Cross-Temporal Knowledge Injection With Color Distribution Normalization for Remote Sensing Change Detection

Remote sensing change detection plays a critical role in monitoring and identifying alterations on the Earth's surface by comparing images captured at various time intervals. Although existing change detection methods have yielded promising results, challenges such as imaging discrepancies aris...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 6249 - 6265
Main Authors Zheng, Wenqi, Yang, Junze, Chen, Jianing, He, Jinlong, Li, Pengfei, Sun, Daobo, Chen, Chuhao, Meng, Xiangxu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Remote sensing change detection plays a critical role in monitoring and identifying alterations on the Earth's surface by comparing images captured at various time intervals. Although existing change detection methods have yielded promising results, challenges such as imaging discrepancies arising from seasonal changes, sensor variations, and numerous confounding pseudochanges in cross-temporal imaging significantly hinder their accuracy. To address these problems, we propose cross-temporal knowledge injection with color distribution normalization (CICD) method for remote sensing change detection. In CICD, color alignment for bitemporal image is designed to leverage channel statistics from bitemporal images to smoothly align the color distribution differences. Subsequently, after refining the granularity of multiscale features extracted from the backbone using learnable weights with varying preferences. The proposed bitemporal complementary knowledge cross-injection enhances semantic and temporal understanding of genuine change regions by cross-injecting spatial-layout knowledge and detailed knowledge into the refined bitemporal features. Q-mapping with fixed anchor and attention temperature scaling are employed to address query redundancy and smooth out cross-attention issues during the knowledge injection. The resulting features are processed using our proposed multidirectional change perception, which facilitates channel separation and enables independent change prediction across different channels by applying perceptual weights with varying shape preferences. This approach overcomes the limitations of fixed shape weights that lead to a singular perception of changes. Our approach outperforms nine state-of-the-art methods on three widely used high-resolution remote sensing change detection datasets.
AbstractList Remote sensing change detection plays a critical role in monitoring and identifying alterations on the Earth's surface by comparing images captured at various time intervals. Although existing change detection methods have yielded promising results, challenges such as imaging discrepancies arising from seasonal changes, sensor variations, and numerous confounding pseudochanges in cross-temporal imaging significantly hinder their accuracy. To address these problems, we propose cross-temporal knowledge injection with color distribution normalization (CICD) method for remote sensing change detection. In CICD, color alignment for bitemporal image is designed to leverage channel statistics from bitemporal images to smoothly align the color distribution differences. Subsequently, after refining the granularity of multiscale features extracted from the backbone using learnable weights with varying preferences. The proposed bitemporal complementary knowledge cross-injection enhances semantic and temporal understanding of genuine change regions by cross-injecting spatial-layout knowledge and detailed knowledge into the refined bitemporal features. Q-mapping with fixed anchor and attention temperature scaling are employed to address query redundancy and smooth out cross-attention issues during the knowledge injection. The resulting features are processed using our proposed multidirectional change perception, which facilitates channel separation and enables independent change prediction across different channels by applying perceptual weights with varying shape preferences. This approach overcomes the limitations of fixed shape weights that lead to a singular perception of changes. Our approach outperforms nine state-of-the-art methods on three widely used high-resolution remote sensing change detection datasets.
Author Chen, Chuhao
Yang, Junze
He, Jinlong
Meng, Xiangxu
Chen, Jianing
Zheng, Wenqi
Li, Pengfei
Sun, Daobo
Author_xml – sequence: 1
  givenname: Wenqi
  surname: Zheng
  fullname: Zheng, Wenqi
  email: zwq19960307@hrbeu.edu.cn
  organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China
– sequence: 2
  givenname: Junze
  surname: Yang
  fullname: Yang, Junze
  email: jountze@hrbeu.edu.cn
  organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China
– sequence: 3
  givenname: Jianing
  surname: Chen
  fullname: Chen, Jianing
  email: kaqiz@hrbeu.edu.cn
  organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China
– sequence: 4
  givenname: Jinlong
  orcidid: 0009-0009-8891-554X
  surname: He
  fullname: He, Jinlong
  email: hejinlong@hrbeu.edu.cn
  organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China
– sequence: 5
  givenname: Pengfei
  orcidid: 0009-0009-4234-1579
  surname: Li
  fullname: Li, Pengfei
  email: pengfeili@hrbeu.edu.cn
  organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China
– sequence: 6
  givenname: Daobo
  surname: Sun
  fullname: Sun, Daobo
  email: sundaobo@stu.xmu.edu.cn
  organization: College of Aeronautics and Astronautics, Xiamen University, Xiamen, China
– sequence: 7
  givenname: Chuhao
  surname: Chen
  fullname: Chen, Chuhao
  email: chenchuhao@hrbeu.edu.cn
  organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China
– sequence: 8
  givenname: Xiangxu
  orcidid: 0000-0001-9842-4044
  surname: Meng
  fullname: Meng, Xiangxu
  email: mxx@hrbeu.edu.cn
  organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China
BookMark eNpNkduO0zAQhi20K9E9PAFcROI6xWOPk_hyleVQWLHStohLy3EmXVepXZxUCJ6etFkhrkZz-L8ZzX_FLkIMxNgb4EsArt9_WW_untZLwYVaSiVRVfIVWwhQkIOS6oItQEudA3J8za6GYcd5IUotF6yvUxyGfEP7Q0y2z76G-KundkvZKuzIjT6G7Icfn7M69jFl934Yk2-O5_q3mPa293_sOeum9hPt40jZmsLgwzarn22YSPc0zqQbdtnZfqDbl3jNvn_8sKk_5w-Pn1b13UPupNJjri0q4RqLaLWCDrgopCa0ZVsooRA4yoJQ8VYJatrGWawQCoHEBXLNlbxmq5nbRrszh-T3Nv020XpzLsS0NTaN3vVkqk6U6KAC2xKWAhoqO62QXAmlkwAT693MOqT480jDaHbxmMJ0vpFQTnuxKvQ0Jecpd3pnou7fVuDmZJGZLTIni8yLRZPq7azyRPSfolKqkFL-BVbijto
CODEN IJSTHZ
Cites_doi 10.1109/TGRS.2023.3235917
10.1109/CVPR.2016.90
10.1109/TGRS.2023.3241257
10.1109/ICCV.2017.167
10.1007/s41095-022-0274-8
10.3390/rs15030842
10.1016/j.isprsjprs.2020.06.003
10.1109/JSTARS.2021.3077545
10.1109/TGRS.2024.3491715
10.1109/LGRS.2024.3359220
10.1109/LGRS.2019.2941318
10.1109/TGRS.2024.3367948
10.1109/CVPR.2016.265
10.18653/v1/2021.emnlp-main.132
10.1016/j.isprsjprs.2021.07.007
10.1109/CVPR52733.2024.00840
10.1109/TGRS.2024.3424300
10.1109/TPAMI.2024.3430860
10.1609/aaai.v35i12.17325
10.1109/TGRS.2024.3362914
10.1109/JSTARS.2024.3413715
10.1109/TGRS.2024.3381752
10.1109/TGRS.2023.3275819
10.1109/CVPR52729.2023.00572
10.1007/978-3-030-58526-6_37
10.1109/IGARSS52108.2023.10282840
10.1016/j.isprsjprs.2024.07.024
10.1145/3422622
10.1145/3597503.3639187
10.1109/LGRS.2022.3200396
10.1016/j.engappai.2023.106324
10.1109/TGRS.2021.3095166
10.1109/TGRS.2019.2956756
10.1109/TGRS.2024.3376673
10.3390/rs13153053
10.3390/rs16132355
10.1109/TGRS.2023.3241436
10.1109/TGRS.2023.3299642
10.1109/JSTARS.2024.3362370
10.1109/JSTARS.2022.3165005
10.1016/j.isprsjprs.2023.07.001
10.1109/TGRS.2024.3374421
10.1109/TGRS.2024.3429372
10.1109/CVPR52729.2023.01128
10.1109/JSTARS.2025.3526795
10.1109/ICCV.2019.00069
10.1109/TGRS.2021.3091758
10.1109/CVPR52733.2024.02448
10.1016/j.jag.2021.102348
10.1109/JSTARS.2022.3198517
10.1109/JSTARS.2022.3177235
10.1109/TGRS.2022.3160007
10.1109/MGRS.2021.3063465
10.1109/TGRS.2017.2765348
10.1016/j.inffus.2023.102192
10.1007/978-3-030-51859-2_1
10.1109/JSTARS.2023.3280947
10.1109/TGRS.2021.3085870
10.1080/01431161.2023.2173031
10.1080/10095020.2022.2085633
10.1109/ACCESS.2018.2807380
10.1080/15481603.2024.2380126
10.1109/TGRS.2024.3443420
10.1109/TGRS.2020.3011913
10.1109/TGRS.2020.3015826
10.48550/ARXIV.1706.03762
10.1109/CVPR52688.2022.00184
10.1109/ICIP.2018.8451652
10.1109/TGRS.2023.3296383
10.1016/j.isprsjprs.2021.03.005
10.1109/CVPR.2018.00745
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2025.3534583
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 6265
ExternalDocumentID oai_doaj_org_article_8f274c181ade4721be7f954ec717c311
10_1109_JSTARS_2025_3534583
10855633
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: XK2060021039
  funderid: 10.13039/501100012226
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c359t-9a452cba44a951f102639e4a7d6525410436e450d52ebdbca4841624e02409053
IEDL.DBID RIE
ISSN 1939-1404
IngestDate Wed Aug 27 00:54:20 EDT 2025
Sun Jul 13 05:34:57 EDT 2025
Tue Jul 01 05:25:54 EDT 2025
Wed Aug 27 01:48:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-9a452cba44a951f102639e4a7d6525410436e450d52ebdbca4841624e02409053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-4234-1579
0009-0009-8891-554X
0000-0001-9842-4044
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10855633
PQID 3174164869
PQPubID 75722
PageCount 17
ParticipantIDs crossref_primary_10_1109_JSTARS_2025_3534583
ieee_primary_10855633
doaj_primary_oai_doaj_org_article_8f274c181ade4721be7f954ec717c311
proquest_journals_3174164869
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref54
ref17
Wu (ref67) 2020
ref16
ref19
ref18
Jaderberg (ref78) 2015; 28
ref51
ref50
ref46
ref45
ref48
ref47
Chen (ref76) 2020; 12
ref41
ref44
ref43
ref49
ref8
ref7
Dinh (ref68) 2016
ref9
ref4
ref3
ref6
ref5
Sharifani (ref10) 2023; 10
ref40
Tschannen (ref74) 2019
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref33
ref77
ref32
ref2
Ioffe (ref42) 2015
ref1
ref39
ref38
ref71
ref70
ref73
ref72
ref24
ref23
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref35
  doi: 10.1109/TGRS.2023.3235917
– ident: ref7
  doi: 10.1109/CVPR.2016.90
– ident: ref28
  doi: 10.1109/TGRS.2023.3241257
– ident: ref40
  doi: 10.1109/ICCV.2017.167
– ident: ref66
  doi: 10.1007/s41095-022-0274-8
– ident: ref47
  doi: 10.3390/rs15030842
– volume: 10
  start-page: 3897
  issue: 07
  year: 2023
  ident: ref10
  article-title: Machine learning and deep learning: A review of methods and applications
  publication-title: World Inf. Technol. Eng. J.
– ident: ref54
  doi: 10.1016/j.isprsjprs.2020.06.003
– ident: ref58
  doi: 10.1109/JSTARS.2021.3077545
– ident: ref12
  doi: 10.1109/TGRS.2024.3491715
– ident: ref25
  doi: 10.1109/LGRS.2024.3359220
– ident: ref31
  doi: 10.1109/LGRS.2019.2941318
– ident: ref1
  doi: 10.1109/TGRS.2024.3367948
– year: 2020
  ident: ref67
  article-title: Lite transformer with long-short range attention
– ident: ref41
  doi: 10.1109/CVPR.2016.265
– ident: ref69
  doi: 10.18653/v1/2021.emnlp-main.132
– ident: ref30
  doi: 10.1016/j.isprsjprs.2021.07.007
– ident: ref39
  doi: 10.1109/CVPR52733.2024.00840
– ident: ref15
  doi: 10.1109/TGRS.2024.3424300
– ident: ref38
  doi: 10.1109/TPAMI.2024.3430860
– ident: ref71
  doi: 10.1609/aaai.v35i12.17325
– ident: ref26
  doi: 10.1109/TGRS.2024.3362914
– ident: ref27
  doi: 10.1109/JSTARS.2024.3413715
– year: 2015
  ident: ref42
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: ref13
  doi: 10.1109/TGRS.2024.3381752
– year: 2019
  ident: ref74
  article-title: On mutual information maximization for representation learning
– ident: ref49
  doi: 10.1109/TGRS.2023.3275819
– ident: ref51
  doi: 10.1109/CVPR52729.2023.00572
– ident: ref73
  doi: 10.1007/978-3-030-58526-6_37
– ident: ref34
  doi: 10.1109/IGARSS52108.2023.10282840
– ident: ref65
  doi: 10.1016/j.isprsjprs.2024.07.024
– volume: 28
  volume-title: Spatial Transformer Netw.
  year: 2015
  ident: ref78
  article-title: Advances in neural information processing systems
– ident: ref32
  doi: 10.1145/3422622
– ident: ref9
  doi: 10.1145/3597503.3639187
– ident: ref23
  doi: 10.1109/LGRS.2022.3200396
– ident: ref62
  doi: 10.1016/j.engappai.2023.106324
– ident: ref22
  doi: 10.1109/TGRS.2021.3095166
– ident: ref21
  doi: 10.1109/TGRS.2019.2956756
– ident: ref24
  doi: 10.1109/TGRS.2024.3376673
– ident: ref56
  doi: 10.3390/rs13153053
– ident: ref6
  doi: 10.3390/rs16132355
– ident: ref48
  doi: 10.1109/TGRS.2023.3241436
– ident: ref36
  doi: 10.1109/TGRS.2023.3299642
– ident: ref75
  doi: 10.1109/JSTARS.2024.3362370
– ident: ref11
  doi: 10.1109/JSTARS.2022.3165005
– ident: ref46
  doi: 10.1016/j.isprsjprs.2023.07.001
– ident: ref43
  doi: 10.1109/TGRS.2024.3374421
– ident: ref45
  doi: 10.1109/TGRS.2024.3429372
– ident: ref37
  doi: 10.1109/CVPR52729.2023.01128
– ident: ref50
  doi: 10.1109/JSTARS.2025.3526795
– ident: ref70
  doi: 10.1109/ICCV.2019.00069
– ident: ref2
  doi: 10.1109/TGRS.2021.3091758
– ident: ref52
  doi: 10.1109/CVPR52733.2024.02448
– ident: ref57
  doi: 10.1016/j.jag.2021.102348
– ident: ref61
  doi: 10.1109/JSTARS.2022.3198517
– year: 2016
  ident: ref68
  article-title: Density estimation using real NVP
– ident: ref29
  doi: 10.1109/JSTARS.2022.3177235
– ident: ref59
  doi: 10.1109/TGRS.2022.3160007
– ident: ref4
  doi: 10.1109/MGRS.2021.3063465
– ident: ref17
  doi: 10.1109/TGRS.2017.2765348
– ident: ref64
  doi: 10.1016/j.inffus.2023.102192
– ident: ref55
  doi: 10.1007/978-3-030-51859-2_1
– ident: ref33
  doi: 10.1109/JSTARS.2023.3280947
– ident: ref3
  doi: 10.1109/TGRS.2021.3085870
– ident: ref44
  doi: 10.1080/01431161.2023.2173031
– ident: ref5
  doi: 10.1080/10095020.2022.2085633
– ident: ref16
  doi: 10.1109/ACCESS.2018.2807380
– ident: ref60
  doi: 10.1080/15481603.2024.2380126
– ident: ref14
  doi: 10.1109/TGRS.2024.3443420
– volume: 12
  issue: 10
  volume-title: Remote Sens.
  year: 2020
  ident: ref76
  article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection
– ident: ref19
  doi: 10.1109/TGRS.2020.3011913
– ident: ref20
  doi: 10.1109/TGRS.2020.3015826
– ident: ref8
  doi: 10.48550/ARXIV.1706.03762
– ident: ref72
  doi: 10.1109/CVPR52688.2022.00184
– ident: ref53
  doi: 10.1109/ICIP.2018.8451652
– ident: ref63
  doi: 10.1109/TGRS.2023.3296383
– ident: ref18
  doi: 10.1016/j.isprsjprs.2021.03.005
– ident: ref77
  doi: 10.1109/CVPR.2018.00745
SSID ssj0062793
Score 2.374585
Snippet Remote sensing change detection plays a critical role in monitoring and identifying alterations on the Earth's surface by comparing images captured at various...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 6249
SubjectTerms Accuracy
Attention mechanisms
Change detection
Color
Color alignment
Colour
deep learning
Earth surface
Feature extraction
feature refine
Image color analysis
Image processing
Injection
Knowledge
Perception
Redundancy
Remote sensing
remote sensing change detection
Seasonal variation
Seasonal variations
Semantics
Sensors
Shape
Training
Transformers
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECbGxMSL8RnXVzh4FHeXQgtHXd_GPaxu9EagBR_ZVKP14L93prBG48GL16aFdgaY76PMN4TsFlYpYavAqr7LmAhBM1cWnPnc5VJrDxEKs5GvhvnZWFzcybtvpb7wTFiUB46G66oAvKmEOGQrL4CuOF8ELYUvgYeUWczqhZg3JVNxDc550crtAjrRDAVkkt5Qv6e7MOAPRtfADLncz2SG_w1_xKRWuj_VWvm1QLdR52SRLCS4SA_iay6RGV8vk7nTthzvxwqZDLBBdhP1pSb0crpDRs_rp_aQVU1vH5sHOoAHXukRquSmAld0iGh1ktIwKWBXOvLgN0-v8Ux7fU9j4gE98k1saZWMT45vBmcs1U9gZSZ1w7QVkpfOCmEBRwWAEgBHvLBFlUvghX1Un_dC9irJvasc6psDPOPCo-6Zhtm5Rmbr59qvE5plgBVCkEFJC4Qlt4pr7gE78ly5nio6ZG9qQfMSZTJMSy962kSDGzS4SQbvkEO08tetqHHdXgDPm-R585fnO2QVffStP4VqZ9D41tRpJk3INwMwCb5NqFxv_Effm2QevyfuxWyR2eb13W8DOmncTjsQPwEiDNyd
  priority: 102
  providerName: Directory of Open Access Journals
Title Cross-Temporal Knowledge Injection With Color Distribution Normalization for Remote Sensing Change Detection
URI https://ieeexplore.ieee.org/document/10855633
https://www.proquest.com/docview/3174164869
https://doaj.org/article/8f274c181ade4721be7f954ec717c311
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJSQuPItYKJUPHPF249hOfCxbSgGxhz5Eb5adjMtjlaKSPcCvZ8Z2EA8hcYuiOLEzY_v77JnPjD1rfNsq30fRV6EWKkYrQtdIASYYbS3gDEXZyO9W5vhcvbnQFyVZPeXCAEAKPoM5Xaa9_P6q29BS2T5FymtT11tsC5lbTtaahl0jm6Swi4DECtKMKRJD1cLuo48fnJwiGZR6Xuuatgp_m4aSWn85XuWvMTlNNEd32GqqYo4v-TzfjGHeff9DvfG_23CX3S6Qkx9kH7nHbsBwn918lY70_faArZdUQ3GWNarW_O20ysZfD59SoNbA338cP_AlFrjmh6S0Ww7J4itCvOuSyskR__ITQNsDP6W4-OGS5-QFfghjftMOOz96ebY8FuUMBtHV2o7CeqVlF7xSHrFYRDiCkAaUb3qjkVtWpGAPSi96LSH0gTTSEeJJBaSdZrGHP2Tbw9UAjxiva8QbMerYao-kx_hWWgmIP6Vpw6JtZuz5ZBL3JUttuERRFtZlCzqyoCsWnLEXZLafj5JOdrqBv9uVbufaiKy7QxTje1BIdgM00WoFHbLYrq6qGdshE_3yvWydGdudvMCVTv3VIdTCtqnW2Mf_KPaE3aIq5iWaXbY9Xm_gKYKWMewlsr-XXPYHXXbn4w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5VRQguPItYKOAD3PA2cewkPnAou5Rdtt1DuxW9mTiZQMsqRW1WqPwX_gq_jbGdVDzEsRK3KIrzsD97vnFmvgF4nhV5Louq5lVsEy7rWnNbZoJjalOlNZKFctnIe_N0cijfHamjNfh-mQuDiD74DIfu0P_Lr07Lldsq23KR8ipN-lrVM7z4Sh7a-avpmIbzhRA7bxajCe-KCPAyUbrlupBKlLaQsiAyUZM9JZuMssiqVJFzFDsJdpQqqpRAW1kn8k0cRUh04l86ckUhaIW_RkRDiZAe1i_0qci8pi9RIM2dSk0nahRHeotm1fb-AbmfQg0Tlbifk78ZPl8foCvo8pcV8KZt5zb86DslRLR8Hq5aOyy__aEX-d_22h241ZFqth1mwV1Yw-YeXH_rixZf3IflyPUIXwQVriWb9fuIbNqc-FC0hr0_bj-xETU4Y2OnJdyVAWNzx-mXXbIqI4bP9pHQjezARf43H1lIz2BjbMOdNuDwSj71Aaw3pw0-BJYkxKjqWtW5KsitS4tcaIHEsEWa2yjPBvCyh4D5EsREjHfCIm0CYoxDjOkQM4DXDiaXlzolcH-Chtd0C4vJa5HJknhaUaEkd95iVmslsSQ_vUzieAAbDhK_PC-gYQCbPepMt2ydGyKT9G0yT_WjfzR7Bjcmi71dszudzx7DTfe6YUNqE9bbsxU-IYrW2qd-ojD4cNUY-wkmBUB9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Temporal+Knowledge+Injection+With+Color+Distribution+Normalization+for+Remote+Sensing+Change+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Zheng%2C+Wenqi&rft.au=Yang%2C+Junze&rft.au=Chen%2C+Jianing&rft.au=He%2C+Jinlong&rft.date=2025&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=18&rft.spage=6249&rft.epage=6265&rft_id=info:doi/10.1109%2FJSTARS.2025.3534583&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3534583
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon