Brain tumor classification from multi-modality MRI using wavelets and machine learning

In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal brain tumor segmentation challenge (MICCAI BraTS 2013) are utilized which are co-registered and skull-stripped, and the histogram matching is...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 20; no. 3; pp. 871 - 881
Main Authors Usman, Khalid, Rajpoot, Kashif
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal brain tumor segmentation challenge (MICCAI BraTS 2013) are utilized which are co-registered and skull-stripped, and the histogram matching is performed with a reference volume of high contrast. From the preprocessed images, the following features are then extracted: intensity, intensity differences, local neighborhood and wavelet texture. The integrated features are subsequently provided to the random forest classifier to predict five classes: background, necrosis, edema, enhancing tumor and non-enhancing tumor, and then these class labels are used to hierarchically compute three different regions ( complete tumor, active tumor and enhancing tumor ). We performed a leave-one-out cross-validation and achieved 88% Dice overlap for the complete tumor region, 75% for the core tumor region and 95% for enhancing tumor region, which is higher than the Dice overlap reported from MICCAI BraTS challenge.
AbstractList In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal brain tumor segmentation challenge (MICCAI BraTS 2013) are utilized which are co-registered and skull-stripped, and the histogram matching is performed with a reference volume of high contrast. From the preprocessed images, the following features are then extracted: intensity, intensity differences, local neighborhood and wavelet texture. The integrated features are subsequently provided to the random forest classifier to predict five classes: background, necrosis, edema, enhancing tumor and non-enhancing tumor, and then these class labels are used to hierarchically compute three different regions (complete tumor, active tumor and enhancing tumor). We performed a leave-one-out cross-validation and achieved 88% Dice overlap for the complete tumor region, 75% for the core tumor region and 95% for enhancing tumor region, which is higher than the Dice overlap reported from MICCAI BraTS challenge.
In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal brain tumor segmentation challenge (MICCAI BraTS 2013) are utilized which are co-registered and skull-stripped, and the histogram matching is performed with a reference volume of high contrast. From the preprocessed images, the following features are then extracted: intensity, intensity differences, local neighborhood and wavelet texture. The integrated features are subsequently provided to the random forest classifier to predict five classes: background, necrosis, edema, enhancing tumor and non-enhancing tumor, and then these class labels are used to hierarchically compute three different regions ( complete tumor, active tumor and enhancing tumor ). We performed a leave-one-out cross-validation and achieved 88% Dice overlap for the complete tumor region, 75% for the core tumor region and 95% for enhancing tumor region, which is higher than the Dice overlap reported from MICCAI BraTS challenge.
Author Usman, Khalid
Rajpoot, Kashif
Author_xml – sequence: 1
  givenname: Khalid
  surname: Usman
  fullname: Usman, Khalid
  email: 12mscskusman@seecs.edu.pk
  organization: School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST)
– sequence: 2
  givenname: Kashif
  surname: Rajpoot
  fullname: Rajpoot, Kashif
  organization: School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), School of Computer Science, University of Birmingham
BookMark eNp9kG9LQyEUhyUWtK0-QO-EXt_S63Xqyxr9GSyCqOidOK8ux73epd5i3z7XIiIohKNwznN-8ozAwHfeAHCM0SlGiJ3FXKuqQJgViApW8D0wxBUhBaP0efD9rvABGMW4QogQUvIheLoIynmY-rYLUDcqRmedVsl1HtrQtbDtm-SKtqtV49IG3t7PYB-dX8J39WYakyJUvoat0i_OG9gYFXzuHoJ9q5pojr7uMXi8unyY3hTzu-vZ9HxeaEJFKoQhoqxIbRGmHFuDldBWMKqpFaomNZtwjrBWdoKtIsxSRW2JsOULVQtTL8gYnOz2rkP32puY5Krrg8-REot8Si4Yz1N4N6VDF2MwVq6Da1XYSIzkVp_c6ZNZn9zqk1uG_WK0S59eUjbW_EuWOzLmFL804cef_oQ-ALhqh1I
CitedBy_id crossref_primary_10_1080_21681163_2021_1986858
crossref_primary_10_1142_S0219467822500012
crossref_primary_10_37391_ijeer_120345
crossref_primary_10_1007_s11042_018_6731_9
crossref_primary_10_1007_s11760_024_03379_8
crossref_primary_10_1016_j_imu_2018_02_006
crossref_primary_10_1038_s41598_024_51472_2
crossref_primary_10_1007_s13534_024_00393_0
crossref_primary_10_1007_s00330_021_08035_0
crossref_primary_10_1109_ACCESS_2018_2878276
crossref_primary_10_1108_SR_01_2018_0008
crossref_primary_10_32604_cmc_2022_023007
crossref_primary_10_3934_mbe_2024033
crossref_primary_10_1016_j_jneumeth_2025_110392
crossref_primary_10_1002_cpe_7850
crossref_primary_10_1007_s11045_021_00761_4
crossref_primary_10_1016_j_eswa_2022_119462
crossref_primary_10_1142_S0219467820500187
crossref_primary_10_1007_s11063_020_10398_2
crossref_primary_10_1186_s12880_022_00755_z
crossref_primary_10_1109_ACCESS_2021_3132050
crossref_primary_10_15622_ia_22_3_3
crossref_primary_10_3390_app13063680
crossref_primary_10_1007_s40998_022_00557_7
crossref_primary_10_1080_03772063_2019_1604176
crossref_primary_10_1002_ima_22407
crossref_primary_10_1063_5_0265407
crossref_primary_10_1007_s11042_023_17738_z
crossref_primary_10_1038_s41598_022_09985_1
crossref_primary_10_3390_a16040176
crossref_primary_10_1016_j_bspc_2022_103625
crossref_primary_10_1007_s10489_022_03184_1
crossref_primary_10_2174_1573405617666210217154446
crossref_primary_10_1007_s11042_022_14088_0
crossref_primary_10_1166_jmihi_2022_3935
crossref_primary_10_1007_s00521_020_05671_3
crossref_primary_10_36548_jiip_2022_3_005
crossref_primary_10_1109_ACCESS_2024_3413008
crossref_primary_10_1007_s11831_024_10128_0
crossref_primary_10_1016_j_bspc_2024_106436
crossref_primary_10_1145_3543848
crossref_primary_10_32350_BSR_42_05
crossref_primary_10_1016_j_heliyon_2024_e25468
crossref_primary_10_1007_s12065_020_00433_5
crossref_primary_10_1016_j_ijleo_2022_169443
crossref_primary_10_3389_fonc_2021_601425
crossref_primary_10_4018_IJSI_309721
crossref_primary_10_1002_sim_9722
crossref_primary_10_32628_CSEIT2410326
crossref_primary_10_29132_ijpas_1398148
crossref_primary_10_1007_s12652_020_02444_7
crossref_primary_10_1080_03772063_2022_2098182
crossref_primary_10_1016_j_measurement_2020_108838
crossref_primary_10_1016_j_heliyon_2020_e05625
crossref_primary_10_1007_s11042_020_10122_1
crossref_primary_10_3389_fradi_2022_1061402
crossref_primary_10_3390_app10061999
crossref_primary_10_1016_j_imu_2019_100243
crossref_primary_10_1007_s11831_021_09676_6
crossref_primary_10_3390_s21030778
crossref_primary_10_1016_j_cmpb_2023_107867
crossref_primary_10_1142_S0218001421570056
crossref_primary_10_1109_ACCESS_2021_3100549
crossref_primary_10_1109_ACCESS_2022_3179376
crossref_primary_10_3233_JIFS_202261
crossref_primary_10_1002_ima_22619
crossref_primary_10_1016_j_bspc_2022_103537
crossref_primary_10_2174_1573405618666220117151726
crossref_primary_10_3233_BME_191066
crossref_primary_10_1016_j_bbe_2018_05_001
crossref_primary_10_1155_2018_4940593
crossref_primary_10_1016_j_bspc_2021_103090
crossref_primary_10_1007_s11042_021_11591_8
crossref_primary_10_1007_s11227_020_03572_9
crossref_primary_10_1088_1742_6596_2335_1_012018
crossref_primary_10_1016_j_procs_2024_04_316
crossref_primary_10_3233_JIFS_179212
crossref_primary_10_1016_j_compbiomed_2024_108910
crossref_primary_10_48084_etasr_8484
crossref_primary_10_1016_j_eswa_2018_10_040
crossref_primary_10_1007_s11042_022_12271_x
crossref_primary_10_1007_s11042_023_17877_3
crossref_primary_10_1016_j_bbe_2019_07_005
crossref_primary_10_1109_TRPMS_2018_2867611
crossref_primary_10_28948_ngumuh_1111082
crossref_primary_10_1007_s41870_022_01095_5
crossref_primary_10_1016_j_measurement_2019_07_058
crossref_primary_10_1093_cercor_bhac155
crossref_primary_10_1109_ACCESS_2021_3115665
crossref_primary_10_1142_S0219519420500323
crossref_primary_10_1109_ACCESS_2019_2894435
crossref_primary_10_1016_j_patcog_2022_108675
crossref_primary_10_1007_s11760_020_01793_2
crossref_primary_10_1002_ima_22312
crossref_primary_10_1016_j_bspc_2020_102025
crossref_primary_10_1016_j_procs_2023_01_053
crossref_primary_10_32604_cmc_2022_030923
crossref_primary_10_1007_s11042_022_13016_6
crossref_primary_10_1016_j_bspc_2023_105421
crossref_primary_10_1016_j_matpr_2020_11_495
crossref_primary_10_35784_iapgos_62
crossref_primary_10_1007_s11042_023_15667_5
crossref_primary_10_1136_bmjopen_2020_042660
crossref_primary_10_1080_21681163_2023_2245069
crossref_primary_10_1142_S0219691320500460
crossref_primary_10_1080_13682199_2018_1545412
crossref_primary_10_32604_iasc_2023_030144
crossref_primary_10_1155_2022_1830010
crossref_primary_10_1186_s12911_023_02114_6
crossref_primary_10_2174_1573405617666211215111937
crossref_primary_10_1007_s11042_020_10423_5
crossref_primary_10_3390_healthcare10030541
crossref_primary_10_1002_nbm_4626
crossref_primary_10_1088_1742_6596_1235_1_012038
crossref_primary_10_1007_s10462_025_11146_5
Cites_doi 10.4304/jmm.4.6.427-434
10.1109/TBME.2009.2012423
10.1109/TMI.2014.2377694
10.1007/s11548-013-0922-7
10.4304/jmm.1.1.56-61
10.1186/1471-2105-8-25
10.1016/j.compbiomed.2013.07.001
10.1023/A:1010933404324
10.1016/j.patrec.2003.08.005
10.1016/j.compmedimag.2011.06.001
10.1016/j.mri.2012.01.006
10.1016/j.neuroimage.2006.01.015
10.1016/j.acra.2012.03.026
10.1109/34.868688
10.1088/0031-9155/58/13/R97
10.1109/TMI.2007.912817
10.2307/1932409
10.1016/j.compbiomed.2011.04.010
10.1111/j.1469-8137.1912.tb05611.x
10.1006/jcss.1997.1504
10.1109/ISBI.2007.357082
10.1007/978-3-642-40811-3_94
10.1109/IEMBS.2011.6091765
10.1117/12.709410
10.1007/978-3-642-23626-6_44
10.2316/P.2011.741-010
ContentType Journal Article
Copyright The Author(s) 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: The Author(s) 2017
– notice: Copyright Springer Science & Business Media 2017
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10044-017-0597-8
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 881
ExternalDocumentID 10_1007_s10044_017_0597_8
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c359t-9e39243df01581fe1a9cf975c5f9ad3d768801caf61fa37f5a5f201f8bad9edb3
IEDL.DBID C6C
ISSN 1433-7541
IngestDate Sun Jul 13 04:49:54 EDT 2025
Thu Apr 24 23:04:21 EDT 2025
Tue Jul 01 01:15:15 EDT 2025
Fri Feb 21 02:29:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Brain tumor
Random forest
Wavelet transform
Segmentation
MRI
Multi-modality
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-9e39243df01581fe1a9cf975c5f9ad3d768801caf61fa37f5a5f201f8bad9edb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s10044-017-0597-8
PQID 1919128978
PQPubID 2043691
PageCount 11
ParticipantIDs proquest_journals_1919128978
crossref_primary_10_1007_s10044_017_0597_8
crossref_citationtrail_10_1007_s10044_017_0597_8
springer_journals_10_1007_s10044_017_0597_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2017
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Harati, Khayati, Farzan (CR5) 2011; 41
Cheng, Liu (CR23) 2009; 4
Bauer, Wiest, Nolte, Reyes (CR1) 2013; 58
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest (CR2) 2015; 34
CR19
CR18
CR16
CR15
Wang, Cheng, Basu (CR4) 2009; 56
CR12
CR34
Arivazhagan, Ganesan (CR22) 2003; 24
CR33
CR10
CR32
CR31
Jaccard (CR29) 1912; 11
CR30
Mehmood, Ejaz, Sajjad, Baik (CR13) 2013; 43
Sifuzzaman, Islam, Ali (CR20) 2009; 13
Shi, Malik (CR14) 2000; 22
Wu, Chen, Zhao, Corso (CR35) 2014; 9
Corso, Sharon, Dube, El-Saden, Sinha, Yuille (CR11) 2008; 27
Strobl, Boulesteix, Zeileis, Hothorn (CR26) 2007; 8
Sachdeva, Kumar, Gupta, Khandelwal, Ahuja (CR9) 2012; 30
Khalid, Ilyas, Sarfaraz, Ajaz (CR7) 2006; 1
CR3
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (CR17) 2006; 31
Freund, Schapire (CR27) 1997; 55
CR24
CR21
Dice (CR28) 1945; 26
Saha, Ray, Greiner, Murtha, Zhang (CR6) 2012; 36
Zhu, Young, Xue, Huang, You, Setayesh, Hatabu, Cao, Wong (CR8) 2012; 19
Breiman (CR25) 2001; 45
J Sachdeva (597_CR9) 2012; 30
BN Saha (597_CR6) 2012; 36
LR Dice (597_CR28) 1945; 26
Y Zhu (597_CR8) 2012; 19
M Sifuzzaman (597_CR20) 2009; 13
597_CR24
597_CR21
BH Menze (597_CR2) 2015; 34
597_CR18
I Mehmood (597_CR13) 2013; 43
597_CR19
J Shi (597_CR14) 2000; 22
597_CR16
597_CR3
JJ Corso (597_CR11) 2008; 27
W Wu (597_CR35) 2014; 9
J Cheng (597_CR23) 2009; 4
V Harati (597_CR5) 2011; 41
MS Khalid (597_CR7) 2006; 1
C Strobl (597_CR26) 2007; 8
S Arivazhagan (597_CR22) 2003; 24
PA Yushkevich (597_CR17) 2006; 31
Y Freund (597_CR27) 1997; 55
S Bauer (597_CR1) 2013; 58
597_CR15
597_CR12
597_CR34
597_CR10
597_CR32
597_CR33
597_CR30
L Breiman (597_CR25) 2001; 45
597_CR31
P Jaccard (597_CR29) 1912; 11
T Wang (597_CR4) 2009; 56
References_xml – ident: CR18
– volume: 4
  start-page: 427
  year: 2009
  end-page: 434
  ident: CR23
  article-title: 3-D reconstruction of medical image using wavelet transform and snake model
  publication-title: J Multimed
  doi: 10.4304/jmm.4.6.427-434
– ident: CR16
– volume: 56
  start-page: 781
  year: 2009
  end-page: 789
  ident: CR4
  article-title: Fluid vector flow and applications in brain tumor segmentation
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2012423
– ident: CR12
– ident: CR30
– ident: CR10
– ident: CR33
– volume: 34
  start-page: 1993
  year: 2015
  end-page: 2024
  ident: CR2
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 9
  start-page: 241
  year: 2014
  end-page: 253
  ident: CR35
  article-title: Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-013-0922-7
– volume: 1
  start-page: 56
  year: 2006
  end-page: 61
  ident: CR7
  article-title: Bhattacharyya coefficient in correlation of gray-scale objects
  publication-title: J Multimed
  doi: 10.4304/jmm.1.1.56-61
– volume: 8
  start-page: 25
  year: 2007
  ident: CR26
  article-title: Bias in random forest variable importance measures: illustrations, sources and a solution
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-8-25
– volume: 43
  start-page: 1471
  year: 2013
  end-page: 1483
  ident: CR13
  article-title: Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.07.001
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR25
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 24
  start-page: 3197
  year: 2003
  end-page: 3203
  ident: CR22
  article-title: Texture segmentation using wavelet transform
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2003.08.005
– volume: 36
  start-page: 95
  year: 2012
  end-page: 107
  ident: CR6
  article-title: Quick detection of brain tumors and edemas: a bounding box method using symmetry
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2011.06.001
– volume: 30
  start-page: 694
  year: 2012
  end-page: 715
  ident: CR9
  article-title: A novel content-based active contour model for brain tumor segmentation
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.01.006
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: CR17
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 13
  start-page: 121
  year: 2009
  end-page: 134
  ident: CR20
  article-title: Application of wavelet transform and its advantages compared to Fourier transform
  publication-title: J Phys Sci
– ident: CR21
– ident: CR19
– volume: 19
  start-page: 977
  year: 2012
  end-page: 985
  ident: CR8
  article-title: Semi-automatic segmentation software for quantitative clinical brain glioblastoma evaluation
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2012.03.026
– volume: 22
  start-page: 888
  year: 2000
  end-page: 905
  ident: CR14
  article-title: Normalized cuts and image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
– volume: 58
  start-page: R97
  year: 2013
  ident: CR1
  article-title: A survey of MRI-based medical image analysis for brain tumor studies
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/13/R97
– ident: CR3
– volume: 27
  start-page: 629
  year: 2008
  end-page: 640
  ident: CR11
  article-title: Efficient multilevel brain tumor segmentation with integrated bayesian model classification
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2007.912817
– ident: CR15
– volume: 26
  start-page: 297
  year: 1945
  end-page: 302
  ident: CR28
  article-title: Measures of the amount of ecologic association between species
  publication-title: Ecology
  doi: 10.2307/1932409
– ident: CR31
– volume: 41
  start-page: 483
  year: 2011
  end-page: 492
  ident: CR5
  article-title: Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2011.04.010
– ident: CR32
– ident: CR34
– volume: 11
  start-page: 37
  year: 1912
  end-page: 50
  ident: CR29
  article-title: The distribution of the flora in the alpine zone
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: CR24
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: CR27
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– ident: 597_CR12
  doi: 10.1109/ISBI.2007.357082
– ident: 597_CR33
  doi: 10.1007/978-3-642-40811-3_94
– ident: 597_CR31
– volume: 34
  start-page: 1993
  year: 2015
  ident: 597_CR2
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2377694
– volume: 13
  start-page: 121
  year: 2009
  ident: 597_CR20
  publication-title: J Phys Sci
– volume: 43
  start-page: 1471
  year: 2013
  ident: 597_CR13
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2013.07.001
– volume: 26
  start-page: 297
  year: 1945
  ident: 597_CR28
  publication-title: Ecology
  doi: 10.2307/1932409
– volume: 56
  start-page: 781
  year: 2009
  ident: 597_CR4
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2012423
– volume: 22
  start-page: 888
  year: 2000
  ident: 597_CR14
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.868688
– volume: 31
  start-page: 1116
  year: 2006
  ident: 597_CR17
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 24
  start-page: 3197
  year: 2003
  ident: 597_CR22
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2003.08.005
– ident: 597_CR18
  doi: 10.1109/IEMBS.2011.6091765
– ident: 597_CR10
  doi: 10.1117/12.709410
– ident: 597_CR16
– volume: 41
  start-page: 483
  year: 2011
  ident: 597_CR5
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2011.04.010
– volume: 1
  start-page: 56
  year: 2006
  ident: 597_CR7
  publication-title: J Multimed
  doi: 10.4304/jmm.1.1.56-61
– volume: 11
  start-page: 37
  year: 1912
  ident: 597_CR29
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– ident: 597_CR32
– ident: 597_CR34
– volume: 58
  start-page: R97
  year: 2013
  ident: 597_CR1
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/58/13/R97
– ident: 597_CR30
  doi: 10.1007/978-3-642-23626-6_44
– ident: 597_CR3
– volume: 55
  start-page: 119
  year: 1997
  ident: 597_CR27
  publication-title: J Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– volume: 4
  start-page: 427
  year: 2009
  ident: 597_CR23
  publication-title: J Multimed
  doi: 10.4304/jmm.4.6.427-434
– volume: 36
  start-page: 95
  year: 2012
  ident: 597_CR6
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2011.06.001
– volume: 27
  start-page: 629
  year: 2008
  ident: 597_CR11
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2007.912817
– ident: 597_CR15
– ident: 597_CR19
– volume: 8
  start-page: 25
  year: 2007
  ident: 597_CR26
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-8-25
– ident: 597_CR24
– volume: 30
  start-page: 694
  year: 2012
  ident: 597_CR9
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2012.01.006
– volume: 45
  start-page: 5
  year: 2001
  ident: 597_CR25
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 9
  start-page: 241
  year: 2014
  ident: 597_CR35
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-013-0922-7
– volume: 19
  start-page: 977
  year: 2012
  ident: 597_CR8
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2012.03.026
– ident: 597_CR21
  doi: 10.2316/P.2011.741-010
SSID ssj0033328
Score 2.5395463
Snippet In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 871
SubjectTerms Brain
Brain cancer
Classification
Computer Science
Edema
Feature extraction
Image contrast
Image segmentation
Machine learning
Magnetic resonance imaging
NMR
Nuclear magnetic resonance
Pattern Recognition
Short Paper
Skull
Wavelet analysis
Title Brain tumor classification from multi-modality MRI using wavelets and machine learning
URI https://link.springer.com/article/10.1007/s10044-017-0597-8
https://www.proquest.com/docview/1919128978
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgXVj4RhRK5YEJZCmp7SQeS0UpoDIgisoU2XHchaaoTcXf5-w6FCpAYsng2B7u7Lt3uvM9hM4T1Q4jLSRJFBeE6ZBZO6iIDKQJKdx05brzDx6i_pDdjfjIN4u2b2HW8vf2iVvAbJ1ETAAIgEHdRHUe0tiyNHSjbmV0KaWORhW8PyUxZ2GVwPxpi-8uaIUr11KhzsP0dtG2h4a4s9TlHtrIi32042Ei9pdwDkMVE0M1doCeryzTAy4Xk-kMZxYQ2wogJ3RsH5BgVzdIJlPtYDcePN5iW_E-xu_SMk-UcywLjSeusjLHnkpifIiGveunbp94xgSSUS5KInKAO4xqA04-CU0eSpEZEfOMGyE11RBbgCYyaaLQSBobLrkBBGASJbXItaJHqFZMi_wYYQB6WRIwFSRKMRXlMqaaRpG0eclE66SBgkqIaebbiVtWi9d01QjZyj0FuadW7iksufhc8rbspfHX5GalmdRfq3kKwaUAhwqRbwNdVtr68vu3zU7-NfsUbbXdabFlfk1UK2eL_AygR6laqN65ebm_brnDB99hu_MB87zRpA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6awqG9sHQRw-pDe2llKYmz2AcOtIBmCsOhYqq5pXZsz4XJIBKE-D38UZ5NDLQqSBy4OrFlvfWz_Pk9gM9cJXGuhaRcZYKmOk5dHFRURtLGDD1d-er8o5N8ME5_TrJJD27CWxjPdg9Xkj5SP3rsFqWOMVFQhAQYWjsm5ZG5vsJzWrM73EelfkmSw4PTHwPatRKgFctES4VBHJAybTH78diaWIrKiiKrMiukZhpBN26xkjaPrWSFzWRmMTVarqQWRiuG676BRcQe3LnOONkL4Z4x5hu4Iu5gtMjSOFyd_m_Lfye_B0T7zyWsz22HK7DUgVKyd2dFq9Az9XtY7gAq6dy_waHQAyKMfYDf312PCdJezuYXpHJQ3HGPvLqJe7pCPGORzubaA34y-jUkjms_JVfS9bxoGyJrTWae02lI18Ri-hHGryLgT7BQz2uzBgQhZsWjVEVcqVTlRhZMszyX7kaUa837EAUhllVXyNz10zgrH0owO7mXKPfSyb3EKV_vp5zfVfF47ufNoJmyc-imxGOtwFSOZ-4-fAvaevT5qcXWX_T3DrwdnI6Oy-PhydEGvEu85Tiy4SYstBeXZgsBUKu2vQES-PPaFn8LlwER0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSgQxEC1cQLy4i7s56EUJdk96y8GDjg6OGyIq3tqkk3hxesRpEb_KX7SS6bihggev6U4IVZWqV9QGsJbJRpgoLmgmY04jFUZWD0oqAmFChi9duu78J6fJwWV0eB1fD8CLr4Vx2e4-JNmvabBdmspq616ZrQ-Fb0FksydSivAA1WydVXmkn5_QZ-ttt_eQweuNRmv_onlA67ECtGAxryjXiAkipgxawiw0OhS8MDyNi9hwoZhCAI7XLYRJQiNYamIRGzSTJpNCca0kw3MHYRgdo9B6e82k6VU_Y8wNc0UMwmgaR6EPo3535c-G8B3dfgnIOjvXmoCxGqCSnb5ETcKALqdgvAarpFYFPVzy8yD82jRc7dp5E6R67HQfSGFhuc1DcqwntoyFuOxF2ukqB_7JyXmb2Lz7W_Ik7PyLqkdEqUjH5XdqUg-0uJ2By38h8CwMld1SzwFBuFlkQSSDTMpIJlqkTLEkETY6mimVzUPgiZgXdVNzO1vjLn9vx2zpniPdc0v3HLdsvG2573f0-O3nJc-ZvH7cvRxdXI5mHf3vedj03Prw-afDFv709yqMnO218uP26dEijDac4Ni8wyUYqh4e9TJioUquOPkjcPPfAv8KhmAV9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+tumor+classification+from+multi-modality+MRI+using+wavelets+and+machine+learning&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Usman%2C+Khalid&rft.au=Rajpoot%2C+Kashif&rft.date=2017-08-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=20&rft.issue=3&rft.spage=871&rft.epage=881&rft_id=info:doi/10.1007%2Fs10044-017-0597-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_017_0597_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon