Improving Insulators Detection Accuracy via Image Enhancement Techniques: Case of Indigenous Aerial Image Dataset

The challenging task of insulator monitoring through aerial images is addressed in high voltage transmission network and highlights the limitations of traditional human patrolling with emphasize on utilization of unmanned aerial vehicles UAVs utilizing machine learning algorithms. This research has...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 145582 - 145589
Main Authors Muhammad Jiskani, Shafi, Hussain, Tanweer, Ali Sahito, Anwar, Shaikh, Faheemullah, Kumar, Laveet
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The challenging task of insulator monitoring through aerial images is addressed in high voltage transmission network and highlights the limitations of traditional human patrolling with emphasize on utilization of unmanned aerial vehicles UAVs utilizing machine learning algorithms. This research has been accomplished by creating indigenous dataset of 500kV transmission network of National Transmission and Despatch Center Limited (NTDCL). 608 original images were captured in diverse lighting and topographical conditions which were then augmented to 3618 images. To improve the detection accuracy of YOLOv8s algorithm in aerial images, HSV and CLAHE image enhancement techniques were employed to improve the visual feature of insulator with suppressed noise. YOLOv8s algorithm with image enhancement has improved detection accuracy from 88% to 95% demonstrating the effectiveness of integrating image enhancement technique for insulator monitoring, offering promising improvement in maintenance practices and operational reliability of transmission lines.
AbstractList The challenging task of insulator monitoring through aerial images is addressed in high voltage transmission network and highlights the limitations of traditional human patrolling with emphasize on utilization of unmanned aerial vehicles UAVs utilizing machine learning algorithms. This research has been accomplished by creating indigenous dataset of 500kV transmission network of National Transmission and Despatch Center Limited (NTDCL). 608 original images were captured in diverse lighting and topographical conditions which were then augmented to 3618 images. To improve the detection accuracy of YOLOv8s algorithm in aerial images, HSV and CLAHE image enhancement techniques were employed to improve the visual feature of insulator with suppressed noise. YOLOv8s algorithm with image enhancement has improved detection accuracy from 88% to 95% demonstrating the effectiveness of integrating image enhancement technique for insulator monitoring, offering promising improvement in maintenance practices and operational reliability of transmission lines.
Author Kumar, Laveet
Hussain, Tanweer
Muhammad Jiskani, Shafi
Shaikh, Faheemullah
Ali Sahito, Anwar
Author_xml – sequence: 1
  givenname: Shafi
  surname: Muhammad Jiskani
  fullname: Muhammad Jiskani, Shafi
  email: shafi.jiskani@faculty.muet.edu.pk
  organization: Directorate of Postgraduate Studies, Mehran University of Engineering and Technology, Jamshoro, Pakistan
– sequence: 2
  givenname: Tanweer
  orcidid: 0000-0002-6208-1702
  surname: Hussain
  fullname: Hussain, Tanweer
  organization: Department of Mechanical Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan
– sequence: 3
  givenname: Anwar
  surname: Ali Sahito
  fullname: Ali Sahito, Anwar
  organization: Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan
– sequence: 4
  givenname: Faheemullah
  orcidid: 0000-0003-4469-828X
  surname: Shaikh
  fullname: Shaikh, Faheemullah
  organization: Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan
– sequence: 5
  givenname: Laveet
  orcidid: 0000-0001-6932-1695
  surname: Kumar
  fullname: Kumar, Laveet
  email: laveet.kumar@qu.edu.qa
  organization: Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
BookMark eNpNUU1rGzEQFSWFpml-QXsQ9GxXH6uVtjezcduFQA9Jz2KinXVkbCmRtIH8-8pdUyIGNAzvvfl4H8lFiAEJ-czZmnPWfdv0_fbubi2YaNay0Y1Q6h25FLztVlLJ9uJN_oFc57xn9ZlaUvqSPA_HpxRffNjRIeT5ACWmTG-woCs-Brpxbk7gXumLBzocYYd0Gx4hODxiKPQe3WPwzzPm77SHjDROVWf0OwxxznSDycPhzLuBUhHlE3k_wSHj9fm_In9-bO_7X6vb3z-HfnO7clJ1ZQW85XKsC3LZTUy3RulROATOGtdqJxSMMImadBKMYQaNdkwakKAU8lbLKzIsumOEvX1K_gjp1Ubw9l8hpp2FVLw7oJU4Sd12wIx6aB4a13VNbQQgmELGlKlaXxeteqvTssXu45xCHd9KzpXS0ghVUXJBuRRzTjj978qZPVllF6vsySp7tqqyviwsj4hvGJopWeMv3xiQlA
CODEN IAECCG
Cites_doi 10.1080/09500340.2024.2359072
10.3390/en13205305
10.3390/en13133348
10.3390/en12071204
10.1109/TIM.2020.2965635
10.1109/ICEMPE57831.2023.10139639
10.1016/j.egyr.2022.08.027
10.1109/TIM.2020.2984965
10.3390/s21041033
10.1049/gtd2.12916
10.1109/ICHVE.2018.8642233
10.1109/TIM.2024.3381693
10.1109/TPWRD.2023.3269206
10.1007/978-981-99-7962-2_39
10.1049/joe.2018.8494
10.3390/make5040083
10.1155/2022/3204407
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3474255
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 145589
ExternalDocumentID oai_doaj_org_article_3ef3769a085b4b4c994ea1aa205e0058
10_1109_ACCESS_2024_3474255
10705305
Genre orig-research
GrantInformation_xml – fundername: Qatar National Library for Open Access Funding
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-a1613d110139f076857d2cea104c67c25adaf27c293a8808e87c038a3a55e1673
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:31:03 EDT 2025
Mon Jun 30 15:17:25 EDT 2025
Tue Jul 01 03:02:53 EDT 2025
Wed Aug 27 02:15:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a1613d110139f076857d2cea104c67c25adaf27c293a8808e87c038a3a55e1673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4469-828X
0000-0001-6932-1695
0000-0002-6208-1702
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10705305
PQID 3115573825
PQPubID 4845423
PageCount 8
ParticipantIDs ieee_primary_10705305
doaj_primary_oai_doaj_org_article_3ef3769a085b4b4c994ea1aa205e0058
crossref_primary_10_1109_ACCESS_2024_3474255
proquest_journals_3115573825
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref8
ref7
ref9
ref4
Wang (ref3) 2020; 69
ref6
ref5
Terven (ref15) 2023; 5
References_xml – ident: ref8
  doi: 10.1080/09500340.2024.2359072
– ident: ref12
  doi: 10.3390/en13205305
– ident: ref4
  doi: 10.3390/en13133348
– ident: ref2
  doi: 10.3390/en12071204
– volume: 69
  start-page: 5345
  year: 2020
  ident: ref3
  article-title: Automatic fault diagnosis of infrared insulator images based on image instance segmentation and temperature analysis
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2965635
– ident: ref9
  doi: 10.1109/ICEMPE57831.2023.10139639
– ident: ref10
  doi: 10.1016/j.egyr.2022.08.027
– ident: ref11
  doi: 10.1109/TIM.2020.2984965
– ident: ref7
  doi: 10.3390/s21041033
– ident: ref1
  doi: 10.1049/gtd2.12916
– ident: ref13
  doi: 10.1109/ICHVE.2018.8642233
– ident: ref17
  doi: 10.1109/TIM.2024.3381693
– ident: ref14
  doi: 10.1109/TPWRD.2023.3269206
– ident: ref16
  doi: 10.1007/978-981-99-7962-2_39
– ident: ref6
  doi: 10.1049/joe.2018.8494
– volume: 5
  start-page: 1680
  issue: 4
  year: 2023
  ident: ref15
  article-title: A comprehensive review of YOLO architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS
  publication-title: Mach. Learn. Knowl. Extraction
  doi: 10.3390/make5040083
– ident: ref5
  doi: 10.1155/2022/3204407
SSID ssj0000816957
Score 2.3068771
Snippet The challenging task of insulator monitoring through aerial images is addressed in high voltage transmission network and highlights the limitations of...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 145582
SubjectTerms Accuracy
Algorithms
Autonomous aerial vehicles
Condition monitoring
contrast limited adaptive histogram equalization (CLAHE)
Datasets
Feature extraction
Histograms
hue saturation value (HSV) color space
Image color analysis
Image enhancement
Image segmentation
Image transmission
indigenous dataset
insulator detection
Insulators
Lighting
Machine learning
Monitoring
NTDCL Pakistan
Power transmission lines
Transmission lines
Unmanned aerial vehicles
YOLO
you only look once (YOLO)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxGFgjwwEprEdhyzhRZEkWBqpW7W2XEEAym0KRL_nnOSokgMLCxRFDl2_J19D8f-jpBLmbicW5MExhQQcFAyMEUsggIAoijHS-hPIz89Jw8z_jgX806qL78nrKEHboAbMlfgHFCAroHhhluluIMIIA6F8znxvPZFm9cJpmodnEaJErKlGYpCNcxGI-wRBoQxv2YcA0J_uK9jimrG_jbFyi-9XBub-32y13qJNGu-7oBsufKQ7Ha4A4_Ix89yAJ34_eQ-eF7RsavqvVUlzaxdL8F-0c9XoJM3VBv0rnzxMvbrgXS64W5d3dARWjK6KLCeDWcrzeqB2b43hgpLVD0yu7-bjh6CNn9CYJlQVQDozbEce49eXuH_uAmZxxbRC7lNpI0F5FDEeKMY4DROXSptyFJgIISLEsmOyXa5KN0JodI5IYCnEZiEhxaUkbHFSLBgwuAl6ZOrDZT6vaHJ0HV4ESrdIK898rpFvk9uPdw_RT3Hdf0AJa9byeu_JN8nPS-sTnsSNUqIlQ820tPthFxpTyokJMN4-PQ_2j4jO74_zVrMgGxXy7U7R--kMhf1QPwGwOjfkw
  priority: 102
  providerName: Directory of Open Access Journals
Title Improving Insulators Detection Accuracy via Image Enhancement Techniques: Case of Indigenous Aerial Image Dataset
URI https://ieeexplore.ieee.org/document/10705305
https://www.proquest.com/docview/3115573825
https://doaj.org/article/3ef3769a085b4b4c994ea1aa205e0058
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELdGn7YH9gET3Rjywx6XksR2XO-tK1QwaTyBxJt1dhyBECnQdNL21-_OcaqKadJeLCuyk4vvfL6zfb9j7LOuQi29qzLnGsgkGJ25plRZAwBFUWORUzTyj4vq7Ep-v1bXKVg9xsKEEOLlszChajzLr5d-TVtlOMM1ygwhlu6g59YHa202VCiDhFE6IQsVuTmezef4E-gDlnIiJPqAFM-3tfpEkP6UVeUvVRzXl8VrdjFQ1l8ruZusOzfxv5-BNv436W_YbrI0-awXjbfsRWjfsVdb-IN77HGzpcDP6U46OeArfhK6eD-r5TPv10_gf_Gft8DP71H18NP2huSEvsYvB_zX1Vc-x9WQLxt8z4D7ymdRuFO_E-iwRbfPrhanl_OzLOVgyLxQpssALUJR43CipdjQqZ3SdekDslD6SvtSQQ1NiRUjAFXBNEy1z8UUBCgVikqL92zULttwwLgOQSmQ0wJcJXMPxunSozfZCOWwqMbsy8Ab-9BDbdjoouTG9qy0xEqbWDlm34h_m6aEkx0f4LjbNO2sCA1qUANoWDrppDdGIu0AZa4CZVQcs33i1db3ejaN2eEgDjZN6pUlYCKlBfrUH_7R7SN7SST2WzSHbNQ9rcMnNFo6dxSd_aMosn8ALPbqzQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOPFuxUMAHuJEl8SNOKnFYdlvt0sdpK_Vmxo4jECIL3Syo_Bf-Cr-t4zxWKxDHSlwsK7IdPz57Hh7PALzUqS-ks2lkbYmRxFxHtuQqKhExSQpK4vAa-eQ0nZ7J9-fqfAt-rd_CeO8b4zM_DNnmLr9YuFVQldEO14SZuLehPPKXP0hCW76dTWg5X3F-eDAfT6MuiEDkhMrrCImlEQUROWJ1ynDtpHTBnac-SJdqxxUWWHLK5AIJy5nPtItFhgKV8kmqBbV7A24So6F4-zxsrcIJMStypTtfRkmcvxmNxzRtJHVyORSSpM7wgnCD3jVhAbo4Ln8d_g1FO7wHv_u5aA1ZPg9XtR26n3-4ifxvJ-s-3O14aTZqwf8Atnz1EO5seFh8BN_WShM2C1b3QcWwZBNfNxZoFRs5t7pAd8m-f0I2-0KHKzuoPoadEEbH5r2H2-U-GxO9Z4uS2uk927JRs327ehOsqUS9A2fXMuZd2K4WlX8MTHuvFMosQZvK2GFuNXckL5dCWUrSAbzusWC-ts5ETCOExblpoWMCdEwHnQG8C3hZFw2ewJsPtM6mO1iM8CXRiByJdbbSSpfnkvqOyGPlQ8zIAewEbGz8r4XFAPZ6-Jnu2Fqa4HpJaZFx9eQf1V7Aren85Ngcz06PnsLt0N1WIbUH2_XFyj8jFq22z5uNwuDDdYPtCuPpRLc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Insulators+Detection+Accuracy+via+Image+Enhancement+Techniques%3A+Case+of+Indigenous+Aerial+Image+Dataset&rft.jtitle=IEEE+access&rft.au=Muhammad+Jiskani%2C+Shafi&rft.au=Hussain%2C+Tanweer&rft.au=Ali+Sahito%2C+Anwar&rft.au=Shaikh%2C+Faheemullah&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=145582&rft.epage=145589&rft_id=info:doi/10.1109%2FACCESS.2024.3474255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3474255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon