Cross-Temporal Knowledge Injection With Color Distribution Normalization for Remote Sensing Change Detection
Remote sensing change detection plays a critical role in monitoring and identifying alterations on the Earth's surface by comparing images captured at various time intervals. Although existing change detection methods have yielded promising results, challenges such as imaging discrepancies aris...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 6249 - 6265 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Remote sensing change detection plays a critical role in monitoring and identifying alterations on the Earth's surface by comparing images captured at various time intervals. Although existing change detection methods have yielded promising results, challenges such as imaging discrepancies arising from seasonal changes, sensor variations, and numerous confounding pseudochanges in cross-temporal imaging significantly hinder their accuracy. To address these problems, we propose cross-temporal knowledge injection with color distribution normalization (CICD) method for remote sensing change detection. In CICD, color alignment for bitemporal image is designed to leverage channel statistics from bitemporal images to smoothly align the color distribution differences. Subsequently, after refining the granularity of multiscale features extracted from the backbone using learnable weights with varying preferences. The proposed bitemporal complementary knowledge cross-injection enhances semantic and temporal understanding of genuine change regions by cross-injecting spatial-layout knowledge and detailed knowledge into the refined bitemporal features. Q-mapping with fixed anchor and attention temperature scaling are employed to address query redundancy and smooth out cross-attention issues during the knowledge injection. The resulting features are processed using our proposed multidirectional change perception, which facilitates channel separation and enables independent change prediction across different channels by applying perceptual weights with varying shape preferences. This approach overcomes the limitations of fixed shape weights that lead to a singular perception of changes. Our approach outperforms nine state-of-the-art methods on three widely used high-resolution remote sensing change detection datasets. |
---|---|
AbstractList | Remote sensing change detection plays a critical role in monitoring and identifying alterations on the Earth's surface by comparing images captured at various time intervals. Although existing change detection methods have yielded promising results, challenges such as imaging discrepancies arising from seasonal changes, sensor variations, and numerous confounding pseudochanges in cross-temporal imaging significantly hinder their accuracy. To address these problems, we propose cross-temporal knowledge injection with color distribution normalization (CICD) method for remote sensing change detection. In CICD, color alignment for bitemporal image is designed to leverage channel statistics from bitemporal images to smoothly align the color distribution differences. Subsequently, after refining the granularity of multiscale features extracted from the backbone using learnable weights with varying preferences. The proposed bitemporal complementary knowledge cross-injection enhances semantic and temporal understanding of genuine change regions by cross-injecting spatial-layout knowledge and detailed knowledge into the refined bitemporal features. Q-mapping with fixed anchor and attention temperature scaling are employed to address query redundancy and smooth out cross-attention issues during the knowledge injection. The resulting features are processed using our proposed multidirectional change perception, which facilitates channel separation and enables independent change prediction across different channels by applying perceptual weights with varying shape preferences. This approach overcomes the limitations of fixed shape weights that lead to a singular perception of changes. Our approach outperforms nine state-of-the-art methods on three widely used high-resolution remote sensing change detection datasets. |
Author | Chen, Chuhao Yang, Junze He, Jinlong Meng, Xiangxu Chen, Jianing Zheng, Wenqi Li, Pengfei Sun, Daobo |
Author_xml | – sequence: 1 givenname: Wenqi surname: Zheng fullname: Zheng, Wenqi email: zwq19960307@hrbeu.edu.cn organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China – sequence: 2 givenname: Junze surname: Yang fullname: Yang, Junze email: jountze@hrbeu.edu.cn organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China – sequence: 3 givenname: Jianing surname: Chen fullname: Chen, Jianing email: kaqiz@hrbeu.edu.cn organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China – sequence: 4 givenname: Jinlong orcidid: 0009-0009-8891-554X surname: He fullname: He, Jinlong email: hejinlong@hrbeu.edu.cn organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China – sequence: 5 givenname: Pengfei orcidid: 0009-0009-4234-1579 surname: Li fullname: Li, Pengfei email: pengfeili@hrbeu.edu.cn organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China – sequence: 6 givenname: Daobo surname: Sun fullname: Sun, Daobo email: sundaobo@stu.xmu.edu.cn organization: College of Aeronautics and Astronautics, Xiamen University, Xiamen, China – sequence: 7 givenname: Chuhao surname: Chen fullname: Chen, Chuhao email: chenchuhao@hrbeu.edu.cn organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China – sequence: 8 givenname: Xiangxu orcidid: 0000-0001-9842-4044 surname: Meng fullname: Meng, Xiangxu email: mxx@hrbeu.edu.cn organization: College of Computer Science and Technology, Harbin Engineering University, Harbin, China |
BookMark | eNpNkduO0zAQhi20K9E9PAFcROI6xWOPk_hyleVQWLHStohLy3EmXVepXZxUCJ6etFkhrkZz-L8ZzX_FLkIMxNgb4EsArt9_WW_untZLwYVaSiVRVfIVWwhQkIOS6oItQEudA3J8za6GYcd5IUotF6yvUxyGfEP7Q0y2z76G-KundkvZKuzIjT6G7Icfn7M69jFl934Yk2-O5_q3mPa293_sOeum9hPt40jZmsLgwzarn22YSPc0zqQbdtnZfqDbl3jNvn_8sKk_5w-Pn1b13UPupNJjri0q4RqLaLWCDrgopCa0ZVsooRA4yoJQ8VYJatrGWawQCoHEBXLNlbxmq5nbRrszh-T3Nv020XpzLsS0NTaN3vVkqk6U6KAC2xKWAhoqO62QXAmlkwAT693MOqT480jDaHbxmMJ0vpFQTnuxKvQ0Jecpd3pnou7fVuDmZJGZLTIni8yLRZPq7azyRPSfolKqkFL-BVbijto |
CODEN | IJSTHZ |
Cites_doi | 10.1109/TGRS.2023.3235917 10.1109/CVPR.2016.90 10.1109/TGRS.2023.3241257 10.1109/ICCV.2017.167 10.1007/s41095-022-0274-8 10.3390/rs15030842 10.1016/j.isprsjprs.2020.06.003 10.1109/JSTARS.2021.3077545 10.1109/TGRS.2024.3491715 10.1109/LGRS.2024.3359220 10.1109/LGRS.2019.2941318 10.1109/TGRS.2024.3367948 10.1109/CVPR.2016.265 10.18653/v1/2021.emnlp-main.132 10.1016/j.isprsjprs.2021.07.007 10.1109/CVPR52733.2024.00840 10.1109/TGRS.2024.3424300 10.1109/TPAMI.2024.3430860 10.1609/aaai.v35i12.17325 10.1109/TGRS.2024.3362914 10.1109/JSTARS.2024.3413715 10.1109/TGRS.2024.3381752 10.1109/TGRS.2023.3275819 10.1109/CVPR52729.2023.00572 10.1007/978-3-030-58526-6_37 10.1109/IGARSS52108.2023.10282840 10.1016/j.isprsjprs.2024.07.024 10.1145/3422622 10.1145/3597503.3639187 10.1109/LGRS.2022.3200396 10.1016/j.engappai.2023.106324 10.1109/TGRS.2021.3095166 10.1109/TGRS.2019.2956756 10.1109/TGRS.2024.3376673 10.3390/rs13153053 10.3390/rs16132355 10.1109/TGRS.2023.3241436 10.1109/TGRS.2023.3299642 10.1109/JSTARS.2024.3362370 10.1109/JSTARS.2022.3165005 10.1016/j.isprsjprs.2023.07.001 10.1109/TGRS.2024.3374421 10.1109/TGRS.2024.3429372 10.1109/CVPR52729.2023.01128 10.1109/JSTARS.2025.3526795 10.1109/ICCV.2019.00069 10.1109/TGRS.2021.3091758 10.1109/CVPR52733.2024.02448 10.1016/j.jag.2021.102348 10.1109/JSTARS.2022.3198517 10.1109/JSTARS.2022.3177235 10.1109/TGRS.2022.3160007 10.1109/MGRS.2021.3063465 10.1109/TGRS.2017.2765348 10.1016/j.inffus.2023.102192 10.1007/978-3-030-51859-2_1 10.1109/JSTARS.2023.3280947 10.1109/TGRS.2021.3085870 10.1080/01431161.2023.2173031 10.1080/10095020.2022.2085633 10.1109/ACCESS.2018.2807380 10.1080/15481603.2024.2380126 10.1109/TGRS.2024.3443420 10.1109/TGRS.2020.3011913 10.1109/TGRS.2020.3015826 10.48550/ARXIV.1706.03762 10.1109/CVPR52688.2022.00184 10.1109/ICIP.2018.8451652 10.1109/TGRS.2023.3296383 10.1016/j.isprsjprs.2021.03.005 10.1109/CVPR.2018.00745 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2025.3534583 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 6265 |
ExternalDocumentID | oai_doaj_org_article_8f274c181ade4721be7f954ec717c311 10_1109_JSTARS_2025_3534583 10855633 |
Genre | orig-research |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: XK2060021039 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c359t-9a452cba44a951f102639e4a7d6525410436e450d52ebdbca4841624e02409053 |
IEDL.DBID | RIE |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 00:54:20 EDT 2025 Sun Jul 13 05:34:57 EDT 2025 Tue Jul 01 05:25:54 EDT 2025 Wed Aug 27 01:48:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-9a452cba44a951f102639e4a7d6525410436e450d52ebdbca4841624e02409053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0009-4234-1579 0009-0009-8891-554X 0000-0001-9842-4044 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10855633 |
PQID | 3174164869 |
PQPubID | 75722 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1109_JSTARS_2025_3534583 ieee_primary_10855633 doaj_primary_oai_doaj_org_article_8f274c181ade4721be7f954ec717c311 proquest_journals_3174164869 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref54 ref17 Wu (ref67) 2020 ref16 ref19 ref18 Jaderberg (ref78) 2015; 28 ref51 ref50 ref46 ref45 ref48 ref47 Chen (ref76) 2020; 12 ref41 ref44 ref43 ref49 ref8 ref7 Dinh (ref68) 2016 ref9 ref4 ref3 ref6 ref5 Sharifani (ref10) 2023; 10 ref40 Tschannen (ref74) 2019 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref33 ref77 ref32 ref2 Ioffe (ref42) 2015 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref23 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref35 doi: 10.1109/TGRS.2023.3235917 – ident: ref7 doi: 10.1109/CVPR.2016.90 – ident: ref28 doi: 10.1109/TGRS.2023.3241257 – ident: ref40 doi: 10.1109/ICCV.2017.167 – ident: ref66 doi: 10.1007/s41095-022-0274-8 – ident: ref47 doi: 10.3390/rs15030842 – volume: 10 start-page: 3897 issue: 07 year: 2023 ident: ref10 article-title: Machine learning and deep learning: A review of methods and applications publication-title: World Inf. Technol. Eng. J. – ident: ref54 doi: 10.1016/j.isprsjprs.2020.06.003 – ident: ref58 doi: 10.1109/JSTARS.2021.3077545 – ident: ref12 doi: 10.1109/TGRS.2024.3491715 – ident: ref25 doi: 10.1109/LGRS.2024.3359220 – ident: ref31 doi: 10.1109/LGRS.2019.2941318 – ident: ref1 doi: 10.1109/TGRS.2024.3367948 – year: 2020 ident: ref67 article-title: Lite transformer with long-short range attention – ident: ref41 doi: 10.1109/CVPR.2016.265 – ident: ref69 doi: 10.18653/v1/2021.emnlp-main.132 – ident: ref30 doi: 10.1016/j.isprsjprs.2021.07.007 – ident: ref39 doi: 10.1109/CVPR52733.2024.00840 – ident: ref15 doi: 10.1109/TGRS.2024.3424300 – ident: ref38 doi: 10.1109/TPAMI.2024.3430860 – ident: ref71 doi: 10.1609/aaai.v35i12.17325 – ident: ref26 doi: 10.1109/TGRS.2024.3362914 – ident: ref27 doi: 10.1109/JSTARS.2024.3413715 – year: 2015 ident: ref42 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – ident: ref13 doi: 10.1109/TGRS.2024.3381752 – year: 2019 ident: ref74 article-title: On mutual information maximization for representation learning – ident: ref49 doi: 10.1109/TGRS.2023.3275819 – ident: ref51 doi: 10.1109/CVPR52729.2023.00572 – ident: ref73 doi: 10.1007/978-3-030-58526-6_37 – ident: ref34 doi: 10.1109/IGARSS52108.2023.10282840 – ident: ref65 doi: 10.1016/j.isprsjprs.2024.07.024 – volume: 28 volume-title: Spatial Transformer Netw. year: 2015 ident: ref78 article-title: Advances in neural information processing systems – ident: ref32 doi: 10.1145/3422622 – ident: ref9 doi: 10.1145/3597503.3639187 – ident: ref23 doi: 10.1109/LGRS.2022.3200396 – ident: ref62 doi: 10.1016/j.engappai.2023.106324 – ident: ref22 doi: 10.1109/TGRS.2021.3095166 – ident: ref21 doi: 10.1109/TGRS.2019.2956756 – ident: ref24 doi: 10.1109/TGRS.2024.3376673 – ident: ref56 doi: 10.3390/rs13153053 – ident: ref6 doi: 10.3390/rs16132355 – ident: ref48 doi: 10.1109/TGRS.2023.3241436 – ident: ref36 doi: 10.1109/TGRS.2023.3299642 – ident: ref75 doi: 10.1109/JSTARS.2024.3362370 – ident: ref11 doi: 10.1109/JSTARS.2022.3165005 – ident: ref46 doi: 10.1016/j.isprsjprs.2023.07.001 – ident: ref43 doi: 10.1109/TGRS.2024.3374421 – ident: ref45 doi: 10.1109/TGRS.2024.3429372 – ident: ref37 doi: 10.1109/CVPR52729.2023.01128 – ident: ref50 doi: 10.1109/JSTARS.2025.3526795 – ident: ref70 doi: 10.1109/ICCV.2019.00069 – ident: ref2 doi: 10.1109/TGRS.2021.3091758 – ident: ref52 doi: 10.1109/CVPR52733.2024.02448 – ident: ref57 doi: 10.1016/j.jag.2021.102348 – ident: ref61 doi: 10.1109/JSTARS.2022.3198517 – year: 2016 ident: ref68 article-title: Density estimation using real NVP – ident: ref29 doi: 10.1109/JSTARS.2022.3177235 – ident: ref59 doi: 10.1109/TGRS.2022.3160007 – ident: ref4 doi: 10.1109/MGRS.2021.3063465 – ident: ref17 doi: 10.1109/TGRS.2017.2765348 – ident: ref64 doi: 10.1016/j.inffus.2023.102192 – ident: ref55 doi: 10.1007/978-3-030-51859-2_1 – ident: ref33 doi: 10.1109/JSTARS.2023.3280947 – ident: ref3 doi: 10.1109/TGRS.2021.3085870 – ident: ref44 doi: 10.1080/01431161.2023.2173031 – ident: ref5 doi: 10.1080/10095020.2022.2085633 – ident: ref16 doi: 10.1109/ACCESS.2018.2807380 – ident: ref60 doi: 10.1080/15481603.2024.2380126 – ident: ref14 doi: 10.1109/TGRS.2024.3443420 – volume: 12 issue: 10 volume-title: Remote Sens. year: 2020 ident: ref76 article-title: A spatial-temporal attention-based method and a new dataset for remote sensing image change detection – ident: ref19 doi: 10.1109/TGRS.2020.3011913 – ident: ref20 doi: 10.1109/TGRS.2020.3015826 – ident: ref8 doi: 10.48550/ARXIV.1706.03762 – ident: ref72 doi: 10.1109/CVPR52688.2022.00184 – ident: ref53 doi: 10.1109/ICIP.2018.8451652 – ident: ref63 doi: 10.1109/TGRS.2023.3296383 – ident: ref18 doi: 10.1016/j.isprsjprs.2021.03.005 – ident: ref77 doi: 10.1109/CVPR.2018.00745 |
SSID | ssj0062793 |
Score | 2.374585 |
Snippet | Remote sensing change detection plays a critical role in monitoring and identifying alterations on the Earth's surface by comparing images captured at various... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 6249 |
SubjectTerms | Accuracy Attention mechanisms Change detection Color Color alignment Colour deep learning Earth surface Feature extraction feature refine Image color analysis Image processing Injection Knowledge Perception Redundancy Remote sensing remote sensing change detection Seasonal variation Seasonal variations Semantics Sensors Shape Training Transformers |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8QgECbGxMSL8RnXVzh4FHeXQgtHXd_GPaxu9EagBR_ZVKP14L93prBG48GL16aFdgaY76PMN4TsFlYpYavAqr7LmAhBM1cWnPnc5VJrDxEKs5GvhvnZWFzcybtvpb7wTFiUB46G66oAvKmEOGQrL4CuOF8ELYUvgYeUWczqhZg3JVNxDc550crtAjrRDAVkkt5Qv6e7MOAPRtfADLncz2SG_w1_xKRWuj_VWvm1QLdR52SRLCS4SA_iay6RGV8vk7nTthzvxwqZDLBBdhP1pSb0crpDRs_rp_aQVU1vH5sHOoAHXukRquSmAld0iGh1ktIwKWBXOvLgN0-v8Ux7fU9j4gE98k1saZWMT45vBmcs1U9gZSZ1w7QVkpfOCmEBRwWAEgBHvLBFlUvghX1Un_dC9irJvasc6psDPOPCo-6Zhtm5Rmbr59qvE5plgBVCkEFJC4Qlt4pr7gE78ly5nio6ZG9qQfMSZTJMSy962kSDGzS4SQbvkEO08tetqHHdXgDPm-R585fnO2QVffStP4VqZ9D41tRpJk3INwMwCb5NqFxv_Effm2QevyfuxWyR2eb13W8DOmncTjsQPwEiDNyd priority: 102 providerName: Directory of Open Access Journals |
Title | Cross-Temporal Knowledge Injection With Color Distribution Normalization for Remote Sensing Change Detection |
URI | https://ieeexplore.ieee.org/document/10855633 https://www.proquest.com/docview/3174164869 https://doaj.org/article/8f274c181ade4721be7f954ec717c311 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJSQuPItYKJUPHPF249hOfCxbSgGxhz5Eb5adjMtjlaKSPcCvZ8Z2EA8hcYuiOLEzY_v77JnPjD1rfNsq30fRV6EWKkYrQtdIASYYbS3gDEXZyO9W5vhcvbnQFyVZPeXCAEAKPoM5Xaa9_P6q29BS2T5FymtT11tsC5lbTtaahl0jm6Swi4DECtKMKRJD1cLuo48fnJwiGZR6Xuuatgp_m4aSWn85XuWvMTlNNEd32GqqYo4v-TzfjGHeff9DvfG_23CX3S6Qkx9kH7nHbsBwn918lY70_faArZdUQ3GWNarW_O20ysZfD59SoNbA338cP_AlFrjmh6S0Ww7J4itCvOuSyskR__ITQNsDP6W4-OGS5-QFfghjftMOOz96ebY8FuUMBtHV2o7CeqVlF7xSHrFYRDiCkAaUb3qjkVtWpGAPSi96LSH0gTTSEeJJBaSdZrGHP2Tbw9UAjxiva8QbMerYao-kx_hWWgmIP6Vpw6JtZuz5ZBL3JUttuERRFtZlCzqyoCsWnLEXZLafj5JOdrqBv9uVbufaiKy7QxTje1BIdgM00WoFHbLYrq6qGdshE_3yvWydGdudvMCVTv3VIdTCtqnW2Mf_KPaE3aIq5iWaXbY9Xm_gKYKWMewlsr-XXPYHXXbn4w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB5VRQguPItYKOAD3PA2cewkPnAou5Rdtt1DuxW9mTiZQMsqRW1WqPwX_gq_jbGdVDzEsRK3KIrzsD97vnFmvgF4nhV5Louq5lVsEy7rWnNbZoJjalOlNZKFctnIe_N0cijfHamjNfh-mQuDiD74DIfu0P_Lr07Lldsq23KR8ipN-lrVM7z4Sh7a-avpmIbzhRA7bxajCe-KCPAyUbrlupBKlLaQsiAyUZM9JZuMssiqVJFzFDsJdpQqqpRAW1kn8k0cRUh04l86ckUhaIW_RkRDiZAe1i_0qci8pi9RIM2dSk0nahRHeotm1fb-AbmfQg0Tlbifk78ZPl8foCvo8pcV8KZt5zb86DslRLR8Hq5aOyy__aEX-d_22h241ZFqth1mwV1Yw-YeXH_rixZf3IflyPUIXwQVriWb9fuIbNqc-FC0hr0_bj-xETU4Y2OnJdyVAWNzx-mXXbIqI4bP9pHQjezARf43H1lIz2BjbMOdNuDwSj71Aaw3pw0-BJYkxKjqWtW5KsitS4tcaIHEsEWa2yjPBvCyh4D5EsREjHfCIm0CYoxDjOkQM4DXDiaXlzolcH-Chtd0C4vJa5HJknhaUaEkd95iVmslsSQ_vUzieAAbDhK_PC-gYQCbPepMt2ydGyKT9G0yT_WjfzR7Bjcmi71dszudzx7DTfe6YUNqE9bbsxU-IYrW2qd-ojD4cNUY-wkmBUB9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cross-Temporal+Knowledge+Injection+With+Color+Distribution+Normalization+for+Remote+Sensing+Change+Detection&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Zheng%2C+Wenqi&rft.au=Yang%2C+Junze&rft.au=Chen%2C+Jianing&rft.au=He%2C+Jinlong&rft.date=2025&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=18&rft.spage=6249&rft.epage=6265&rft_id=info:doi/10.1109%2FJSTARS.2025.3534583&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3534583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |