SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images

Change detection (CD) is one of the main applications of remote sensing. With the increasing popularity of deep learning, most recent developments of CD methods have introduced the use of deep learning techniques to increase the accuracy and automation level over traditional methods. However, when u...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 59; no. 7; pp. 5891 - 5906
Main Authors Peng, Daifeng, Bruzzone, Lorenzo, Zhang, Yongjun, Guan, Haiyan, Ding, Haiyong, Huang, Xu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Change detection (CD) is one of the main applications of remote sensing. With the increasing popularity of deep learning, most recent developments of CD methods have introduced the use of deep learning techniques to increase the accuracy and automation level over traditional methods. However, when using supervised CD methods, a large amount of labeled data is needed to train deep convolutional networks with millions of parameters. These labeled data are difficult to acquire for CD tasks. To address this limitation, a novel semisupervised convolutional network for CD (SemiCDNet) is proposed based on a generative adversarial network (GAN). First, both the labeled data and unlabeled data are input into the segmentation network to produce initial predictions and entropy maps. Then, to exploit the potential of unlabeled data, two discriminators are adopted to enforce the feature distribution consistency of segmentation maps and entropy maps between the labeled and unlabeled data. During the competitive training, the generator is continuously regularized by utilizing the unlabeled information, thus improving its generalization capability. The effectiveness and reliability of our proposed method are verified on two high-resolution remote sensing data sets. Extensive experimental results demonstrate the superiority of the proposed method against other state-of-the-art approaches.
AbstractList Change detection (CD) is one of the main applications of remote sensing. With the increasing popularity of deep learning, most recent developments of CD methods have introduced the use of deep learning techniques to increase the accuracy and automation level over traditional methods. However, when using supervised CD methods, a large amount of labeled data is needed to train deep convolutional networks with millions of parameters. These labeled data are difficult to acquire for CD tasks. To address this limitation, a novel semisupervised convolutional network for CD (SemiCDNet) is proposed based on a generative adversarial network (GAN). First, both the labeled data and unlabeled data are input into the segmentation network to produce initial predictions and entropy maps. Then, to exploit the potential of unlabeled data, two discriminators are adopted to enforce the feature distribution consistency of segmentation maps and entropy maps between the labeled and unlabeled data. During the competitive training, the generator is continuously regularized by utilizing the unlabeled information, thus improving its generalization capability. The effectiveness and reliability of our proposed method are verified on two high-resolution remote sensing data sets. Extensive experimental results demonstrate the superiority of the proposed method against other state-of-the-art approaches.
Author Bruzzone, Lorenzo
Guan, Haiyan
Zhang, Yongjun
Huang, Xu
Peng, Daifeng
Ding, Haiyong
Author_xml – sequence: 1
  givenname: Daifeng
  orcidid: 0000-0001-8966-2956
  surname: Peng
  fullname: Peng, Daifeng
  email: daifeng@nuist.edu.cn
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 2
  givenname: Lorenzo
  orcidid: 0000-0002-6036-459X
  surname: Bruzzone
  fullname: Bruzzone, Lorenzo
  email: lorenzo.bruzzone@ing.unitn.it
  organization: Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
– sequence: 3
  givenname: Yongjun
  orcidid: 0000-0001-9845-4251
  surname: Zhang
  fullname: Zhang, Yongjun
  email: zhangyj@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Haiyan
  orcidid: 0000-0003-3691-8721
  surname: Guan
  fullname: Guan, Haiyan
  email: guanhy.nj@nuist.edu.cn
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 5
  givenname: Haiyong
  surname: Ding
  fullname: Ding, Haiyong
  email: hyongd@163.com
  organization: School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, China
– sequence: 6
  givenname: Xu
  orcidid: 0000-0003-3797-6042
  surname: Huang
  fullname: Huang, Xu
  email: huangxurs@whu.edu.cn
  organization: Wuhan Engineering Science and Technology Institute, Wuhan, China
BookMark eNp9kMtOwzAQRS1UJErhAxAbS6xTPHacxOyq8KpUgURhHbnppHVp42I7Rfw9Ca1YsGA1D90zj3tKerWtkZALYEMApq5fH16mQ844GwoGoEAckT5ImUUsieMe6TNQScQzxU_IqfcrxiCWkPbJboobk98-YbihI9oVvtmi2xmPc5rbemfXTTC21mv6hI37CeHTundaWUfzpa4XSG8xYNmpqKnpo1ks6Qv6A9imGxswmmLtTb2g441eoD8jx5Veezw_xAF5u797zR-jyfPDOB9NolJIFSLdnolslmbzRKhMZ0JCMssk52nbBlHJVCaVTkVaVcl8xmMN5UxoVLLiwBiiGJCr_dytsx8N-lCsbOPab3zBZRxzlSiRtSrYq0pnvXdYFVtnNtp9FcCKzt6is7fo7C0O9rZM-ocpTdDdx8Fps_6XvNyTBhF_NylI2pOV-AZvhoo3
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3400925
crossref_primary_10_1109_JSTARS_2025_3526785
crossref_primary_10_1109_TGRS_2022_3141101
crossref_primary_10_1016_j_inffus_2024_102358
crossref_primary_10_1109_TGRS_2024_3369059
crossref_primary_10_1109_LGRS_2021_3066435
crossref_primary_10_1109_TGRS_2023_3270496
crossref_primary_10_1007_s44267_023_00004_z
crossref_primary_10_1080_17538947_2022_2108921
crossref_primary_10_1109_LGRS_2024_3404645
crossref_primary_10_3390_rs16244656
crossref_primary_10_1109_TNNLS_2023_3282935
crossref_primary_10_1016_j_isprsjprs_2023_03_012
crossref_primary_10_1109_JSTARS_2023_3345017
crossref_primary_10_1109_JSTARS_2024_3402431
crossref_primary_10_1109_TGRS_2021_3139077
crossref_primary_10_1109_JSTARS_2024_3358298
crossref_primary_10_1109_TGRS_2025_3540013
crossref_primary_10_1109_TGRS_2023_3305554
crossref_primary_10_3390_rs16081372
crossref_primary_10_1109_JSTARS_2023_3337999
crossref_primary_10_1109_TGRS_2024_3357085
crossref_primary_10_3390_su16010274
crossref_primary_10_1109_TGRS_2022_3224293
crossref_primary_10_1109_TGRS_2023_3300533
crossref_primary_10_3390_rs15020319
crossref_primary_10_1016_j_energ_2024_100006
crossref_primary_10_1109_JSTARS_2020_3046838
crossref_primary_10_1109_TGRS_2023_3298924
crossref_primary_10_1016_j_jag_2023_103303
crossref_primary_10_1109_ACCESS_2024_3520428
crossref_primary_10_1109_JSTARS_2025_3526208
crossref_primary_10_1080_22797254_2022_2047795
crossref_primary_10_3390_ijgi10090591
crossref_primary_10_1016_j_isprsjprs_2024_09_027
crossref_primary_10_1109_JSTARS_2024_3435575
crossref_primary_10_1109_TGRS_2024_3357524
crossref_primary_10_1007_s00521_023_08758_9
crossref_primary_10_1007_s11432_022_3599_y
crossref_primary_10_1109_ACCESS_2025_3552444
crossref_primary_10_1109_TGRS_2024_3381751
crossref_primary_10_1016_j_isprsjprs_2022_05_001
crossref_primary_10_1049_ipr2_12505
crossref_primary_10_3390_electronics12132796
crossref_primary_10_3390_rs17020184
crossref_primary_10_1109_TGRS_2024_3365825
crossref_primary_10_11834_jig_230212
crossref_primary_10_1016_j_jag_2022_103110
crossref_primary_10_1109_TGRS_2023_3321041
crossref_primary_10_3390_app15073475
crossref_primary_10_1109_TGRS_2022_3221492
crossref_primary_10_1016_j_jag_2024_103836
crossref_primary_10_1364_AO_479955
crossref_primary_10_1109_TGRS_2024_3491111
crossref_primary_10_1109_JSTARS_2024_3450287
crossref_primary_10_1016_j_engappai_2024_108960
crossref_primary_10_3390_electronics13112204
crossref_primary_10_1109_TGRS_2024_3379431
crossref_primary_10_1109_TGRS_2024_3470314
crossref_primary_10_3389_fpubh_2024_1361901
crossref_primary_10_1007_s10489_024_06003_x
crossref_primary_10_1016_j_isprsjprs_2024_09_002
crossref_primary_10_1109_TGRS_2025_3540864
crossref_primary_10_1145_3721135
crossref_primary_10_1109_LGRS_2024_3373053
crossref_primary_10_1109_TGRS_2024_3470808
crossref_primary_10_1109_TGRS_2025_3539630
crossref_primary_10_1016_j_patcog_2024_111266
crossref_primary_10_1080_2150704X_2022_2079389
crossref_primary_10_1109_TGRS_2024_3368168
crossref_primary_10_1080_15481603_2023_2257980
crossref_primary_10_1109_JSTARS_2025_3531658
crossref_primary_10_1109_JSTARS_2024_3511597
crossref_primary_10_1109_TGRS_2024_3495662
crossref_primary_10_1109_TGRS_2023_3286113
crossref_primary_10_1016_j_compag_2025_109973
crossref_primary_10_1109_TGRS_2021_3127580
crossref_primary_10_1109_TGRS_2024_3370236
crossref_primary_10_1109_TGRS_2021_3066802
crossref_primary_10_1016_j_isprsjprs_2021_10_001
crossref_primary_10_1109_TGRS_2024_3484526
crossref_primary_10_1109_JSTARS_2024_3408604
crossref_primary_10_3390_rs13234927
crossref_primary_10_3390_rs15040949
crossref_primary_10_1080_01691864_2024_2381812
crossref_primary_10_1109_JSTARS_2023_3267482
crossref_primary_10_3390_app12157903
crossref_primary_10_3390_geomatics2040025
crossref_primary_10_3390_rs16020225
crossref_primary_10_1007_s12205_023_2285_0
crossref_primary_10_1109_TGRS_2024_3432771
crossref_primary_10_1109_JSTARS_2021_3070368
crossref_primary_10_1007_s00521_022_06999_8
crossref_primary_10_1109_ACCESS_2022_3201129
crossref_primary_10_1016_j_jestch_2025_101969
crossref_primary_10_3390_rs15020478
crossref_primary_10_3390_electronics13050867
crossref_primary_10_3390_rs16061070
crossref_primary_10_1109_ACCESS_2023_3320792
crossref_primary_10_1109_MGRS_2024_3412770
crossref_primary_10_1109_TPAMI_2025_3528453
crossref_primary_10_3390_rs14215405
crossref_primary_10_1016_j_patcog_2022_108717
crossref_primary_10_1109_JSTARS_2024_3372386
crossref_primary_10_3390_rs15061655
crossref_primary_10_1109_JSTARS_2024_3455261
crossref_primary_10_1109_JSTARS_2024_3422901
crossref_primary_10_3390_rs13071236
crossref_primary_10_3390_rs14071580
crossref_primary_10_1109_JSTARS_2022_3200997
crossref_primary_10_1080_17538947_2023_2246445
crossref_primary_10_1016_j_rse_2022_113371
crossref_primary_10_1109_JSTARS_2022_3231915
crossref_primary_10_1109_TGRS_2023_3241257
crossref_primary_10_1109_TGRS_2024_3352050
crossref_primary_10_1109_JSTARS_2022_3223180
crossref_primary_10_1109_LGRS_2024_3461957
crossref_primary_10_1109_TGRS_2023_3321637
crossref_primary_10_3390_rs14071552
crossref_primary_10_3390_rs16234569
crossref_primary_10_1109_TGRS_2024_3520630
crossref_primary_10_1109_TGRS_2022_3158741
crossref_primary_10_1016_j_knosys_2025_113135
crossref_primary_10_1109_JSTARS_2021_3113327
crossref_primary_10_3390_math12223577
crossref_primary_10_1016_j_isprsjprs_2024_11_017
crossref_primary_10_3390_rs13163336
crossref_primary_10_1109_JSTARS_2025_3529529
crossref_primary_10_1109_TGRS_2022_3203769
crossref_primary_10_1109_TGRS_2023_3244136
crossref_primary_10_1007_s10661_024_12598_y
crossref_primary_10_3390_rs14030438
crossref_primary_10_3390_rs16050804
crossref_primary_10_1109_TGRS_2023_3299642
crossref_primary_10_1080_01431161_2023_2243021
crossref_primary_10_3390_rs16091478
crossref_primary_10_1109_TGRS_2023_3314452
crossref_primary_10_1109_JSTARS_2025_3534583
crossref_primary_10_1109_TGRS_2024_3495216
crossref_primary_10_1016_j_isprsjprs_2023_05_011
crossref_primary_10_1080_17538947_2024_2398051
crossref_primary_10_1109_JSTARS_2023_3278726
crossref_primary_10_1109_TGRS_2022_3228016
crossref_primary_10_1109_TGRS_2024_3480091
crossref_primary_10_1109_LGRS_2022_3159545
crossref_primary_10_1109_TGRS_2024_3478218
crossref_primary_10_1080_10106049_2024_2353253
crossref_primary_10_3390_rs15020395
crossref_primary_10_3390_rs17020217
crossref_primary_10_1109_TGRS_2023_3314217
crossref_primary_10_1016_j_jag_2024_103785
crossref_primary_10_3390_rs16183424
crossref_primary_10_1109_JSTARS_2023_3280589
crossref_primary_10_1109_JSTARS_2024_3373039
crossref_primary_10_1109_TGRS_2024_3497983
crossref_primary_10_1109_JSTARS_2024_3349775
crossref_primary_10_1109_TGRS_2024_3437250
crossref_primary_10_1109_TGRS_2022_3168331
crossref_primary_10_3390_ijgi13060187
crossref_primary_10_1109_TGRS_2021_3091758
crossref_primary_10_1109_TGRS_2024_3518568
crossref_primary_10_3390_rs15082092
crossref_primary_10_3390_rs17061019
crossref_primary_10_1109_TNNLS_2023_3242075
crossref_primary_10_1109_TGRS_2025_3540794
crossref_primary_10_1109_TGRS_2023_3305499
crossref_primary_10_1109_JSTARS_2024_3522135
crossref_primary_10_1109_TGRS_2023_3235981
crossref_primary_10_1109_TGRS_2023_3290817
crossref_primary_10_1109_JSTARS_2023_3348572
crossref_primary_10_1016_j_isprsjprs_2023_05_033
crossref_primary_10_1109_TGRS_2023_3238327
crossref_primary_10_3390_su15129729
crossref_primary_10_3390_rs14205114
crossref_primary_10_1109_TGRS_2025_3527483
crossref_primary_10_1109_JSTARS_2024_3407972
crossref_primary_10_1109_JSTARS_2024_3414452
crossref_primary_10_1109_TGRS_2024_3428551
crossref_primary_10_1109_JSTARS_2023_3344635
crossref_primary_10_1109_TGRS_2024_3476992
crossref_primary_10_1080_17538947_2023_2210311
crossref_primary_10_1109_TCSVT_2022_3216457
crossref_primary_10_3390_rs16050799
crossref_primary_10_1109_TGRS_2023_3236664
crossref_primary_10_3390_rs15112880
crossref_primary_10_1109_TIP_2024_3424335
crossref_primary_10_1109_TGRS_2022_3157721
crossref_primary_10_1109_TGRS_2024_3379223
crossref_primary_10_1109_LGRS_2022_3157032
crossref_primary_10_1111_tgis_70020
crossref_primary_10_1109_LGRS_2023_3341045
crossref_primary_10_3390_rs13153053
crossref_primary_10_3390_rs14215379
crossref_primary_10_1109_TGRS_2024_3434427
crossref_primary_10_1109_JSTARS_2021_3129318
crossref_primary_10_1109_TGRS_2023_3247605
crossref_primary_10_3390_rs15010045
crossref_primary_10_1109_JSTARS_2023_3247455
crossref_primary_10_3390_rs15215127
crossref_primary_10_1016_j_inffus_2025_103110
crossref_primary_10_3390_rs15215243
crossref_primary_10_3390_rs14235969
crossref_primary_10_3390_rs14122801
crossref_primary_10_1109_TGRS_2023_3345645
crossref_primary_10_3390_rs17020178
crossref_primary_10_1109_TGRS_2022_3229027
crossref_primary_10_1080_10095020_2022_2157762
crossref_primary_10_1109_TGRS_2022_3200985
crossref_primary_10_3390_rs14215368
crossref_primary_10_3390_rs15143482
crossref_primary_10_1016_j_jag_2022_102734
crossref_primary_10_1016_j_isprsjprs_2023_01_021
crossref_primary_10_1016_j_eswa_2025_127110
crossref_primary_10_1109_TGRS_2024_3512548
crossref_primary_10_1109_JSTARS_2024_3482559
crossref_primary_10_1109_JSTARS_2024_3462745
crossref_primary_10_1109_TGRS_2024_3523097
crossref_primary_10_1109_TGRS_2023_3313619
crossref_primary_10_3390_rs16101765
crossref_primary_10_1109_LGRS_2022_3200396
crossref_primary_10_1109_JSTARS_2023_3285389
crossref_primary_10_1109_TGRS_2023_3344583
crossref_primary_10_3390_rs16071269
crossref_primary_10_1109_JSTARS_2022_3203750
crossref_primary_10_1080_22797254_2023_2196641
crossref_primary_10_1109_JSTARS_2021_3122461
crossref_primary_10_1109_JSTARS_2024_3394571
crossref_primary_10_1016_j_isprsjprs_2023_01_018
crossref_primary_10_1109_TGRS_2023_3346879
crossref_primary_10_1016_j_jag_2024_104282
crossref_primary_10_1109_TGRS_2022_3207832
crossref_primary_10_1109_ACCESS_2024_3451473
crossref_primary_10_1109_TGRS_2021_3113912
Cites_doi 10.1109/TGRS.2018.2858817
10.1109/LGRS.2009.2025059
10.1016/j.rse.2013.01.012
10.1109/TPAMI.2017.2699184
10.1109/JSTARS.2018.2887108
10.1109/TGRS.2018.2886643
10.1016/j.isprsjprs.2019.09.008
10.1109/TGRS.2016.2627638
10.1080/01431161.2016.1259673
10.1016/j.isprsjprs.2018.09.018
10.1007/978-3-030-32248-9_51
10.3390/rs11070763
10.1016/j.asoc.2013.09.010
10.1109/CVPR.2016.344
10.1109/CVPR.2015.7298965
10.1016/j.rse.2015.01.006
10.1109/LGRS.2017.2766840
10.3390/rs11111382
10.1109/TIP.2017.2772836
10.1016/j.isprsjprs.2018.10.006
10.1007/978-3-030-00889-5_1
10.1109/LGRS.2012.2199279
10.1109/TGRS.2009.2022633
10.1109/ICCV.2015.191
10.1016/j.neucom.2014.06.024
10.1109/JSTARS.2019.2906387
10.1109/ACCESS.2019.2902613
10.1109/LGRS.2017.2763182
10.1080/01431161.2019.1580821
10.1109/LGRS.2011.2109697
10.1117/1.JRS.13.024512
10.1109/LGRS.2018.2889307
10.1109/36.843009
10.1109/TGRS.2018.2819367
10.3390/s16091377
10.1109/TGRS.2018.2863224
10.1109/TPAMI.2019.2960224
10.1080/01431160801950162
10.5194/isprs-archives-XLII-2-565-2018
10.1109/TPAMI.2016.2644615
10.1109/TGRS.2008.916643
10.1109/IGARSS.2019.8898913
10.1109/MGRS.2015.2443494
10.3390/rs11111343
10.1016/j.isprsjprs.2013.03.006
10.1016/j.isprsjprs.2019.01.015
10.1016/j.neunet.2019.08.025
10.1016/j.rse.2011.02.012
10.1016/j.isprsjprs.2019.10.001
10.1109/TGRS.2017.2650198
10.1109/JPROC.2012.2197169
10.1109/TGRS.2013.2240692
10.1016/j.rse.2010.02.018
10.1016/j.isprsjprs.2019.12.002
10.3390/rs8121030
10.1109/TGRS.2018.2802785
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2020.3011913
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 5906
ExternalDocumentID 10_1109_TGRS_2020_3011913
9161009
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20180797
  funderid: 10.13039/501100004608
– fundername: Startup Project for Introducing Talent of Nanjing University of Information Science and Technology (NUIST)
  grantid: 2018r029
  funderid: 10.13039/501100013156
– fundername: China Scholarship Council
  grantid: 201908320183
  funderid: 10.13039/501100004543
– fundername: National Natural Science Foundation of China
  grantid: 41801386; 41701540; 41671454; 41571350
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c359t-a014e0b78d6398a83516b852274e013f5756fa737ff6db24a1cb3ae95f2100ee3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:39:35 EDT 2025
Tue Jul 01 01:34:21 EDT 2025
Thu Apr 24 23:07:23 EDT 2025
Wed Aug 27 02:26:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-a014e0b78d6398a83516b852274e013f5756fa737ff6db24a1cb3ae95f2100ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3691-8721
0000-0001-8966-2956
0000-0001-9845-4251
0000-0003-3797-6042
0000-0002-6036-459X
PQID 2544296938
PQPubID 85465
PageCount 16
ParticipantIDs ieee_primary_9161009
proquest_journals_2544296938
crossref_primary_10_1109_TGRS_2020_3011913
crossref_citationtrail_10_1109_TGRS_2020_3011913
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref12
ref59
ref15
ref14
ref52
ref11
ref54
ref10
zhou (ref49) 2018
daudt (ref35) 2018
ref17
ref16
ref19
ref18
zhang (ref55) 2018
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ronneberger (ref53) 2015
ref44
ref43
ref8
ref7
ref9
ref4
mondal (ref58) 2019
ref3
ref6
ref5
ref40
mirza (ref64) 2014
ref34
ref31
ref30
ref33
ref32
ref2
hung (ref56) 2018
ref1
ref39
ref38
khan (ref37) 2016
goodfellow (ref36) 2014
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
ref28
ref27
ref29
daudt (ref65) 2019; 187
ref60
ref62
ref61
References_xml – ident: ref23
  doi: 10.1109/TGRS.2018.2858817
– ident: ref11
  doi: 10.1109/LGRS.2009.2025059
– ident: ref2
  doi: 10.1016/j.rse.2013.01.012
– start-page: 234
  year: 2015
  ident: ref53
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Proc Int Conf Med Image Comput Comput -Assist Intervent
– ident: ref51
  doi: 10.1109/TPAMI.2017.2699184
– ident: ref62
  doi: 10.1109/JSTARS.2018.2887108
– ident: ref29
  doi: 10.1109/TGRS.2018.2886643
– ident: ref42
  doi: 10.1016/j.isprsjprs.2019.09.008
– ident: ref18
  doi: 10.1109/TGRS.2016.2627638
– ident: ref17
  doi: 10.1080/01431161.2016.1259673
– ident: ref24
  doi: 10.1016/j.isprsjprs.2018.09.018
– ident: ref59
  doi: 10.1007/978-3-030-32248-9_51
– ident: ref16
  doi: 10.3390/rs11070763
– year: 2018
  ident: ref56
  article-title: Adversarial learning for semi-supervised semantic segmentation
  publication-title: arXiv 1802 07934
– ident: ref61
  doi: 10.1016/j.asoc.2013.09.010
– ident: ref39
  doi: 10.1109/CVPR.2016.344
– ident: ref50
  doi: 10.1109/CVPR.2015.7298965
– ident: ref7
  doi: 10.1016/j.rse.2015.01.006
– ident: ref28
  doi: 10.1109/LGRS.2017.2766840
– ident: ref27
  doi: 10.3390/rs11111382
– ident: ref41
  doi: 10.1109/TIP.2017.2772836
– ident: ref44
  doi: 10.1016/j.isprsjprs.2018.10.006
– start-page: 3
  year: 2018
  ident: ref49
  article-title: UNet++: A nested u-net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
  doi: 10.1007/978-3-030-00889-5_1
– year: 2018
  ident: ref55
  article-title: MDU-net: Multi-scale densely connected U-net for biomedical image segmentation
  publication-title: arXiv 1812 00352
– ident: ref60
  doi: 10.1109/LGRS.2012.2199279
– ident: ref12
  doi: 10.1109/TGRS.2009.2022633
– ident: ref38
  doi: 10.1109/ICCV.2015.191
– ident: ref47
  doi: 10.1016/j.neucom.2014.06.024
– ident: ref26
  doi: 10.1109/JSTARS.2019.2906387
– ident: ref30
  doi: 10.1109/ACCESS.2019.2902613
– start-page: 4063
  year: 2018
  ident: ref35
  article-title: Fully convolutional Siamese networks for change detection
  publication-title: Proc 25th IEEE Int Conf Image Process (ICIP)
– ident: ref14
  doi: 10.1109/LGRS.2017.2763182
– ident: ref25
  doi: 10.1080/01431161.2019.1580821
– ident: ref10
  doi: 10.1109/LGRS.2011.2109697
– ident: ref40
  doi: 10.1117/1.JRS.13.024512
– year: 2019
  ident: ref58
  article-title: Revisiting CycleGAN for semi-supervised segmentation
  publication-title: arXiv 1908 11569
– ident: ref33
  doi: 10.1109/LGRS.2018.2889307
– ident: ref8
  doi: 10.1109/36.843009
– volume: 187
  year: 2019
  ident: ref65
  article-title: Multitask learning for large-scale semantic change detection
  publication-title: Comput Vis Image Understand
– ident: ref13
  doi: 10.1109/TGRS.2018.2819367
– ident: ref43
  doi: 10.3390/s16091377
– ident: ref32
  doi: 10.1109/TGRS.2018.2863224
– ident: ref57
  doi: 10.1109/TPAMI.2019.2960224
– ident: ref9
  doi: 10.1080/01431160801950162
– ident: ref34
  doi: 10.5194/isprs-archives-XLII-2-565-2018
– ident: ref52
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref45
  doi: 10.1109/TGRS.2008.916643
– ident: ref63
  doi: 10.1109/IGARSS.2019.8898913
– ident: ref6
  doi: 10.1109/MGRS.2015.2443494
– ident: ref4
  doi: 10.3390/rs11111343
– ident: ref5
  doi: 10.1016/j.isprsjprs.2013.03.006
– ident: ref21
  doi: 10.1016/j.isprsjprs.2019.01.015
– ident: ref54
  doi: 10.1016/j.neunet.2019.08.025
– year: 2016
  ident: ref37
  article-title: Learning deep structured network for weakly supervised change detection
  publication-title: arXiv 1606 02009
– ident: ref3
  doi: 10.1016/j.rse.2011.02.012
– start-page: 2672
  year: 2014
  ident: ref36
  article-title: Generative adversarial nets
  publication-title: Advances in neural information processing systems
– ident: ref22
  doi: 10.1016/j.isprsjprs.2019.10.001
– year: 2014
  ident: ref64
  article-title: Conditional generative adversarial nets
  publication-title: arXiv 1411 1784
– ident: ref31
  doi: 10.1109/TGRS.2017.2650198
– ident: ref1
  doi: 10.1109/JPROC.2012.2197169
– ident: ref19
  doi: 10.1109/TGRS.2013.2240692
– ident: ref15
  doi: 10.1016/j.rse.2010.02.018
– ident: ref46
  doi: 10.1016/j.isprsjprs.2019.12.002
– ident: ref20
  doi: 10.3390/rs8121030
– ident: ref48
  doi: 10.1109/TGRS.2018.2802785
SSID ssj0014517
Score 2.7047663
Snippet Change detection (CD) is one of the main applications of remote sensing. With the increasing popularity of deep learning, most recent developments of CD...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5891
SubjectTerms Artificial neural networks
Automation
Buildings
Change detection
Change detection (CD)
Data
Data models
Deep learning
deep learning (DL)
Detection
Discriminators
Entropy
feature distribution
Feature extraction
generative adversarial network (GAN)
Generative adversarial networks
High resolution
Image resolution
Image segmentation
Information processing
Machine learning
Methods
Neural networks
Remote sensing
remote sensing (RS)
Resolution
semisupervised convolutional network
Task analysis
Training
Title SemiCDNet: A Semisupervised Convolutional Neural Network for Change Detection in High Resolution Remote-Sensing Images
URI https://ieeexplore.ieee.org/document/9161009
https://www.proquest.com/docview/2544296938
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xSEi7B14FUV7ygRPalDhJk5gbaoGyUjlsQeIWxc4EoV1SRFIO_HpmHLdadleIUxzLjqzMxP4m880MwJEf6wTpaPGCRJGBUqSRp2WZe2lB3WVZYJpyvPP4Oh7dRj_u-ndL8H0RC4OIlnyGPW5aX34xNTP-VXZCUEbaaL0vZLi1sVoLj0HUly40OvbIiAicB1P66uTm8ueELMGADFTOcCbDd2eQLaryz05sj5eLNRjPF9aySn71Zo3umde_cjZ-duXrsOpwpjhrFWMDlrDahG9_ZB_chBXL_jR1B14m-PgwGF5jcyrOBN_UsyfeRGosxGBavTj9pAdyMg97sexxQZBXtAEKYoiNpXVV4qESTB8R7BpoJ1KTVAK9CdPlq3tx9UjbWL0FtxfnN4OR5woyeCbsq8bL6TWjr5O0IFyT5gTeZKxTQnAJdcuwJOgXl3kSJmXJZaqiXBod5qj6JRmWPmK4DcvVtMIdENoYTkCqMdYqkkmiIylzg4r2PF9qiV3w5yLKjMtWzkUzfmfWavFVxlLNWKqZk2oXjhdTntpUHR8N7rCUFgOdgLqwP9eDzH3MdcZZ3AIVqzDd_f-sPfgaMNXFsnj3Ybl5nuEBYZVGH1olfQOtueUv
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hKtRyKBSKui20PnCqmiXO29zQAl1adg_dReIWxc4EIUoWkSyH_vrOON5VoajqKY5lR1ZmMo_MNzMA-36iUyTV4gWpIgelzCJPy6rwspKmq6rELON859E4GV5E3y7jyxX4ssyFQUQLPsM-D20sv5yZOf8qOyBTRtpsvRek92PZZWstYwZRLF1ydOKRGxG4GKb01cH0648J-YIBuahc40yGj7SQbavylyy2CuZ0A0aLo3W4kpv-vNV98-tJ1cb_PfsmvHaWpjjqWOMNrGC9Bet_1B_cgjWL_zTNNjxM8PZ6cDzG9lAcCb5p5ncsRhosxWBWPzgOpQdyOQ97sfhxQUav6FIUxDG2FthVi-taMIBEcHCg20hDYgr0JgyYr6_E2S0JsuYtXJyeTAdDz7Vk8EwYq9Yr6DWjr9OsJMsmK8h8k4nOyIZLaVqGFRl_SVWkYVpV3KgqKqTRYYEqrsi19BHDHVitZzW-A6GN4RKkGhOtIpmmOpKyMKhI6vlSS-yBvyBRbly9cm6b8TO3fouvcqZqzlTNHVV78Hm55a4r1vGvxdtMpeVCR6Ae7C74IHefc5NzHbdAJSrM3j-_6xO8HE5H5_n52fj7B3gVMPDFYnp3YbW9n-MeWS6t_mgZ9jfJtOh4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SemiCDNet%3A+A+Semisupervised+Convolutional+Neural+Network+for+Change+Detection+in+High+Resolution+Remote-Sensing+Images&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Peng%2C+Daifeng&rft.au=Bruzzone%2C+Lorenzo&rft.au=Zhang%2C+Yongjun&rft.au=Guan%2C+Haiyan&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=59&rft.issue=7&rft.spage=5891&rft_id=info:doi/10.1109%2FTGRS.2020.3011913&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon