Improving Insulators Detection Accuracy via Image Enhancement Techniques: Case of Indigenous Aerial Image Dataset
The challenging task of insulator monitoring through aerial images is addressed in high voltage transmission network and highlights the limitations of traditional human patrolling with emphasize on utilization of unmanned aerial vehicles UAVs utilizing machine learning algorithms. This research has...
Saved in:
Published in | IEEE access Vol. 12; pp. 145582 - 145589 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The challenging task of insulator monitoring through aerial images is addressed in high voltage transmission network and highlights the limitations of traditional human patrolling with emphasize on utilization of unmanned aerial vehicles UAVs utilizing machine learning algorithms. This research has been accomplished by creating indigenous dataset of 500kV transmission network of National Transmission and Despatch Center Limited (NTDCL). 608 original images were captured in diverse lighting and topographical conditions which were then augmented to 3618 images. To improve the detection accuracy of YOLOv8s algorithm in aerial images, HSV and CLAHE image enhancement techniques were employed to improve the visual feature of insulator with suppressed noise. YOLOv8s algorithm with image enhancement has improved detection accuracy from 88% to 95% demonstrating the effectiveness of integrating image enhancement technique for insulator monitoring, offering promising improvement in maintenance practices and operational reliability of transmission lines. |
---|---|
AbstractList | The challenging task of insulator monitoring through aerial images is addressed in high voltage transmission network and highlights the limitations of traditional human patrolling with emphasize on utilization of unmanned aerial vehicles UAVs utilizing machine learning algorithms. This research has been accomplished by creating indigenous dataset of 500kV transmission network of National Transmission and Despatch Center Limited (NTDCL). 608 original images were captured in diverse lighting and topographical conditions which were then augmented to 3618 images. To improve the detection accuracy of YOLOv8s algorithm in aerial images, HSV and CLAHE image enhancement techniques were employed to improve the visual feature of insulator with suppressed noise. YOLOv8s algorithm with image enhancement has improved detection accuracy from 88% to 95% demonstrating the effectiveness of integrating image enhancement technique for insulator monitoring, offering promising improvement in maintenance practices and operational reliability of transmission lines. |
Author | Kumar, Laveet Hussain, Tanweer Muhammad Jiskani, Shafi Shaikh, Faheemullah Ali Sahito, Anwar |
Author_xml | – sequence: 1 givenname: Shafi surname: Muhammad Jiskani fullname: Muhammad Jiskani, Shafi email: shafi.jiskani@faculty.muet.edu.pk organization: Directorate of Postgraduate Studies, Mehran University of Engineering and Technology, Jamshoro, Pakistan – sequence: 2 givenname: Tanweer orcidid: 0000-0002-6208-1702 surname: Hussain fullname: Hussain, Tanweer organization: Department of Mechanical Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan – sequence: 3 givenname: Anwar surname: Ali Sahito fullname: Ali Sahito, Anwar organization: Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan – sequence: 4 givenname: Faheemullah orcidid: 0000-0003-4469-828X surname: Shaikh fullname: Shaikh, Faheemullah organization: Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan – sequence: 5 givenname: Laveet orcidid: 0000-0001-6932-1695 surname: Kumar fullname: Kumar, Laveet email: laveet.kumar@qu.edu.qa organization: Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar |
BookMark | eNpNUU1rGzEQFSWFpml-QXsQ9GxXH6uVtjezcduFQA9Jz2KinXVkbCmRtIH8-8pdUyIGNAzvvfl4H8lFiAEJ-czZmnPWfdv0_fbubi2YaNay0Y1Q6h25FLztVlLJ9uJN_oFc57xn9ZlaUvqSPA_HpxRffNjRIeT5ACWmTG-woCs-Brpxbk7gXumLBzocYYd0Gx4hODxiKPQe3WPwzzPm77SHjDROVWf0OwxxznSDycPhzLuBUhHlE3k_wSHj9fm_In9-bO_7X6vb3z-HfnO7clJ1ZQW85XKsC3LZTUy3RulROATOGtdqJxSMMImadBKMYQaNdkwakKAU8lbLKzIsumOEvX1K_gjp1Ubw9l8hpp2FVLw7oJU4Sd12wIx6aB4a13VNbQQgmELGlKlaXxeteqvTssXu45xCHd9KzpXS0ghVUXJBuRRzTjj978qZPVllF6vsySp7tqqyviwsj4hvGJopWeMv3xiQlA |
CODEN | IAECCG |
Cites_doi | 10.1080/09500340.2024.2359072 10.3390/en13205305 10.3390/en13133348 10.3390/en12071204 10.1109/TIM.2020.2965635 10.1109/ICEMPE57831.2023.10139639 10.1016/j.egyr.2022.08.027 10.1109/TIM.2020.2984965 10.3390/s21041033 10.1049/gtd2.12916 10.1109/ICHVE.2018.8642233 10.1109/TIM.2024.3381693 10.1109/TPWRD.2023.3269206 10.1007/978-981-99-7962-2_39 10.1049/joe.2018.8494 10.3390/make5040083 10.1155/2022/3204407 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3474255 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 145589 |
ExternalDocumentID | oai_doaj_org_article_3ef3769a085b4b4c994ea1aa205e0058 10_1109_ACCESS_2024_3474255 10705305 |
Genre | orig-research |
GrantInformation_xml | – fundername: Qatar National Library for Open Access Funding |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-a1613d110139f076857d2cea104c67c25adaf27c293a8808e87c038a3a55e1673 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:31:03 EDT 2025 Mon Jun 30 15:17:25 EDT 2025 Tue Jul 01 03:02:53 EDT 2025 Wed Aug 27 02:15:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-a1613d110139f076857d2cea104c67c25adaf27c293a8808e87c038a3a55e1673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4469-828X 0000-0001-6932-1695 0000-0002-6208-1702 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10705305 |
PQID | 3115573825 |
PQPubID | 4845423 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10705305 doaj_primary_oai_doaj_org_article_3ef3769a085b4b4c994ea1aa205e0058 crossref_primary_10_1109_ACCESS_2024_3474255 proquest_journals_3115573825 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref8 ref7 ref9 ref4 Wang (ref3) 2020; 69 ref6 ref5 Terven (ref15) 2023; 5 |
References_xml | – ident: ref8 doi: 10.1080/09500340.2024.2359072 – ident: ref12 doi: 10.3390/en13205305 – ident: ref4 doi: 10.3390/en13133348 – ident: ref2 doi: 10.3390/en12071204 – volume: 69 start-page: 5345 year: 2020 ident: ref3 article-title: Automatic fault diagnosis of infrared insulator images based on image instance segmentation and temperature analysis publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2020.2965635 – ident: ref9 doi: 10.1109/ICEMPE57831.2023.10139639 – ident: ref10 doi: 10.1016/j.egyr.2022.08.027 – ident: ref11 doi: 10.1109/TIM.2020.2984965 – ident: ref7 doi: 10.3390/s21041033 – ident: ref1 doi: 10.1049/gtd2.12916 – ident: ref13 doi: 10.1109/ICHVE.2018.8642233 – ident: ref17 doi: 10.1109/TIM.2024.3381693 – ident: ref14 doi: 10.1109/TPWRD.2023.3269206 – ident: ref16 doi: 10.1007/978-981-99-7962-2_39 – ident: ref6 doi: 10.1049/joe.2018.8494 – volume: 5 start-page: 1680 issue: 4 year: 2023 ident: ref15 article-title: A comprehensive review of YOLO architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO-NAS publication-title: Mach. Learn. Knowl. Extraction doi: 10.3390/make5040083 – ident: ref5 doi: 10.1155/2022/3204407 |
SSID | ssj0000816957 |
Score | 2.3068771 |
Snippet | The challenging task of insulator monitoring through aerial images is addressed in high voltage transmission network and highlights the limitations of... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 145582 |
SubjectTerms | Accuracy Algorithms Autonomous aerial vehicles Condition monitoring contrast limited adaptive histogram equalization (CLAHE) Datasets Feature extraction Histograms hue saturation value (HSV) color space Image color analysis Image enhancement Image segmentation Image transmission indigenous dataset insulator detection Insulators Lighting Machine learning Monitoring NTDCL Pakistan Power transmission lines Transmission lines Unmanned aerial vehicles YOLO you only look once (YOLO) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxGFgjwwEprEdhyzhRZEkWBqpW7W2XEEAym0KRL_nnOSokgMLCxRFDl2_J19D8f-jpBLmbicW5MExhQQcFAyMEUsggIAoijHS-hPIz89Jw8z_jgX806qL78nrKEHboAbMlfgHFCAroHhhluluIMIIA6F8znxvPZFm9cJpmodnEaJErKlGYpCNcxGI-wRBoQxv2YcA0J_uK9jimrG_jbFyi-9XBub-32y13qJNGu-7oBsufKQ7Ha4A4_Ix89yAJ34_eQ-eF7RsavqvVUlzaxdL8F-0c9XoJM3VBv0rnzxMvbrgXS64W5d3dARWjK6KLCeDWcrzeqB2b43hgpLVD0yu7-bjh6CNn9CYJlQVQDozbEce49eXuH_uAmZxxbRC7lNpI0F5FDEeKMY4DROXSptyFJgIISLEsmOyXa5KN0JodI5IYCnEZiEhxaUkbHFSLBgwuAl6ZOrDZT6vaHJ0HV4ESrdIK898rpFvk9uPdw_RT3Hdf0AJa9byeu_JN8nPS-sTnsSNUqIlQ820tPthFxpTyokJMN4-PQ_2j4jO74_zVrMgGxXy7U7R--kMhf1QPwGwOjfkw priority: 102 providerName: Directory of Open Access Journals |
Title | Improving Insulators Detection Accuracy via Image Enhancement Techniques: Case of Indigenous Aerial Image Dataset |
URI | https://ieeexplore.ieee.org/document/10705305 https://www.proquest.com/docview/3115573825 https://doaj.org/article/3ef3769a085b4b4c994ea1aa205e0058 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELdGn7YH9gET3Rjywx6XksR2XO-tK1QwaTyBxJt1dhyBECnQdNL21-_OcaqKadJeLCuyk4vvfL6zfb9j7LOuQi29qzLnGsgkGJ25plRZAwBFUWORUzTyj4vq7Ep-v1bXKVg9xsKEEOLlszChajzLr5d-TVtlOMM1ygwhlu6g59YHa202VCiDhFE6IQsVuTmezef4E-gDlnIiJPqAFM-3tfpEkP6UVeUvVRzXl8VrdjFQ1l8ruZusOzfxv5-BNv436W_YbrI0-awXjbfsRWjfsVdb-IN77HGzpcDP6U46OeArfhK6eD-r5TPv10_gf_Gft8DP71H18NP2huSEvsYvB_zX1Vc-x9WQLxt8z4D7ymdRuFO_E-iwRbfPrhanl_OzLOVgyLxQpssALUJR43CipdjQqZ3SdekDslD6SvtSQQ1NiRUjAFXBNEy1z8UUBCgVikqL92zULttwwLgOQSmQ0wJcJXMPxunSozfZCOWwqMbsy8Ab-9BDbdjoouTG9qy0xEqbWDlm34h_m6aEkx0f4LjbNO2sCA1qUANoWDrppDdGIu0AZa4CZVQcs33i1db3ejaN2eEgDjZN6pUlYCKlBfrUH_7R7SN7SST2WzSHbNQ9rcMnNFo6dxSd_aMosn8ALPbqzQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOPFuxUMAHuJEl8SNOKnFYdlvt0sdpK_Vmxo4jECIL3Syo_Bf-Cr-t4zxWKxDHSlwsK7IdPz57Hh7PALzUqS-ks2lkbYmRxFxHtuQqKhExSQpK4vAa-eQ0nZ7J9-fqfAt-rd_CeO8b4zM_DNnmLr9YuFVQldEO14SZuLehPPKXP0hCW76dTWg5X3F-eDAfT6MuiEDkhMrrCImlEQUROWJ1ynDtpHTBnac-SJdqxxUWWHLK5AIJy5nPtItFhgKV8kmqBbV7A24So6F4-zxsrcIJMStypTtfRkmcvxmNxzRtJHVyORSSpM7wgnCD3jVhAbo4Ln8d_g1FO7wHv_u5aA1ZPg9XtR26n3-4ifxvJ-s-3O14aTZqwf8Atnz1EO5seFh8BN_WShM2C1b3QcWwZBNfNxZoFRs5t7pAd8m-f0I2-0KHKzuoPoadEEbH5r2H2-U-GxO9Z4uS2uk927JRs327ehOsqUS9A2fXMuZd2K4WlX8MTHuvFMosQZvK2GFuNXckL5dCWUrSAbzusWC-ts5ETCOExblpoWMCdEwHnQG8C3hZFw2ewJsPtM6mO1iM8CXRiByJdbbSSpfnkvqOyGPlQ8zIAewEbGz8r4XFAPZ6-Jnu2Fqa4HpJaZFx9eQf1V7Aren85Ngcz06PnsLt0N1WIbUH2_XFyj8jFq22z5uNwuDDdYPtCuPpRLc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Insulators+Detection+Accuracy+via+Image+Enhancement+Techniques%3A+Case+of+Indigenous+Aerial+Image+Dataset&rft.jtitle=IEEE+access&rft.au=Muhammad+Jiskani%2C+Shafi&rft.au=Hussain%2C+Tanweer&rft.au=Ali+Sahito%2C+Anwar&rft.au=Shaikh%2C+Faheemullah&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=145582&rft.epage=145589&rft_id=info:doi/10.1109%2FACCESS.2024.3474255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3474255 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |