SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images
Change detection (CD) is one of the main applications of remote sensing. With the increasing popularity of deep learning, most recent developments of CD methods have introduced the use of deep learning techniques to increase the accuracy and automation level over traditional methods. However, when u...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 59; no. 7; pp. 5891 - 5906 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Change detection (CD) is one of the main applications of remote sensing. With the increasing popularity of deep learning, most recent developments of CD methods have introduced the use of deep learning techniques to increase the accuracy and automation level over traditional methods. However, when using supervised CD methods, a large amount of labeled data is needed to train deep convolutional networks with millions of parameters. These labeled data are difficult to acquire for CD tasks. To address this limitation, a novel semisupervised convolutional network for CD (SemiCDNet) is proposed based on a generative adversarial network (GAN). First, both the labeled data and unlabeled data are input into the segmentation network to produce initial predictions and entropy maps. Then, to exploit the potential of unlabeled data, two discriminators are adopted to enforce the feature distribution consistency of segmentation maps and entropy maps between the labeled and unlabeled data. During the competitive training, the generator is continuously regularized by utilizing the unlabeled information, thus improving its generalization capability. The effectiveness and reliability of our proposed method are verified on two high-resolution remote sensing data sets. Extensive experimental results demonstrate the superiority of the proposed method against other state-of-the-art approaches. |
---|---|
AbstractList | Change detection (CD) is one of the main applications of remote sensing. With the increasing popularity of deep learning, most recent developments of CD methods have introduced the use of deep learning techniques to increase the accuracy and automation level over traditional methods. However, when using supervised CD methods, a large amount of labeled data is needed to train deep convolutional networks with millions of parameters. These labeled data are difficult to acquire for CD tasks. To address this limitation, a novel semisupervised convolutional network for CD (SemiCDNet) is proposed based on a generative adversarial network (GAN). First, both the labeled data and unlabeled data are input into the segmentation network to produce initial predictions and entropy maps. Then, to exploit the potential of unlabeled data, two discriminators are adopted to enforce the feature distribution consistency of segmentation maps and entropy maps between the labeled and unlabeled data. During the competitive training, the generator is continuously regularized by utilizing the unlabeled information, thus improving its generalization capability. The effectiveness and reliability of our proposed method are verified on two high-resolution remote sensing data sets. Extensive experimental results demonstrate the superiority of the proposed method against other state-of-the-art approaches. |
Author | Bruzzone, Lorenzo Guan, Haiyan Zhang, Yongjun Huang, Xu Peng, Daifeng Ding, Haiyong |
Author_xml | – sequence: 1 givenname: Daifeng orcidid: 0000-0001-8966-2956 surname: Peng fullname: Peng, Daifeng email: daifeng@nuist.edu.cn organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 2 givenname: Lorenzo orcidid: 0000-0002-6036-459X surname: Bruzzone fullname: Bruzzone, Lorenzo email: lorenzo.bruzzone@ing.unitn.it organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy – sequence: 3 givenname: Yongjun orcidid: 0000-0001-9845-4251 surname: Zhang fullname: Zhang, Yongjun email: zhangyj@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China – sequence: 4 givenname: Haiyan orcidid: 0000-0003-3691-8721 surname: Guan fullname: Guan, Haiyan email: guanhy.nj@nuist.edu.cn organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 5 givenname: Haiyong surname: Ding fullname: Ding, Haiyong email: hyongd@163.com organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, China – sequence: 6 givenname: Xu orcidid: 0000-0003-3797-6042 surname: Huang fullname: Huang, Xu email: huangxurs@whu.edu.cn organization: Wuhan Engineering Science and Technology Institute, Wuhan, China |
BookMark | eNp9kMtOwzAQRS1UJErhAxAbS6xTPHacxOyq8KpUgURhHbnppHVp42I7Rfw9Ca1YsGA1D90zj3tKerWtkZALYEMApq5fH16mQ844GwoGoEAckT5ImUUsieMe6TNQScQzxU_IqfcrxiCWkPbJboobk98-YbihI9oVvtmi2xmPc5rbemfXTTC21mv6hI37CeHTundaWUfzpa4XSG8xYNmpqKnpo1ks6Qv6A9imGxswmmLtTb2g441eoD8jx5Veezw_xAF5u797zR-jyfPDOB9NolJIFSLdnolslmbzRKhMZ0JCMssk52nbBlHJVCaVTkVaVcl8xmMN5UxoVLLiwBiiGJCr_dytsx8N-lCsbOPab3zBZRxzlSiRtSrYq0pnvXdYFVtnNtp9FcCKzt6is7fo7C0O9rZM-ocpTdDdx8Fps_6XvNyTBhF_NylI2pOV-AZvhoo3 |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3400925 crossref_primary_10_1109_JSTARS_2025_3526785 crossref_primary_10_1109_TGRS_2022_3141101 crossref_primary_10_1016_j_inffus_2024_102358 crossref_primary_10_1109_TGRS_2024_3369059 crossref_primary_10_1109_LGRS_2021_3066435 crossref_primary_10_1109_TGRS_2023_3270496 crossref_primary_10_1007_s44267_023_00004_z crossref_primary_10_1080_17538947_2022_2108921 crossref_primary_10_1109_LGRS_2024_3404645 crossref_primary_10_3390_rs16244656 crossref_primary_10_1109_TNNLS_2023_3282935 crossref_primary_10_1016_j_isprsjprs_2023_03_012 crossref_primary_10_1109_JSTARS_2023_3345017 crossref_primary_10_1109_JSTARS_2024_3402431 crossref_primary_10_1109_TGRS_2021_3139077 crossref_primary_10_1109_JSTARS_2024_3358298 crossref_primary_10_1109_TGRS_2025_3540013 crossref_primary_10_1109_TGRS_2023_3305554 crossref_primary_10_3390_rs16081372 crossref_primary_10_1109_JSTARS_2023_3337999 crossref_primary_10_1109_TGRS_2024_3357085 crossref_primary_10_3390_su16010274 crossref_primary_10_1109_TGRS_2022_3224293 crossref_primary_10_1109_TGRS_2023_3300533 crossref_primary_10_3390_rs15020319 crossref_primary_10_1016_j_energ_2024_100006 crossref_primary_10_1109_JSTARS_2020_3046838 crossref_primary_10_1109_TGRS_2023_3298924 crossref_primary_10_1016_j_jag_2023_103303 crossref_primary_10_1109_ACCESS_2024_3520428 crossref_primary_10_1109_JSTARS_2025_3526208 crossref_primary_10_1080_22797254_2022_2047795 crossref_primary_10_3390_ijgi10090591 crossref_primary_10_1016_j_isprsjprs_2024_09_027 crossref_primary_10_1109_JSTARS_2024_3435575 crossref_primary_10_1109_TGRS_2024_3357524 crossref_primary_10_1007_s00521_023_08758_9 crossref_primary_10_1007_s11432_022_3599_y crossref_primary_10_1109_ACCESS_2025_3552444 crossref_primary_10_1109_TGRS_2024_3381751 crossref_primary_10_1016_j_isprsjprs_2022_05_001 crossref_primary_10_1049_ipr2_12505 crossref_primary_10_3390_electronics12132796 crossref_primary_10_3390_rs17020184 crossref_primary_10_1109_TGRS_2024_3365825 crossref_primary_10_11834_jig_230212 crossref_primary_10_1016_j_jag_2022_103110 crossref_primary_10_1109_TGRS_2023_3321041 crossref_primary_10_3390_app15073475 crossref_primary_10_1109_TGRS_2022_3221492 crossref_primary_10_1016_j_jag_2024_103836 crossref_primary_10_1364_AO_479955 crossref_primary_10_1109_TGRS_2024_3491111 crossref_primary_10_1109_JSTARS_2024_3450287 crossref_primary_10_1016_j_engappai_2024_108960 crossref_primary_10_3390_electronics13112204 crossref_primary_10_1109_TGRS_2024_3379431 crossref_primary_10_1109_TGRS_2024_3470314 crossref_primary_10_3389_fpubh_2024_1361901 crossref_primary_10_1007_s10489_024_06003_x crossref_primary_10_1016_j_isprsjprs_2024_09_002 crossref_primary_10_1109_TGRS_2025_3540864 crossref_primary_10_1145_3721135 crossref_primary_10_1109_LGRS_2024_3373053 crossref_primary_10_1109_TGRS_2024_3470808 crossref_primary_10_1109_TGRS_2025_3539630 crossref_primary_10_1016_j_patcog_2024_111266 crossref_primary_10_1080_2150704X_2022_2079389 crossref_primary_10_1109_TGRS_2024_3368168 crossref_primary_10_1080_15481603_2023_2257980 crossref_primary_10_1109_JSTARS_2025_3531658 crossref_primary_10_1109_JSTARS_2024_3511597 crossref_primary_10_1109_TGRS_2024_3495662 crossref_primary_10_1109_TGRS_2023_3286113 crossref_primary_10_1016_j_compag_2025_109973 crossref_primary_10_1109_TGRS_2021_3127580 crossref_primary_10_1109_TGRS_2024_3370236 crossref_primary_10_1109_TGRS_2021_3066802 crossref_primary_10_1016_j_isprsjprs_2021_10_001 crossref_primary_10_1109_TGRS_2024_3484526 crossref_primary_10_1109_JSTARS_2024_3408604 crossref_primary_10_3390_rs13234927 crossref_primary_10_3390_rs15040949 crossref_primary_10_1080_01691864_2024_2381812 crossref_primary_10_1109_JSTARS_2023_3267482 crossref_primary_10_3390_app12157903 crossref_primary_10_3390_geomatics2040025 crossref_primary_10_3390_rs16020225 crossref_primary_10_1007_s12205_023_2285_0 crossref_primary_10_1109_TGRS_2024_3432771 crossref_primary_10_1109_JSTARS_2021_3070368 crossref_primary_10_1007_s00521_022_06999_8 crossref_primary_10_1109_ACCESS_2022_3201129 crossref_primary_10_1016_j_jestch_2025_101969 crossref_primary_10_3390_rs15020478 crossref_primary_10_3390_electronics13050867 crossref_primary_10_3390_rs16061070 crossref_primary_10_1109_ACCESS_2023_3320792 crossref_primary_10_1109_MGRS_2024_3412770 crossref_primary_10_1109_TPAMI_2025_3528453 crossref_primary_10_3390_rs14215405 crossref_primary_10_1016_j_patcog_2022_108717 crossref_primary_10_1109_JSTARS_2024_3372386 crossref_primary_10_3390_rs15061655 crossref_primary_10_1109_JSTARS_2024_3455261 crossref_primary_10_1109_JSTARS_2024_3422901 crossref_primary_10_3390_rs13071236 crossref_primary_10_3390_rs14071580 crossref_primary_10_1109_JSTARS_2022_3200997 crossref_primary_10_1080_17538947_2023_2246445 crossref_primary_10_1016_j_rse_2022_113371 crossref_primary_10_1109_JSTARS_2022_3231915 crossref_primary_10_1109_TGRS_2023_3241257 crossref_primary_10_1109_TGRS_2024_3352050 crossref_primary_10_1109_JSTARS_2022_3223180 crossref_primary_10_1109_LGRS_2024_3461957 crossref_primary_10_1109_TGRS_2023_3321637 crossref_primary_10_3390_rs14071552 crossref_primary_10_3390_rs16234569 crossref_primary_10_1109_TGRS_2024_3520630 crossref_primary_10_1109_TGRS_2022_3158741 crossref_primary_10_1016_j_knosys_2025_113135 crossref_primary_10_1109_JSTARS_2021_3113327 crossref_primary_10_3390_math12223577 crossref_primary_10_1016_j_isprsjprs_2024_11_017 crossref_primary_10_3390_rs13163336 crossref_primary_10_1109_JSTARS_2025_3529529 crossref_primary_10_1109_TGRS_2022_3203769 crossref_primary_10_1109_TGRS_2023_3244136 crossref_primary_10_1007_s10661_024_12598_y crossref_primary_10_3390_rs14030438 crossref_primary_10_3390_rs16050804 crossref_primary_10_1109_TGRS_2023_3299642 crossref_primary_10_1080_01431161_2023_2243021 crossref_primary_10_3390_rs16091478 crossref_primary_10_1109_TGRS_2023_3314452 crossref_primary_10_1109_JSTARS_2025_3534583 crossref_primary_10_1109_TGRS_2024_3495216 crossref_primary_10_1016_j_isprsjprs_2023_05_011 crossref_primary_10_1080_17538947_2024_2398051 crossref_primary_10_1109_JSTARS_2023_3278726 crossref_primary_10_1109_TGRS_2022_3228016 crossref_primary_10_1109_TGRS_2024_3480091 crossref_primary_10_1109_LGRS_2022_3159545 crossref_primary_10_1109_TGRS_2024_3478218 crossref_primary_10_1080_10106049_2024_2353253 crossref_primary_10_3390_rs15020395 crossref_primary_10_3390_rs17020217 crossref_primary_10_1109_TGRS_2023_3314217 crossref_primary_10_1016_j_jag_2024_103785 crossref_primary_10_3390_rs16183424 crossref_primary_10_1109_JSTARS_2023_3280589 crossref_primary_10_1109_JSTARS_2024_3373039 crossref_primary_10_1109_TGRS_2024_3497983 crossref_primary_10_1109_JSTARS_2024_3349775 crossref_primary_10_1109_TGRS_2024_3437250 crossref_primary_10_1109_TGRS_2022_3168331 crossref_primary_10_3390_ijgi13060187 crossref_primary_10_1109_TGRS_2021_3091758 crossref_primary_10_1109_TGRS_2024_3518568 crossref_primary_10_3390_rs15082092 crossref_primary_10_3390_rs17061019 crossref_primary_10_1109_TNNLS_2023_3242075 crossref_primary_10_1109_TGRS_2025_3540794 crossref_primary_10_1109_TGRS_2023_3305499 crossref_primary_10_1109_JSTARS_2024_3522135 crossref_primary_10_1109_TGRS_2023_3235981 crossref_primary_10_1109_TGRS_2023_3290817 crossref_primary_10_1109_JSTARS_2023_3348572 crossref_primary_10_1016_j_isprsjprs_2023_05_033 crossref_primary_10_1109_TGRS_2023_3238327 crossref_primary_10_3390_su15129729 crossref_primary_10_3390_rs14205114 crossref_primary_10_1109_TGRS_2025_3527483 crossref_primary_10_1109_JSTARS_2024_3407972 crossref_primary_10_1109_JSTARS_2024_3414452 crossref_primary_10_1109_TGRS_2024_3428551 crossref_primary_10_1109_JSTARS_2023_3344635 crossref_primary_10_1109_TGRS_2024_3476992 crossref_primary_10_1080_17538947_2023_2210311 crossref_primary_10_1109_TCSVT_2022_3216457 crossref_primary_10_3390_rs16050799 crossref_primary_10_1109_TGRS_2023_3236664 crossref_primary_10_3390_rs15112880 crossref_primary_10_1109_TIP_2024_3424335 crossref_primary_10_1109_TGRS_2022_3157721 crossref_primary_10_1109_TGRS_2024_3379223 crossref_primary_10_1109_LGRS_2022_3157032 crossref_primary_10_1111_tgis_70020 crossref_primary_10_1109_LGRS_2023_3341045 crossref_primary_10_3390_rs13153053 crossref_primary_10_3390_rs14215379 crossref_primary_10_1109_TGRS_2024_3434427 crossref_primary_10_1109_JSTARS_2021_3129318 crossref_primary_10_1109_TGRS_2023_3247605 crossref_primary_10_3390_rs15010045 crossref_primary_10_1109_JSTARS_2023_3247455 crossref_primary_10_3390_rs15215127 crossref_primary_10_1016_j_inffus_2025_103110 crossref_primary_10_3390_rs15215243 crossref_primary_10_3390_rs14235969 crossref_primary_10_3390_rs14122801 crossref_primary_10_1109_TGRS_2023_3345645 crossref_primary_10_3390_rs17020178 crossref_primary_10_1109_TGRS_2022_3229027 crossref_primary_10_1080_10095020_2022_2157762 crossref_primary_10_1109_TGRS_2022_3200985 crossref_primary_10_3390_rs14215368 crossref_primary_10_3390_rs15143482 crossref_primary_10_1016_j_jag_2022_102734 crossref_primary_10_1016_j_isprsjprs_2023_01_021 crossref_primary_10_1016_j_eswa_2025_127110 crossref_primary_10_1109_TGRS_2024_3512548 crossref_primary_10_1109_JSTARS_2024_3482559 crossref_primary_10_1109_JSTARS_2024_3462745 crossref_primary_10_1109_TGRS_2024_3523097 crossref_primary_10_1109_TGRS_2023_3313619 crossref_primary_10_3390_rs16101765 crossref_primary_10_1109_LGRS_2022_3200396 crossref_primary_10_1109_JSTARS_2023_3285389 crossref_primary_10_1109_TGRS_2023_3344583 crossref_primary_10_3390_rs16071269 crossref_primary_10_1109_JSTARS_2022_3203750 crossref_primary_10_1080_22797254_2023_2196641 crossref_primary_10_1109_JSTARS_2021_3122461 crossref_primary_10_1109_JSTARS_2024_3394571 crossref_primary_10_1016_j_isprsjprs_2023_01_018 crossref_primary_10_1109_TGRS_2023_3346879 crossref_primary_10_1016_j_jag_2024_104282 crossref_primary_10_1109_TGRS_2022_3207832 crossref_primary_10_1109_ACCESS_2024_3451473 crossref_primary_10_1109_TGRS_2021_3113912 |
Cites_doi | 10.1109/TGRS.2018.2858817 10.1109/LGRS.2009.2025059 10.1016/j.rse.2013.01.012 10.1109/TPAMI.2017.2699184 10.1109/JSTARS.2018.2887108 10.1109/TGRS.2018.2886643 10.1016/j.isprsjprs.2019.09.008 10.1109/TGRS.2016.2627638 10.1080/01431161.2016.1259673 10.1016/j.isprsjprs.2018.09.018 10.1007/978-3-030-32248-9_51 10.3390/rs11070763 10.1016/j.asoc.2013.09.010 10.1109/CVPR.2016.344 10.1109/CVPR.2015.7298965 10.1016/j.rse.2015.01.006 10.1109/LGRS.2017.2766840 10.3390/rs11111382 10.1109/TIP.2017.2772836 10.1016/j.isprsjprs.2018.10.006 10.1007/978-3-030-00889-5_1 10.1109/LGRS.2012.2199279 10.1109/TGRS.2009.2022633 10.1109/ICCV.2015.191 10.1016/j.neucom.2014.06.024 10.1109/JSTARS.2019.2906387 10.1109/ACCESS.2019.2902613 10.1109/LGRS.2017.2763182 10.1080/01431161.2019.1580821 10.1109/LGRS.2011.2109697 10.1117/1.JRS.13.024512 10.1109/LGRS.2018.2889307 10.1109/36.843009 10.1109/TGRS.2018.2819367 10.3390/s16091377 10.1109/TGRS.2018.2863224 10.1109/TPAMI.2019.2960224 10.1080/01431160801950162 10.5194/isprs-archives-XLII-2-565-2018 10.1109/TPAMI.2016.2644615 10.1109/TGRS.2008.916643 10.1109/IGARSS.2019.8898913 10.1109/MGRS.2015.2443494 10.3390/rs11111343 10.1016/j.isprsjprs.2013.03.006 10.1016/j.isprsjprs.2019.01.015 10.1016/j.neunet.2019.08.025 10.1016/j.rse.2011.02.012 10.1016/j.isprsjprs.2019.10.001 10.1109/TGRS.2017.2650198 10.1109/JPROC.2012.2197169 10.1109/TGRS.2013.2240692 10.1016/j.rse.2010.02.018 10.1016/j.isprsjprs.2019.12.002 10.3390/rs8121030 10.1109/TGRS.2018.2802785 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
DOI | 10.1109/TGRS.2020.3011913 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 5906 |
ExternalDocumentID | 10_1109_TGRS_2020_3011913 9161009 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20180797 funderid: 10.13039/501100004608 – fundername: Startup Project for Introducing Talent of Nanjing University of Information Science and Technology (NUIST) grantid: 2018r029 funderid: 10.13039/501100013156 – fundername: China Scholarship Council grantid: 201908320183 funderid: 10.13039/501100004543 – fundername: National Natural Science Foundation of China grantid: 41801386; 41701540; 41671454; 41571350 funderid: 10.13039/501100001809 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c359t-a014e0b78d6398a83516b852274e013f5756fa737ff6db24a1cb3ae95f2100ee3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Mon Jun 30 08:39:35 EDT 2025 Tue Jul 01 01:34:21 EDT 2025 Thu Apr 24 23:07:23 EDT 2025 Wed Aug 27 02:26:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-a014e0b78d6398a83516b852274e013f5756fa737ff6db24a1cb3ae95f2100ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3691-8721 0000-0001-8966-2956 0000-0001-9845-4251 0000-0003-3797-6042 0000-0002-6036-459X |
PQID | 2544296938 |
PQPubID | 85465 |
PageCount | 16 |
ParticipantIDs | ieee_primary_9161009 proquest_journals_2544296938 crossref_primary_10_1109_TGRS_2020_3011913 crossref_citationtrail_10_1109_TGRS_2020_3011913 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref12 ref59 ref15 ref14 ref52 ref11 ref54 ref10 zhou (ref49) 2018 daudt (ref35) 2018 ref17 ref16 ref19 ref18 zhang (ref55) 2018 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ronneberger (ref53) 2015 ref44 ref43 ref8 ref7 ref9 ref4 mondal (ref58) 2019 ref3 ref6 ref5 ref40 mirza (ref64) 2014 ref34 ref31 ref30 ref33 ref32 ref2 hung (ref56) 2018 ref1 ref39 ref38 khan (ref37) 2016 goodfellow (ref36) 2014 ref24 ref23 ref26 ref25 ref20 ref63 ref22 ref21 ref28 ref27 ref29 daudt (ref65) 2019; 187 ref60 ref62 ref61 |
References_xml | – ident: ref23 doi: 10.1109/TGRS.2018.2858817 – ident: ref11 doi: 10.1109/LGRS.2009.2025059 – ident: ref2 doi: 10.1016/j.rse.2013.01.012 – start-page: 234 year: 2015 ident: ref53 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent – ident: ref51 doi: 10.1109/TPAMI.2017.2699184 – ident: ref62 doi: 10.1109/JSTARS.2018.2887108 – ident: ref29 doi: 10.1109/TGRS.2018.2886643 – ident: ref42 doi: 10.1016/j.isprsjprs.2019.09.008 – ident: ref18 doi: 10.1109/TGRS.2016.2627638 – ident: ref17 doi: 10.1080/01431161.2016.1259673 – ident: ref24 doi: 10.1016/j.isprsjprs.2018.09.018 – ident: ref59 doi: 10.1007/978-3-030-32248-9_51 – ident: ref16 doi: 10.3390/rs11070763 – year: 2018 ident: ref56 article-title: Adversarial learning for semi-supervised semantic segmentation publication-title: arXiv 1802 07934 – ident: ref61 doi: 10.1016/j.asoc.2013.09.010 – ident: ref39 doi: 10.1109/CVPR.2016.344 – ident: ref50 doi: 10.1109/CVPR.2015.7298965 – ident: ref7 doi: 10.1016/j.rse.2015.01.006 – ident: ref28 doi: 10.1109/LGRS.2017.2766840 – ident: ref27 doi: 10.3390/rs11111382 – ident: ref41 doi: 10.1109/TIP.2017.2772836 – ident: ref44 doi: 10.1016/j.isprsjprs.2018.10.006 – start-page: 3 year: 2018 ident: ref49 article-title: UNet++: A nested u-net architecture for medical image segmentation publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support doi: 10.1007/978-3-030-00889-5_1 – year: 2018 ident: ref55 article-title: MDU-net: Multi-scale densely connected U-net for biomedical image segmentation publication-title: arXiv 1812 00352 – ident: ref60 doi: 10.1109/LGRS.2012.2199279 – ident: ref12 doi: 10.1109/TGRS.2009.2022633 – ident: ref38 doi: 10.1109/ICCV.2015.191 – ident: ref47 doi: 10.1016/j.neucom.2014.06.024 – ident: ref26 doi: 10.1109/JSTARS.2019.2906387 – ident: ref30 doi: 10.1109/ACCESS.2019.2902613 – start-page: 4063 year: 2018 ident: ref35 article-title: Fully convolutional Siamese networks for change detection publication-title: Proc 25th IEEE Int Conf Image Process (ICIP) – ident: ref14 doi: 10.1109/LGRS.2017.2763182 – ident: ref25 doi: 10.1080/01431161.2019.1580821 – ident: ref10 doi: 10.1109/LGRS.2011.2109697 – ident: ref40 doi: 10.1117/1.JRS.13.024512 – year: 2019 ident: ref58 article-title: Revisiting CycleGAN for semi-supervised segmentation publication-title: arXiv 1908 11569 – ident: ref33 doi: 10.1109/LGRS.2018.2889307 – ident: ref8 doi: 10.1109/36.843009 – volume: 187 year: 2019 ident: ref65 article-title: Multitask learning for large-scale semantic change detection publication-title: Comput Vis Image Understand – ident: ref13 doi: 10.1109/TGRS.2018.2819367 – ident: ref43 doi: 10.3390/s16091377 – ident: ref32 doi: 10.1109/TGRS.2018.2863224 – ident: ref57 doi: 10.1109/TPAMI.2019.2960224 – ident: ref9 doi: 10.1080/01431160801950162 – ident: ref34 doi: 10.5194/isprs-archives-XLII-2-565-2018 – ident: ref52 doi: 10.1109/TPAMI.2016.2644615 – ident: ref45 doi: 10.1109/TGRS.2008.916643 – ident: ref63 doi: 10.1109/IGARSS.2019.8898913 – ident: ref6 doi: 10.1109/MGRS.2015.2443494 – ident: ref4 doi: 10.3390/rs11111343 – ident: ref5 doi: 10.1016/j.isprsjprs.2013.03.006 – ident: ref21 doi: 10.1016/j.isprsjprs.2019.01.015 – ident: ref54 doi: 10.1016/j.neunet.2019.08.025 – year: 2016 ident: ref37 article-title: Learning deep structured network for weakly supervised change detection publication-title: arXiv 1606 02009 – ident: ref3 doi: 10.1016/j.rse.2011.02.012 – start-page: 2672 year: 2014 ident: ref36 article-title: Generative adversarial nets publication-title: Advances in neural information processing systems – ident: ref22 doi: 10.1016/j.isprsjprs.2019.10.001 – year: 2014 ident: ref64 article-title: Conditional generative adversarial nets publication-title: arXiv 1411 1784 – ident: ref31 doi: 10.1109/TGRS.2017.2650198 – ident: ref1 doi: 10.1109/JPROC.2012.2197169 – ident: ref19 doi: 10.1109/TGRS.2013.2240692 – ident: ref15 doi: 10.1016/j.rse.2010.02.018 – ident: ref46 doi: 10.1016/j.isprsjprs.2019.12.002 – ident: ref20 doi: 10.3390/rs8121030 – ident: ref48 doi: 10.1109/TGRS.2018.2802785 |
SSID | ssj0014517 |
Score | 2.7047663 |
Snippet | Change detection (CD) is one of the main applications of remote sensing. With the increasing popularity of deep learning, most recent developments of CD... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5891 |
SubjectTerms | Artificial neural networks Automation Buildings Change detection Change detection (CD) Data Data models Deep learning deep learning (DL) Detection Discriminators Entropy feature distribution Feature extraction generative adversarial network (GAN) Generative adversarial networks High resolution Image resolution Image segmentation Information processing Machine learning Methods Neural networks Remote sensing remote sensing (RS) Resolution semisupervised convolutional network Task analysis Training |
Title | SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images |
URI | https://ieeexplore.ieee.org/document/9161009 https://www.proquest.com/docview/2544296938 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xSEi7B14FUV7ygRPalDhJk5gbaoGyUjlsQeIWxc4EoV1SRFIO_HpmHLdadleIUxzLjqzMxP4m880MwJEf6wTpaPGCRJGBUqSRp2WZe2lB3WVZYJpyvPP4Oh7dRj_u-ndL8H0RC4OIlnyGPW5aX34xNTP-VXZCUEbaaL0vZLi1sVoLj0HUly40OvbIiAicB1P66uTm8ueELMGADFTOcCbDd2eQLaryz05sj5eLNRjPF9aySn71Zo3umde_cjZ-duXrsOpwpjhrFWMDlrDahG9_ZB_chBXL_jR1B14m-PgwGF5jcyrOBN_UsyfeRGosxGBavTj9pAdyMg97sexxQZBXtAEKYoiNpXVV4qESTB8R7BpoJ1KTVAK9CdPlq3tx9UjbWL0FtxfnN4OR5woyeCbsq8bL6TWjr5O0IFyT5gTeZKxTQnAJdcuwJOgXl3kSJmXJZaqiXBod5qj6JRmWPmK4DcvVtMIdENoYTkCqMdYqkkmiIylzg4r2PF9qiV3w5yLKjMtWzkUzfmfWavFVxlLNWKqZk2oXjhdTntpUHR8N7rCUFgOdgLqwP9eDzH3MdcZZ3AIVqzDd_f-sPfgaMNXFsnj3Ybl5nuEBYZVGH1olfQOtueUv |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKtRyKBSKui20PnCqmiXO29zQAl1adg_dReIWxc4EIUoWkSyH_vrOON5VoajqKY5lR1ZmMo_MNzMA-36iUyTV4gWpIgelzCJPy6rwspKmq6rELON859E4GV5E3y7jyxX4ssyFQUQLPsM-D20sv5yZOf8qOyBTRtpsvRek92PZZWstYwZRLF1ydOKRGxG4GKb01cH0648J-YIBuahc40yGj7SQbavylyy2CuZ0A0aLo3W4kpv-vNV98-tJ1cb_PfsmvHaWpjjqWOMNrGC9Bet_1B_cgjWL_zTNNjxM8PZ6cDzG9lAcCb5p5ncsRhosxWBWPzgOpQdyOQ97sfhxQUav6FIUxDG2FthVi-taMIBEcHCg20hDYgr0JgyYr6_E2S0JsuYtXJyeTAdDz7Vk8EwYq9Yr6DWjr9OsJMsmK8h8k4nOyIZLaVqGFRl_SVWkYVpV3KgqKqTRYYEqrsi19BHDHVitZzW-A6GN4RKkGhOtIpmmOpKyMKhI6vlSS-yBvyBRbly9cm6b8TO3fouvcqZqzlTNHVV78Hm55a4r1vGvxdtMpeVCR6Ae7C74IHefc5NzHbdAJSrM3j-_6xO8HE5H5_n52fj7B3gVMPDFYnp3YbW9n-MeWS6t_mgZ9jfJtOh4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SemiCDNet%3A+A+Semisupervised+Convolutional+Neural+Network+for+Change+Detection+in+High+Resolution+Remote-Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Peng%2C+Daifeng&rft.au=Bruzzone%2C+Lorenzo&rft.au=Zhang%2C+Yongjun&rft.au=Guan%2C+Haiyan&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=59&rft.issue=7&rft.spage=5891&rft_id=info:doi/10.1109%2FTGRS.2020.3011913&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |