Brain tumor classification from multi-modality MRI using wavelets and machine learning
In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal brain tumor segmentation challenge (MICCAI BraTS 2013) are utilized which are co-registered and skull-stripped, and the histogram matching is...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 20; no. 3; pp. 871 - 881 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.08.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal brain tumor segmentation challenge (MICCAI BraTS 2013) are utilized which are co-registered and skull-stripped, and the histogram matching is performed with a reference volume of high contrast. From the preprocessed images, the following features are then extracted: intensity, intensity differences, local neighborhood and wavelet texture. The integrated features are subsequently provided to the
random forest
classifier to predict five classes: background, necrosis, edema, enhancing tumor and non-enhancing tumor, and then these class labels are used to hierarchically compute three different regions (
complete tumor, active tumor and enhancing tumor
). We performed a leave-one-out cross-validation and achieved 88%
Dice overlap
for the complete tumor region, 75% for the core tumor region and 95% for enhancing tumor region, which is higher than the Dice overlap reported from MICCAI BraTS challenge. |
---|---|
AbstractList | In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal brain tumor segmentation challenge (MICCAI BraTS 2013) are utilized which are co-registered and skull-stripped, and the histogram matching is performed with a reference volume of high contrast. From the preprocessed images, the following features are then extracted: intensity, intensity differences, local neighborhood and wavelet texture. The integrated features are subsequently provided to the random forest classifier to predict five classes: background, necrosis, edema, enhancing tumor and non-enhancing tumor, and then these class labels are used to hierarchically compute three different regions (complete tumor, active tumor and enhancing tumor). We performed a leave-one-out cross-validation and achieved 88% Dice overlap for the complete tumor region, 75% for the core tumor region and 95% for enhancing tumor region, which is higher than the Dice overlap reported from MICCAI BraTS challenge. In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal brain tumor segmentation challenge (MICCAI BraTS 2013) are utilized which are co-registered and skull-stripped, and the histogram matching is performed with a reference volume of high contrast. From the preprocessed images, the following features are then extracted: intensity, intensity differences, local neighborhood and wavelet texture. The integrated features are subsequently provided to the random forest classifier to predict five classes: background, necrosis, edema, enhancing tumor and non-enhancing tumor, and then these class labels are used to hierarchically compute three different regions ( complete tumor, active tumor and enhancing tumor ). We performed a leave-one-out cross-validation and achieved 88% Dice overlap for the complete tumor region, 75% for the core tumor region and 95% for enhancing tumor region, which is higher than the Dice overlap reported from MICCAI BraTS challenge. |
Author | Usman, Khalid Rajpoot, Kashif |
Author_xml | – sequence: 1 givenname: Khalid surname: Usman fullname: Usman, Khalid email: 12mscskusman@seecs.edu.pk organization: School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST) – sequence: 2 givenname: Kashif surname: Rajpoot fullname: Rajpoot, Kashif organization: School of Electrical Engineering and Computer Science, National University of Sciences and Technology (NUST), School of Computer Science, University of Birmingham |
BookMark | eNp9kG9LQyEUhyUWtK0-QO-EXt_S63Xqyxr9GSyCqOidOK8ux73epd5i3z7XIiIohKNwznN-8ozAwHfeAHCM0SlGiJ3FXKuqQJgViApW8D0wxBUhBaP0efD9rvABGMW4QogQUvIheLoIynmY-rYLUDcqRmedVsl1HtrQtbDtm-SKtqtV49IG3t7PYB-dX8J39WYakyJUvoat0i_OG9gYFXzuHoJ9q5pojr7uMXi8unyY3hTzu-vZ9HxeaEJFKoQhoqxIbRGmHFuDldBWMKqpFaomNZtwjrBWdoKtIsxSRW2JsOULVQtTL8gYnOz2rkP32puY5Krrg8-REot8Si4Yz1N4N6VDF2MwVq6Da1XYSIzkVp_c6ZNZn9zqk1uG_WK0S59eUjbW_EuWOzLmFL804cef_oQ-ALhqh1I |
CitedBy_id | crossref_primary_10_1080_21681163_2021_1986858 crossref_primary_10_1142_S0219467822500012 crossref_primary_10_37391_ijeer_120345 crossref_primary_10_1007_s11042_018_6731_9 crossref_primary_10_1007_s11760_024_03379_8 crossref_primary_10_1016_j_imu_2018_02_006 crossref_primary_10_1038_s41598_024_51472_2 crossref_primary_10_1007_s13534_024_00393_0 crossref_primary_10_1007_s00330_021_08035_0 crossref_primary_10_1109_ACCESS_2018_2878276 crossref_primary_10_1108_SR_01_2018_0008 crossref_primary_10_32604_cmc_2022_023007 crossref_primary_10_3934_mbe_2024033 crossref_primary_10_1016_j_jneumeth_2025_110392 crossref_primary_10_1002_cpe_7850 crossref_primary_10_1007_s11045_021_00761_4 crossref_primary_10_1016_j_eswa_2022_119462 crossref_primary_10_1142_S0219467820500187 crossref_primary_10_1007_s11063_020_10398_2 crossref_primary_10_1186_s12880_022_00755_z crossref_primary_10_1109_ACCESS_2021_3132050 crossref_primary_10_15622_ia_22_3_3 crossref_primary_10_3390_app13063680 crossref_primary_10_1007_s40998_022_00557_7 crossref_primary_10_1080_03772063_2019_1604176 crossref_primary_10_1002_ima_22407 crossref_primary_10_1063_5_0265407 crossref_primary_10_1007_s11042_023_17738_z crossref_primary_10_1038_s41598_022_09985_1 crossref_primary_10_3390_a16040176 crossref_primary_10_1016_j_bspc_2022_103625 crossref_primary_10_1007_s10489_022_03184_1 crossref_primary_10_2174_1573405617666210217154446 crossref_primary_10_1007_s11042_022_14088_0 crossref_primary_10_1166_jmihi_2022_3935 crossref_primary_10_1007_s00521_020_05671_3 crossref_primary_10_36548_jiip_2022_3_005 crossref_primary_10_1109_ACCESS_2024_3413008 crossref_primary_10_1007_s11831_024_10128_0 crossref_primary_10_1016_j_bspc_2024_106436 crossref_primary_10_1145_3543848 crossref_primary_10_32350_BSR_42_05 crossref_primary_10_1016_j_heliyon_2024_e25468 crossref_primary_10_1007_s12065_020_00433_5 crossref_primary_10_1016_j_ijleo_2022_169443 crossref_primary_10_3389_fonc_2021_601425 crossref_primary_10_4018_IJSI_309721 crossref_primary_10_1002_sim_9722 crossref_primary_10_32628_CSEIT2410326 crossref_primary_10_29132_ijpas_1398148 crossref_primary_10_1007_s12652_020_02444_7 crossref_primary_10_1080_03772063_2022_2098182 crossref_primary_10_1016_j_measurement_2020_108838 crossref_primary_10_1016_j_heliyon_2020_e05625 crossref_primary_10_1007_s11042_020_10122_1 crossref_primary_10_3389_fradi_2022_1061402 crossref_primary_10_3390_app10061999 crossref_primary_10_1016_j_imu_2019_100243 crossref_primary_10_1007_s11831_021_09676_6 crossref_primary_10_3390_s21030778 crossref_primary_10_1016_j_cmpb_2023_107867 crossref_primary_10_1142_S0218001421570056 crossref_primary_10_1109_ACCESS_2021_3100549 crossref_primary_10_1109_ACCESS_2022_3179376 crossref_primary_10_3233_JIFS_202261 crossref_primary_10_1002_ima_22619 crossref_primary_10_1016_j_bspc_2022_103537 crossref_primary_10_2174_1573405618666220117151726 crossref_primary_10_3233_BME_191066 crossref_primary_10_1016_j_bbe_2018_05_001 crossref_primary_10_1155_2018_4940593 crossref_primary_10_1016_j_bspc_2021_103090 crossref_primary_10_1007_s11042_021_11591_8 crossref_primary_10_1007_s11227_020_03572_9 crossref_primary_10_1088_1742_6596_2335_1_012018 crossref_primary_10_1016_j_procs_2024_04_316 crossref_primary_10_3233_JIFS_179212 crossref_primary_10_1016_j_compbiomed_2024_108910 crossref_primary_10_48084_etasr_8484 crossref_primary_10_1016_j_eswa_2018_10_040 crossref_primary_10_1007_s11042_022_12271_x crossref_primary_10_1007_s11042_023_17877_3 crossref_primary_10_1016_j_bbe_2019_07_005 crossref_primary_10_1109_TRPMS_2018_2867611 crossref_primary_10_28948_ngumuh_1111082 crossref_primary_10_1007_s41870_022_01095_5 crossref_primary_10_1016_j_measurement_2019_07_058 crossref_primary_10_1093_cercor_bhac155 crossref_primary_10_1109_ACCESS_2021_3115665 crossref_primary_10_1142_S0219519420500323 crossref_primary_10_1109_ACCESS_2019_2894435 crossref_primary_10_1016_j_patcog_2022_108675 crossref_primary_10_1007_s11760_020_01793_2 crossref_primary_10_1002_ima_22312 crossref_primary_10_1016_j_bspc_2020_102025 crossref_primary_10_1016_j_procs_2023_01_053 crossref_primary_10_32604_cmc_2022_030923 crossref_primary_10_1007_s11042_022_13016_6 crossref_primary_10_1016_j_bspc_2023_105421 crossref_primary_10_1016_j_matpr_2020_11_495 crossref_primary_10_35784_iapgos_62 crossref_primary_10_1007_s11042_023_15667_5 crossref_primary_10_1136_bmjopen_2020_042660 crossref_primary_10_1080_21681163_2023_2245069 crossref_primary_10_1142_S0219691320500460 crossref_primary_10_1080_13682199_2018_1545412 crossref_primary_10_32604_iasc_2023_030144 crossref_primary_10_1155_2022_1830010 crossref_primary_10_1186_s12911_023_02114_6 crossref_primary_10_2174_1573405617666211215111937 crossref_primary_10_1007_s11042_020_10423_5 crossref_primary_10_3390_healthcare10030541 crossref_primary_10_1002_nbm_4626 crossref_primary_10_1088_1742_6596_1235_1_012038 crossref_primary_10_1007_s10462_025_11146_5 |
Cites_doi | 10.4304/jmm.4.6.427-434 10.1109/TBME.2009.2012423 10.1109/TMI.2014.2377694 10.1007/s11548-013-0922-7 10.4304/jmm.1.1.56-61 10.1186/1471-2105-8-25 10.1016/j.compbiomed.2013.07.001 10.1023/A:1010933404324 10.1016/j.patrec.2003.08.005 10.1016/j.compmedimag.2011.06.001 10.1016/j.mri.2012.01.006 10.1016/j.neuroimage.2006.01.015 10.1016/j.acra.2012.03.026 10.1109/34.868688 10.1088/0031-9155/58/13/R97 10.1109/TMI.2007.912817 10.2307/1932409 10.1016/j.compbiomed.2011.04.010 10.1111/j.1469-8137.1912.tb05611.x 10.1006/jcss.1997.1504 10.1109/ISBI.2007.357082 10.1007/978-3-642-40811-3_94 10.1109/IEMBS.2011.6091765 10.1117/12.709410 10.1007/978-3-642-23626-6_44 10.2316/P.2011.741-010 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Springer Science & Business Media 2017 |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s10044-017-0597-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 881 |
ExternalDocumentID | 10_1007_s10044_017_0597_8 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS C6C CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c359t-9e39243df01581fe1a9cf975c5f9ad3d768801caf61fa37f5a5f201f8bad9edb3 |
IEDL.DBID | C6C |
ISSN | 1433-7541 |
IngestDate | Sun Jul 13 04:49:54 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 Tue Jul 01 01:15:15 EDT 2025 Fri Feb 21 02:29:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Brain tumor Random forest Wavelet transform Segmentation MRI Multi-modality |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-9e39243df01581fe1a9cf975c5f9ad3d768801caf61fa37f5a5f201f8bad9edb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s10044-017-0597-8 |
PQID | 1919128978 |
PQPubID | 2043691 |
PageCount | 11 |
ParticipantIDs | proquest_journals_1919128978 crossref_primary_10_1007_s10044_017_0597_8 crossref_citationtrail_10_1007_s10044_017_0597_8 springer_journals_10_1007_s10044_017_0597_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2017 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Harati, Khayati, Farzan (CR5) 2011; 41 Cheng, Liu (CR23) 2009; 4 Bauer, Wiest, Nolte, Reyes (CR1) 2013; 58 Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest (CR2) 2015; 34 CR19 CR18 CR16 CR15 Wang, Cheng, Basu (CR4) 2009; 56 CR12 CR34 Arivazhagan, Ganesan (CR22) 2003; 24 CR33 CR10 CR32 CR31 Jaccard (CR29) 1912; 11 CR30 Mehmood, Ejaz, Sajjad, Baik (CR13) 2013; 43 Sifuzzaman, Islam, Ali (CR20) 2009; 13 Shi, Malik (CR14) 2000; 22 Wu, Chen, Zhao, Corso (CR35) 2014; 9 Corso, Sharon, Dube, El-Saden, Sinha, Yuille (CR11) 2008; 27 Strobl, Boulesteix, Zeileis, Hothorn (CR26) 2007; 8 Sachdeva, Kumar, Gupta, Khandelwal, Ahuja (CR9) 2012; 30 Khalid, Ilyas, Sarfaraz, Ajaz (CR7) 2006; 1 CR3 Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (CR17) 2006; 31 Freund, Schapire (CR27) 1997; 55 CR24 CR21 Dice (CR28) 1945; 26 Saha, Ray, Greiner, Murtha, Zhang (CR6) 2012; 36 Zhu, Young, Xue, Huang, You, Setayesh, Hatabu, Cao, Wong (CR8) 2012; 19 Breiman (CR25) 2001; 45 J Sachdeva (597_CR9) 2012; 30 BN Saha (597_CR6) 2012; 36 LR Dice (597_CR28) 1945; 26 Y Zhu (597_CR8) 2012; 19 M Sifuzzaman (597_CR20) 2009; 13 597_CR24 597_CR21 BH Menze (597_CR2) 2015; 34 597_CR18 I Mehmood (597_CR13) 2013; 43 597_CR19 J Shi (597_CR14) 2000; 22 597_CR16 597_CR3 JJ Corso (597_CR11) 2008; 27 W Wu (597_CR35) 2014; 9 J Cheng (597_CR23) 2009; 4 V Harati (597_CR5) 2011; 41 MS Khalid (597_CR7) 2006; 1 C Strobl (597_CR26) 2007; 8 S Arivazhagan (597_CR22) 2003; 24 PA Yushkevich (597_CR17) 2006; 31 Y Freund (597_CR27) 1997; 55 S Bauer (597_CR1) 2013; 58 597_CR15 597_CR12 597_CR34 597_CR10 597_CR32 597_CR33 597_CR30 L Breiman (597_CR25) 2001; 45 597_CR31 P Jaccard (597_CR29) 1912; 11 T Wang (597_CR4) 2009; 56 |
References_xml | – ident: CR18 – volume: 4 start-page: 427 year: 2009 end-page: 434 ident: CR23 article-title: 3-D reconstruction of medical image using wavelet transform and snake model publication-title: J Multimed doi: 10.4304/jmm.4.6.427-434 – ident: CR16 – volume: 56 start-page: 781 year: 2009 end-page: 789 ident: CR4 article-title: Fluid vector flow and applications in brain tumor segmentation publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2012423 – ident: CR12 – ident: CR30 – ident: CR10 – ident: CR33 – volume: 34 start-page: 1993 year: 2015 end-page: 2024 ident: CR2 article-title: The multimodal brain tumor image segmentation benchmark (BRATS) publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2377694 – volume: 9 start-page: 241 year: 2014 end-page: 253 ident: CR35 article-title: Brain tumor detection and segmentation in a CRF (conditional random fields) framework with pixel-pairwise affinity and superpixel-level features publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-013-0922-7 – volume: 1 start-page: 56 year: 2006 end-page: 61 ident: CR7 article-title: Bhattacharyya coefficient in correlation of gray-scale objects publication-title: J Multimed doi: 10.4304/jmm.1.1.56-61 – volume: 8 start-page: 25 year: 2007 ident: CR26 article-title: Bias in random forest variable importance measures: illustrations, sources and a solution publication-title: BMC Bioinform doi: 10.1186/1471-2105-8-25 – volume: 43 start-page: 1471 year: 2013 end-page: 1483 ident: CR13 article-title: Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2013.07.001 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR25 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 24 start-page: 3197 year: 2003 end-page: 3203 ident: CR22 article-title: Texture segmentation using wavelet transform publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2003.08.005 – volume: 36 start-page: 95 year: 2012 end-page: 107 ident: CR6 article-title: Quick detection of brain tumors and edemas: a bounding box method using symmetry publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2011.06.001 – volume: 30 start-page: 694 year: 2012 end-page: 715 ident: CR9 article-title: A novel content-based active contour model for brain tumor segmentation publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.01.006 – volume: 31 start-page: 1116 year: 2006 end-page: 1128 ident: CR17 article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 13 start-page: 121 year: 2009 end-page: 134 ident: CR20 article-title: Application of wavelet transform and its advantages compared to Fourier transform publication-title: J Phys Sci – ident: CR21 – ident: CR19 – volume: 19 start-page: 977 year: 2012 end-page: 985 ident: CR8 article-title: Semi-automatic segmentation software for quantitative clinical brain glioblastoma evaluation publication-title: Acad Radiol doi: 10.1016/j.acra.2012.03.026 – volume: 22 start-page: 888 year: 2000 end-page: 905 ident: CR14 article-title: Normalized cuts and image segmentation publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 – volume: 58 start-page: R97 year: 2013 ident: CR1 article-title: A survey of MRI-based medical image analysis for brain tumor studies publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/13/R97 – ident: CR3 – volume: 27 start-page: 629 year: 2008 end-page: 640 ident: CR11 article-title: Efficient multilevel brain tumor segmentation with integrated bayesian model classification publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2007.912817 – ident: CR15 – volume: 26 start-page: 297 year: 1945 end-page: 302 ident: CR28 article-title: Measures of the amount of ecologic association between species publication-title: Ecology doi: 10.2307/1932409 – ident: CR31 – volume: 41 start-page: 483 year: 2011 end-page: 492 ident: CR5 article-title: Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2011.04.010 – ident: CR32 – ident: CR34 – volume: 11 start-page: 37 year: 1912 end-page: 50 ident: CR29 article-title: The distribution of the flora in the alpine zone publication-title: New Phytol doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: CR24 – volume: 55 start-page: 119 year: 1997 end-page: 139 ident: CR27 article-title: A decision-theoretic generalization of on-line learning and an application to boosting publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – ident: 597_CR12 doi: 10.1109/ISBI.2007.357082 – ident: 597_CR33 doi: 10.1007/978-3-642-40811-3_94 – ident: 597_CR31 – volume: 34 start-page: 1993 year: 2015 ident: 597_CR2 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2377694 – volume: 13 start-page: 121 year: 2009 ident: 597_CR20 publication-title: J Phys Sci – volume: 43 start-page: 1471 year: 2013 ident: 597_CR13 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2013.07.001 – volume: 26 start-page: 297 year: 1945 ident: 597_CR28 publication-title: Ecology doi: 10.2307/1932409 – volume: 56 start-page: 781 year: 2009 ident: 597_CR4 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2012423 – volume: 22 start-page: 888 year: 2000 ident: 597_CR14 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.868688 – volume: 31 start-page: 1116 year: 2006 ident: 597_CR17 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.01.015 – volume: 24 start-page: 3197 year: 2003 ident: 597_CR22 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2003.08.005 – ident: 597_CR18 doi: 10.1109/IEMBS.2011.6091765 – ident: 597_CR10 doi: 10.1117/12.709410 – ident: 597_CR16 – volume: 41 start-page: 483 year: 2011 ident: 597_CR5 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2011.04.010 – volume: 1 start-page: 56 year: 2006 ident: 597_CR7 publication-title: J Multimed doi: 10.4304/jmm.1.1.56-61 – volume: 11 start-page: 37 year: 1912 ident: 597_CR29 publication-title: New Phytol doi: 10.1111/j.1469-8137.1912.tb05611.x – ident: 597_CR32 – ident: 597_CR34 – volume: 58 start-page: R97 year: 2013 ident: 597_CR1 publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/13/R97 – ident: 597_CR30 doi: 10.1007/978-3-642-23626-6_44 – ident: 597_CR3 – volume: 55 start-page: 119 year: 1997 ident: 597_CR27 publication-title: J Comput Syst Sci doi: 10.1006/jcss.1997.1504 – volume: 4 start-page: 427 year: 2009 ident: 597_CR23 publication-title: J Multimed doi: 10.4304/jmm.4.6.427-434 – volume: 36 start-page: 95 year: 2012 ident: 597_CR6 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2011.06.001 – volume: 27 start-page: 629 year: 2008 ident: 597_CR11 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2007.912817 – ident: 597_CR15 – ident: 597_CR19 – volume: 8 start-page: 25 year: 2007 ident: 597_CR26 publication-title: BMC Bioinform doi: 10.1186/1471-2105-8-25 – ident: 597_CR24 – volume: 30 start-page: 694 year: 2012 ident: 597_CR9 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2012.01.006 – volume: 45 start-page: 5 year: 2001 ident: 597_CR25 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 9 start-page: 241 year: 2014 ident: 597_CR35 publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-013-0922-7 – volume: 19 start-page: 977 year: 2012 ident: 597_CR8 publication-title: Acad Radiol doi: 10.1016/j.acra.2012.03.026 – ident: 597_CR21 doi: 10.2316/P.2011.741-010 |
SSID | ssj0033328 |
Score | 2.5395463 |
Snippet | In this paper, we propose a brain tumor segmentation and classification method for multi-modality magnetic resonance imaging scans. The data from multi-modal... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 871 |
SubjectTerms | Brain Brain cancer Classification Computer Science Edema Feature extraction Image contrast Image segmentation Machine learning Magnetic resonance imaging NMR Nuclear magnetic resonance Pattern Recognition Short Paper Skull Wavelet analysis |
Title | Brain tumor classification from multi-modality MRI using wavelets and machine learning |
URI | https://link.springer.com/article/10.1007/s10044-017-0597-8 https://www.proquest.com/docview/1919128978 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgXVj4RhRK5YEJZCmp7SQeS0UpoDIgisoU2XHchaaoTcXf5-w6FCpAYsng2B7u7Lt3uvM9hM4T1Q4jLSRJFBeE6ZBZO6iIDKQJKdx05brzDx6i_pDdjfjIN4u2b2HW8vf2iVvAbJ1ETAAIgEHdRHUe0tiyNHSjbmV0KaWORhW8PyUxZ2GVwPxpi-8uaIUr11KhzsP0dtG2h4a4s9TlHtrIi32042Ei9pdwDkMVE0M1doCeryzTAy4Xk-kMZxYQ2wogJ3RsH5BgVzdIJlPtYDcePN5iW_E-xu_SMk-UcywLjSeusjLHnkpifIiGveunbp94xgSSUS5KInKAO4xqA04-CU0eSpEZEfOMGyE11RBbgCYyaaLQSBobLrkBBGASJbXItaJHqFZMi_wYYQB6WRIwFSRKMRXlMqaaRpG0eclE66SBgkqIaebbiVtWi9d01QjZyj0FuadW7iksufhc8rbspfHX5GalmdRfq3kKwaUAhwqRbwNdVtr68vu3zU7-NfsUbbXdabFlfk1UK2eL_AygR6laqN65ebm_brnDB99hu_MB87zRpA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT9wwFH6awqG9sHQRw-pDe2llKYmz2AcOtIBmCsOhYqq5pXZsz4XJIBKE-D38UZ5NDLQqSBy4OrFlvfWz_Pk9gM9cJXGuhaRcZYKmOk5dHFRURtLGDD1d-er8o5N8ME5_TrJJD27CWxjPdg9Xkj5SP3rsFqWOMVFQhAQYWjsm5ZG5vsJzWrM73EelfkmSw4PTHwPatRKgFctES4VBHJAybTH78diaWIrKiiKrMiukZhpBN26xkjaPrWSFzWRmMTVarqQWRiuG676BRcQe3LnOONkL4Z4x5hu4Iu5gtMjSOFyd_m_Lfye_B0T7zyWsz22HK7DUgVKyd2dFq9Az9XtY7gAq6dy_waHQAyKMfYDf312PCdJezuYXpHJQ3HGPvLqJe7pCPGORzubaA34y-jUkjms_JVfS9bxoGyJrTWae02lI18Ri-hHGryLgT7BQz2uzBgQhZsWjVEVcqVTlRhZMszyX7kaUa837EAUhllVXyNz10zgrH0owO7mXKPfSyb3EKV_vp5zfVfF47ufNoJmyc-imxGOtwFSOZ-4-fAvaevT5qcXWX_T3DrwdnI6Oy-PhydEGvEu85Tiy4SYstBeXZgsBUKu2vQES-PPaFn8LlwER0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSgQxEC1cQLy4i7s56EUJdk96y8GDjg6OGyIq3tqkk3hxesRpEb_KX7SS6bihggev6U4IVZWqV9QGsJbJRpgoLmgmY04jFUZWD0oqAmFChi9duu78J6fJwWV0eB1fD8CLr4Vx2e4-JNmvabBdmspq616ZrQ-Fb0FksydSivAA1WydVXmkn5_QZ-ttt_eQweuNRmv_onlA67ECtGAxryjXiAkipgxawiw0OhS8MDyNi9hwoZhCAI7XLYRJQiNYamIRGzSTJpNCca0kw3MHYRgdo9B6e82k6VU_Y8wNc0UMwmgaR6EPo3535c-G8B3dfgnIOjvXmoCxGqCSnb5ETcKALqdgvAarpFYFPVzy8yD82jRc7dp5E6R67HQfSGFhuc1DcqwntoyFuOxF2ukqB_7JyXmb2Lz7W_Ik7PyLqkdEqUjH5XdqUg-0uJ2By38h8CwMld1SzwFBuFlkQSSDTMpIJlqkTLEkETY6mimVzUPgiZgXdVNzO1vjLn9vx2zpniPdc0v3HLdsvG2573f0-O3nJc-ZvH7cvRxdXI5mHf3vedj03Prw-afDFv709yqMnO218uP26dEijDac4Ni8wyUYqh4e9TJioUquOPkjcPPfAv8KhmAV9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+tumor+classification+from+multi-modality+MRI+using+wavelets+and+machine+learning&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Usman%2C+Khalid&rft.au=Rajpoot%2C+Kashif&rft.date=2017-08-01&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=20&rft.issue=3&rft.spage=871&rft.epage=881&rft_id=info:doi/10.1007%2Fs10044-017-0597-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10044_017_0597_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |