6 – ident: ref13 doi: 10.1109/tvcg.2017.2743858 – volume: 10692 start-page: 531 volume-title: Graph Drawing year: 2017 ident: ref37 article-title: Gap-planar graphs – ident: ref11 doi: 10.1111/cgf.14733 – year: 2023 ident: ref65 article-title: The density formula: One lemma to bound them all publication-title: arXiv:2311.06193 – volume-title: Graph Drawing: Algorithms for the Visualization of Graphs year: 1999 ident: ref3 – ident: ref43 doi: 10.1007/s00224-010-9275-6 – ident: ref51 doi: 10.1007/s00453-014-9890-8 – ident: ref83 doi: 10.1007/978-3-319-13075-0_50 – ident: ref26 doi: 10.1016/j.comgeo.2015.06.001 – volume: 11282 start-page: 646 volume-title: Graph Drawing and Network Visualization year: 2018 ident: ref36 article-title: 1-gap planarity of complete bipartite graphs – ident: ref40 doi: 10.1016/j.tcs.2011.05.025 – ident: ref55 doi: 10.1016/j.disc.2023.113553 – ident: ref22 doi: 10.1016/j.jcta.2006.08.002 – ident: ref24 doi: 10.1007/BF02574361 – ident: ref59 doi: 10.1016/j.disc.2012.08.019 – ident: ref30 doi: 10.1007/s00453-016-0200-5 – ident: ref28 doi: 10.1007/978-3-031-49272-3_3 – ident: ref77 doi: 10.1007/s00453-015-0002-1 – ident: ref27 doi: 10.1007/978-3-031-49272-3_3 – ident: ref15 doi: 10.1109/access.2020.3047616 – ident: ref53 doi: 10.1016/j.disc.2018.12.002 – ident: ref8 doi: 10.1109/access.2020.2967974 – ident: ref31 doi: 10.1007/978-3-319-27261-0_24 – ident: ref78 doi: 10.4064/fm-41-1-137-145 – ident: ref29 doi: 10.1007/978-3-662-45803-7_17 |
SSID | ssj0000816957 |
Score | 2.3066068 |
Snippet | Graph drawing beyond planarity is a research area that has received an increasing attention in the last twenty years, driven by the necessity to mitigate the... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 68828 |
SubjectTerms | Apexes Beyond-planar graph drawing Computational modeling Density edge density Face recognition geometric graph theory Graph drawing Graph theory graph visualization Graphical representations Graphs inclusion relationships Surveys Upper bound Upper bounds Visualization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyIKBXlgJBC_EpsNWkqFBAsUull-qh0IVRuE-PfYSYoiMbCwRo7O911yD-fyHQBnJGNUEeESY7BJIiNXwn0uEqx8bjDWlPn4c_LDYzae0Pspm7ZGfcWesJoeuAbuMjhTbRTX3mpKhc61ZzSI5VEC9boi2w4xr1VMVT6Yo0ywvKEZQqm4vB4MgkahIMT0goSiIo2D1VqhqGLsb0as_PLLVbAZ7YDtJkuE1_XudsGGK_bAVos7cB8M7iLV9AoOl-qzgK_zcgaf3t8cfKkapd0KLtwSjpRxV3AYm9TLL6gKC3-a32bzxaoLJqPb58E4aSYiJIYwUSYK5w4ZrxkRnNhMUMexNthij5xPhQnZETPIMCWssFT7oKZ1IqzPBEEo3HMAOsV74Q4B5MYSbjDyPn54S3NFEEU6x5Yqn2Jte-B8DY5c1MQXsioYUiFrLGXEUjZY9sBNBPBnaWStri4EW8rGlvIvW_ZAN8LfkhdnGlHUA_21PWTziq1kcFQ85CqCi6P_kH0MNqM-9elKH3TK5Yc7CflGqU-rR-sbx9HRAQ priority: 102 providerName: Directory of Open Access Journals |
Title | Graphs Drawn With Some Vertices per Face: Density and Relationships |
URI | https://ieeexplore.ieee.org/document/10530241 https://www.proquest.com/docview/3058293989 https://doaj.org/article/678bca8bfdb449b7bf54ecc84a394fb6 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYoJ3ooFKi6QJEPPTbb-JXYvcHSBVWCS3ndLD8Fqppd7WaF4NfX42RXq1aVuEWRrUxmxp4Ze-YbhD6zSnDDVCico64ARK5CxloV1MTaUWq5iFCcfHlVXdzwH_fivi9Wz7UwIYScfBaG8Jjv8v3ELeCoLK1w6HEDZepvUuTWFWutDlSgg4QSdY8sREr19WQ0Sj-RYkDKhyzFESX0UluzPhmkv--q8s9WnO3LeBtdLSnr0kp-DRetHbqXv0AbX036DnrXe5r4pFON92gjNLvo7Rr-4B4anQNc9RyfzcxTg-8e2wf8c_I74NucbB3meBpmeGxc-IbPING9fcam8XiVQPfwOJ3vo5vx9-vRRdF3VSgcE6otDK0DcdEKpiTzleJBUuuop5GEWCqXPCzhiBNGeeW5jYlvPqg0vlKMkDTnA9psJk34iLB0nklHSYxweVfWhhFObE09N7Gk1g_QlyW39bQDz9A56CiV7oSjQTi6F84AnYJEVkMB-Tq_SJzU_ULSybhaZ6SN3nKubG2j4EkNJWgcj7YaoH3g_tr3OsYP0NFSwLpfpnOdNjuZ_B0l1cF_ph2iLSCxO3Q5QpvtbBE-JTektcc5fD_OSvgH9TfaIA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQewAOtEBRQwv4wJEN69euza2kDQHaXGihN8tPtUJsomSjCn49Hu8mikBI3FYrWzs7M_bM2DPfIPSaVYIbpkLhHHUFIHIVMtaqoCbWjlLLRYTi5ItpNbnin67FdV-snmthQgg5-SwM4THf5fuZW8FRWVrh0OMGytR3k-EXpCvX2hypQA8JJeoeW4iU6u3JaJR-I0WBlA9ZiiRK6Ka2ZX8yTH_fV-WvzThbmPEemq5p6xJLvg9XrR26X3_ANv438fvoUe9r4pNOOR6je6F5gh5uIRA-RaMPAFi9xKcLc9fgb7ftDf4y-xHw15xuHZZ4HhZ4bFx4h08h1b39iU3j8SaF7uZ2vjxAV-Ozy9Gk6PsqFI4J1RaG1oG4aAVTkvlK8SCpddTTSEIslUs-lnDECaO88tzGxDcfVBpfKUZImvMM7TSzJhwiLJ1n0lESI1zflbVhhBNbU89NLKn1A_RmzW097-AzdA47SqU74WgQju6FM0DvQSKboYB9nV8kTup-KelkXq0z0kZvOVe2tlHwpIgSdI5HWw3QAXB_63sd4wfoeC1g3S_UpU7bnUwej5Lq-T-mvUL3J5cX5_r84_TzEXoA5HZHMMdop12swovklLT2ZVbF31mA3HQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphs+Drawn+With+Some+Vertices+per+Face%3A+Density+and+Relationships&rft.jtitle=IEEE+access&rft.au=Binucci%2C+Carla&rft.au=Di+Battista%2C+Giuseppe&rft.au=Didimo%2C+Walter&rft.au=Dujmovic%2C+Vida&rft.date=2024&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=12&rft.spage=68828&rft.epage=68846&rft_id=info:doi/10.1109%2FACCESS.2024.3401078&rft.externalDocID=10530241 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |