Invisible steganography via generative adversarial networks

Nowadays, there are plenty of works introducing convolutional neural networks (CNNs) to the steganalysis and exceeding conventional steganalysis algorithms. These works have shown the improving potential of deep learning in information hiding domain. There are also several works based on deep learni...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 78; no. 7; pp. 8559 - 8575
Main Authors Zhang, Ru, Dong, Shiqi, Liu, Jianyi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-018-6951-z

Cover

Loading…
Abstract Nowadays, there are plenty of works introducing convolutional neural networks (CNNs) to the steganalysis and exceeding conventional steganalysis algorithms. These works have shown the improving potential of deep learning in information hiding domain. There are also several works based on deep learning to do image steganography, but these works still have problems in capacity, invisibility and security. In this paper, we propose a novel CNN architecture named as ISGAN to conceal a secret gray image into a color cover image on the sender side and exactly extract the secret image out on the receiver side. There are three contributions in our work: (i) we improve the invisibility by hiding the secret image only in the Y channel of the cover image; (ii) We introduce the generative adversarial networks to strengthen the security by minimizing the divergence between the empirical probability distributions of stego images and natural images. (iii) In order to associate with the human visual system better, we construct a mixed loss function which is more appropriate for steganography to generate more realistic stego images and reveal out more better secret images. Experiment results show that ISGAN can achieve start-of-art performances on LFW, PASCAL-VOC12 and ImageNet datasets.
AbstractList Nowadays, there are plenty of works introducing convolutional neural networks (CNNs) to the steganalysis and exceeding conventional steganalysis algorithms. These works have shown the improving potential of deep learning in information hiding domain. There are also several works based on deep learning to do image steganography, but these works still have problems in capacity, invisibility and security. In this paper, we propose a novel CNN architecture named as ISGAN to conceal a secret gray image into a color cover image on the sender side and exactly extract the secret image out on the receiver side. There are three contributions in our work: (i) we improve the invisibility by hiding the secret image only in the Y channel of the cover image; (ii) We introduce the generative adversarial networks to strengthen the security by minimizing the divergence between the empirical probability distributions of stego images and natural images. (iii) In order to associate with the human visual system better, we construct a mixed loss function which is more appropriate for steganography to generate more realistic stego images and reveal out more better secret images. Experiment results show that ISGAN can achieve start-of-art performances on LFW, PASCAL-VOC12 and ImageNet datasets.
Author Dong, Shiqi
Zhang, Ru
Liu, Jianyi
Author_xml – sequence: 1
  givenname: Ru
  surname: Zhang
  fullname: Zhang, Ru
  organization: School of Cyberspace Security, Beijing University of Posts and Telecommunications
– sequence: 2
  givenname: Shiqi
  surname: Dong
  fullname: Dong, Shiqi
  email: shiqidong@bupt.edu.cn
  organization: School of Cyberspace Security, Beijing University of Posts and Telecommunications
– sequence: 3
  givenname: Jianyi
  surname: Liu
  fullname: Liu, Jianyi
  organization: School of Cyberspace Security, Beijing University of Posts and Telecommunications
BookMark eNp9kFFLwzAQx4NMcJt-AN8KPkdzadOk-CRD52Dgiz6HtL3WzJrOpKtsn96OCoKgT3cP97v_3W9GJq51SMglsGtgTN4EAJZwykDRNBNADydkCkLGVEoOk6GPFaNSMDgjsxA2jEEqeDIltyvX22DzBqPQYW1cW3uzfd1HvTVRjQ696WyPkSl79MF4a5rIYffZ-rdwTk4r0wS8-K5z8vJw_7x4pOun5Wpxt6ZFLLKOZplMSqYqmTKeJyaNVZzFeVUqTJOqyBmKsqyytFB5WRqRZEZVKkcAnkjOTYHxnFyNe7e-_dhh6PSm3Xk3RGoOAoTgkqfDFIxThW9D8Fjprbfvxu81MH10pEdHenCkj470YWDkL6aw3fBw6zpvbPMvyUcyDCmuRv9z09_QF3QJfqI
CitedBy_id crossref_primary_10_1016_j_neunet_2023_05_053
crossref_primary_10_1016_j_jvcir_2024_104351
crossref_primary_10_1109_ACCESS_2020_2971528
crossref_primary_10_1016_j_sigpro_2022_108908
crossref_primary_10_1007_s11042_024_19162_3
crossref_primary_10_1109_TCE_2024_3354824
crossref_primary_10_4018_IJDAI_297110
crossref_primary_10_1109_ACCESS_2025_3546255
crossref_primary_10_32604_cmc_2023_045311
crossref_primary_10_3390_math11204322
crossref_primary_10_1016_j_eswa_2023_121955
crossref_primary_10_1007_s00530_025_01689_6
crossref_primary_10_1109_TCSS_2023_3268950
crossref_primary_10_1109_ACCESS_2021_3105590
crossref_primary_10_1049_ipr2_12329
crossref_primary_10_1007_s11042_020_09929_9
crossref_primary_10_1049_ipr2_13138
crossref_primary_10_3390_sym15050979
crossref_primary_10_54105_ijainn_D1054_062422
crossref_primary_10_1109_TCSVT_2024_3466961
crossref_primary_10_3390_e24121762
crossref_primary_10_3390_nano12071075
crossref_primary_10_1002_widm_1481
crossref_primary_10_1007_s00521_022_07499_5
crossref_primary_10_1007_s11042_021_10979_w
crossref_primary_10_1109_ACCESS_2021_3113953
crossref_primary_10_3390_e24070878
crossref_primary_10_1016_j_jvcir_2022_103483
crossref_primary_10_3390_s20247253
crossref_primary_10_1109_TIFS_2024_3421273
crossref_primary_10_3390_electronics14010025
crossref_primary_10_3390_s22176497
crossref_primary_10_1038_s41598_022_17362_1
crossref_primary_10_1109_TCSVT_2023_3269468
crossref_primary_10_3390_electronics11071142
crossref_primary_10_1016_j_knosys_2021_107022
crossref_primary_10_1109_TIFS_2023_3268843
crossref_primary_10_1109_TCSVT_2023_3348291
crossref_primary_10_1109_TIFS_2023_3305839
crossref_primary_10_1016_j_procs_2023_01_091
crossref_primary_10_1016_j_neucom_2024_127593
crossref_primary_10_3390_sym12091426
crossref_primary_10_32604_cmc_2024_055150
crossref_primary_10_1109_TDSC_2021_3132987
crossref_primary_10_1109_TIP_2021_3107999
crossref_primary_10_1007_s00371_023_03214_0
crossref_primary_10_1088_1742_6596_2337_1_012009
crossref_primary_10_1016_j_jvcir_2021_103244
crossref_primary_10_32604_cmc_2024_045908
crossref_primary_10_1016_j_eswa_2024_124390
crossref_primary_10_1007_s00530_024_01332_w
crossref_primary_10_1109_LSP_2024_3465350
crossref_primary_10_1061_JCEMD4_COENG_14718
crossref_primary_10_1155_2022_2641615
crossref_primary_10_3390_electronics12183808
crossref_primary_10_1016_j_jvcir_2023_104035
crossref_primary_10_32604_cmes_2024_050148
crossref_primary_10_1109_TCSVT_2022_3161419
crossref_primary_10_1155_2024_5034640
crossref_primary_10_3390_e25020284
crossref_primary_10_3390_e22101140
crossref_primary_10_1117_1_JEI_32_4_043006
crossref_primary_10_32604_cmc_2022_027807
crossref_primary_10_3390_app142210458
crossref_primary_10_1016_j_knosys_2024_112885
crossref_primary_10_1109_ACCESS_2021_3053998
crossref_primary_10_32604_iasc_2022_027274
crossref_primary_10_1016_j_patrec_2021_04_026
crossref_primary_10_3390_app14031225
crossref_primary_10_1155_2022_4345494
crossref_primary_10_1016_j_eswa_2023_119841
crossref_primary_10_1109_TNNLS_2022_3175627
crossref_primary_10_1109_ACCESS_2024_3354710
crossref_primary_10_1007_s11042_021_11778_z
crossref_primary_10_1007_s00530_024_01427_4
crossref_primary_10_1155_2021_4179340
crossref_primary_10_1145_3694965
crossref_primary_10_1016_j_eswa_2024_123715
crossref_primary_10_1016_j_image_2022_116894
crossref_primary_10_1016_j_ins_2022_07_120
crossref_primary_10_1109_TDSC_2024_3363692
crossref_primary_10_4018_IJSESD_312181
crossref_primary_10_1117_1_JEI_33_3_033026
crossref_primary_10_1155_2023_3813977
crossref_primary_10_1364_AO_469155
crossref_primary_10_3390_e24070982
crossref_primary_10_1088_1742_6596_2089_1_012066
crossref_primary_10_3390_math8091394
crossref_primary_10_1016_j_jisa_2023_103631
crossref_primary_10_1109_ACCESS_2023_3326709
crossref_primary_10_1007_s11042_022_13596_3
crossref_primary_10_1007_s11042_022_13172_9
crossref_primary_10_1016_j_eswa_2025_126391
crossref_primary_10_1109_ACCESS_2022_3182712
crossref_primary_10_1109_TIFS_2020_3023279
crossref_primary_10_1016_j_patcog_2022_108842
crossref_primary_10_1109_ACCESS_2020_3024193
crossref_primary_10_3390_electronics12132881
crossref_primary_10_1049_ipr2_13127
crossref_primary_10_1186_s13640_020_00534_2
crossref_primary_10_12677_airr_2024_134078
Cites_doi 10.1007/978-3-319-77380-3_51
10.1007/978-3-319-24574-4_28
10.1109/ACSSC.2003.1292216
10.1109/TIFS.2012.2190402
10.1109/LSP.2017.2745572
10.1109/TPAMI.2015.2389824
10.1109/ICIP.2012.6467150
10.1007/s11263-009-0275-4
10.1109/TIFS.2017.2779446
10.1109/CVPR.2009.5206848
10.1109/CVPR.2016.308
10.1186/1687-417X-2014-1
10.1109/TCI.2016.2644865
10.1109/CVPR.2016.90
10.1109/TIFS.2017.2710946
10.1109/TIP.2003.819861
10.1007/3-540-49380-8_21
10.1002/0471200611
ContentType Journal Article
Copyright The Author(s) 2018
Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-018-6951-z
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 8575
ExternalDocumentID 10_1007_s11042_018_6951_z
GrantInformation_xml – fundername: the NSF of China
  grantid: U1636112; U1636212
– fundername: The National key Research and Development Program of China
  grantid: No.2016YFB0800404
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c359t-9974d08f7602b4a638393bfd8e64fcb0e5ddf96c8bdda549a8f8be1124722ace3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 02:28:29 EDT 2025
Thu Apr 24 22:54:40 EDT 2025
Tue Jul 01 02:06:55 EDT 2025
Fri Feb 21 02:37:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Generative adversarial networks
Convolutional neural network
Image steganography
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-9974d08f7602b4a638393bfd8e64fcb0e5ddf96c8bdda549a8f8be1124722ace3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1007/s11042-018-6951-z
PQID 2151552726
PQPubID 54626
PageCount 17
ParticipantIDs proquest_journals_2151552726
crossref_primary_10_1007_s11042_018_6951_z
crossref_citationtrail_10_1007_s11042_018_6951_z
springer_journals_10_1007_s11042_018_6951_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190400
2019-4-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 4
  year: 2019
  text: 20190400
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References TangWTanSLiBHuangJAutomatic steganographic distortion learning using a generative adversarial networkIEEE Signal Process Lett201724101547155110.1109/LSP.2017.2745572
Yang J, et al (2018) Spatial image steganography based on generative adversarial network. arXiv:1804.07939
CoverTMThomasJAElements of information theory1991New YorkWiley10.1002/0471200611
YeJNiJYiYDeep learning hierarchical representations for image steganalysisIEEE Trans Inf Forensics Secur2017122545255710.1109/TIFS.2017.2710946
EveringhamMGoolLVWilliamsCKIWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vis20108830333810.1007/s11263-009-0275-4
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778
HolubVFridrichJDenemarkTUniversal distortion function for steganography in an arbitrary domainEURASIP J Inf Secur20142014111310.1186/1687-417X-2014-1
Baluja S (2017) Hiding images in plain sight: Deep steganography. In: Proceedings of advances in neural information processing systems 30 (NIPS), pp 2069–2079
Guanshuo XU (2017) Deep convolutional neural network to detect JUNIWARD. In: Proceedings of 5th ACM workshop Inf Hiding Multimedia Secur (IH&MMSec), p 6773
Huang GB, Mattar M, Lee H, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments, University of Massachusetts, Amherst. Technical Report 07-49, October
ZengJLarge-scale JPEG steganalysis using hybrid deep-learning frameworkIEEE Trans Inf Forensics Secur2018131200121410.1109/TIFS.2017.2779446
GlorotXBengioYUnderstanding the difficulty of training deep feedforward neural networksJ Mach Learn Res20109249256
QianYDongJWangWTanTDeep learning for steganalysis via convolutional neural networksProc SPIE Int Soc Opt Eng2015940994090J–94090J10
Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. In: Proceedings of the 34th international conference on machine learning (ICML), pp 214–223
Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd international conference on machine learning (ICML), vol 37, pp 448–456
Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of international conference on learning representations (ICLR)
Volkhonskiy D, Borisenko B, Burnaev E (2016) Generative adversarial networks for image steganography. In ICLR 2016 Open Review
Deng J, Dong W, Socher R, Li L-J, Li K, Li F-F (2009) ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 248–255
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2818–2826
Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The 37th asilomar conference on signals, system and computers, vol 2, pp 1398–1402
Rehman AU, Rahim R, Nadeem S, Hussain SU (2017) End-to-end trained cnn encoder-decoder networks for image steganography. arXiv:1711.07201
FridrichJKodovskyJRich models for steganalysis of digital imagesIEEE Trans Inf Forensics Secur20127386888210.1109/TIFS.2012.2190402
GoodfellowIPouget-AbadieJMirzaMBingXUWarde-FarleyDOzairSCourvilleABengioYGenerative adversarial netsAdv Neural Inf Proces201427NIPS26722680
ShiHaichaoDongJingWangWeiQianYinlongZhangXiaoyuSSGAN: Secure Steganography Based on Generative Adversarial NetworksAdvances in Multimedia Information Processing – PCM 20172018ChamSpringer International Publishing53454410.1007/978-3-319-77380-3_51
WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process20041360061210.1109/TIP.2003.819861
ZhaoHGalloOFrosioILoss functions for image restoration with neural networksIEEE Trans Comput Imaging20173475710.1109/TCI.2016.2644865
HeKZhangXRenSSunJSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Trans Pattern Anal Mach Intell20153791904191610.1109/TPAMI.2015.2389824
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of international conference on medical image computing and computer-assisted intervention, pp 234–241
Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Xi C (2016) Improved techniques for training GANs. In: Proceedings of advances in neural information processing systems 29 (NIPS), pp 2234–2242
CachinChristianAn Information-Theoretic Model for SteganographyInformation Hiding1998Berlin, HeidelbergSpringer Berlin Heidelberg30631810.1007/3-540-49380-8_21
Hayes J, Danezis G (2017) Generating steganographic images via adversarial training. In: Proceedings of advances in neural information processing systems 30 (NIPS), pp 1954–1963
Zhang L, Zhang L, Mou X, Zhang D (2012) A comprehensive evaluation of full reference image quality assessment algorithms. In: Proceedings of the 19th IEEE international conference on image processing, pp 1477–1480
I Goodfellow (6951_CR10) 2014; 27
6951_CR16
W Tang (6951_CR24) 2017; 24
6951_CR18
6951_CR19
6951_CR13
6951_CR15
X Glorot (6951_CR9) 2010; 9
H Zhao (6951_CR32) 2017; 3
6951_CR1
6951_CR2
M Everingham (6951_CR6) 2010; 88
Z Wang (6951_CR27) 2004; 13
6951_CR5
K He (6951_CR12) 2015; 37
6951_CR30
6951_CR8
6951_CR11
Haichao Shi (6951_CR22) 2018
Y Qian (6951_CR17) 2015; 9409
6951_CR28
6951_CR23
6951_CR25
6951_CR26
J Fridrich (6951_CR7) 2012; 7
V Holub (6951_CR14) 2014; 2014
TM Cover (6951_CR4) 1991
J Ye (6951_CR29) 2017; 12
J Zeng (6951_CR31) 2018; 13
Christian Cachin (6951_CR3) 1998
6951_CR20
6951_CR21
References_xml – reference: Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd international conference on machine learning (ICML), vol 37, pp 448–456
– reference: Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The 37th asilomar conference on signals, system and computers, vol 2, pp 1398–1402
– reference: GlorotXBengioYUnderstanding the difficulty of training deep feedforward neural networksJ Mach Learn Res20109249256
– reference: EveringhamMGoolLVWilliamsCKIWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vis20108830333810.1007/s11263-009-0275-4
– reference: ShiHaichaoDongJingWangWeiQianYinlongZhangXiaoyuSSGAN: Secure Steganography Based on Generative Adversarial NetworksAdvances in Multimedia Information Processing – PCM 20172018ChamSpringer International Publishing53454410.1007/978-3-319-77380-3_51
– reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2818–2826
– reference: ZhaoHGalloOFrosioILoss functions for image restoration with neural networksIEEE Trans Comput Imaging20173475710.1109/TCI.2016.2644865
– reference: CoverTMThomasJAElements of information theory1991New YorkWiley10.1002/0471200611
– reference: Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of international conference on learning representations (ICLR)
– reference: Yang J, et al (2018) Spatial image steganography based on generative adversarial network. arXiv:1804.07939
– reference: CachinChristianAn Information-Theoretic Model for SteganographyInformation Hiding1998Berlin, HeidelbergSpringer Berlin Heidelberg30631810.1007/3-540-49380-8_21
– reference: Deng J, Dong W, Socher R, Li L-J, Li K, Li F-F (2009) ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 248–255
– reference: YeJNiJYiYDeep learning hierarchical representations for image steganalysisIEEE Trans Inf Forensics Secur2017122545255710.1109/TIFS.2017.2710946
– reference: HeKZhangXRenSSunJSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Trans Pattern Anal Mach Intell20153791904191610.1109/TPAMI.2015.2389824
– reference: Guanshuo XU (2017) Deep convolutional neural network to detect JUNIWARD. In: Proceedings of 5th ACM workshop Inf Hiding Multimedia Secur (IH&MMSec), p 6773
– reference: Rehman AU, Rahim R, Nadeem S, Hussain SU (2017) End-to-end trained cnn encoder-decoder networks for image steganography. arXiv:1711.07201
– reference: Baluja S (2017) Hiding images in plain sight: Deep steganography. In: Proceedings of advances in neural information processing systems 30 (NIPS), pp 2069–2079
– reference: Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Xi C (2016) Improved techniques for training GANs. In: Proceedings of advances in neural information processing systems 29 (NIPS), pp 2234–2242
– reference: Hayes J, Danezis G (2017) Generating steganographic images via adversarial training. In: Proceedings of advances in neural information processing systems 30 (NIPS), pp 1954–1963
– reference: ZengJLarge-scale JPEG steganalysis using hybrid deep-learning frameworkIEEE Trans Inf Forensics Secur2018131200121410.1109/TIFS.2017.2779446
– reference: QianYDongJWangWTanTDeep learning for steganalysis via convolutional neural networksProc SPIE Int Soc Opt Eng2015940994090J–94090J10
– reference: Huang GB, Mattar M, Lee H, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments, University of Massachusetts, Amherst. Technical Report 07-49, October
– reference: TangWTanSLiBHuangJAutomatic steganographic distortion learning using a generative adversarial networkIEEE Signal Process Lett201724101547155110.1109/LSP.2017.2745572
– reference: FridrichJKodovskyJRich models for steganalysis of digital imagesIEEE Trans Inf Forensics Secur20127386888210.1109/TIFS.2012.2190402
– reference: HolubVFridrichJDenemarkTUniversal distortion function for steganography in an arbitrary domainEURASIP J Inf Secur20142014111310.1186/1687-417X-2014-1
– reference: GoodfellowIPouget-AbadieJMirzaMBingXUWarde-FarleyDOzairSCourvilleABengioYGenerative adversarial netsAdv Neural Inf Proces201427NIPS26722680
– reference: Zhang L, Zhang L, Mou X, Zhang D (2012) A comprehensive evaluation of full reference image quality assessment algorithms. In: Proceedings of the 19th IEEE international conference on image processing, pp 1477–1480
– reference: Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. In: Proceedings of the 34th international conference on machine learning (ICML), pp 214–223
– reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778
– reference: Volkhonskiy D, Borisenko B, Burnaev E (2016) Generative adversarial networks for image steganography. In ICLR 2016 Open Review
– reference: Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of international conference on medical image computing and computer-assisted intervention, pp 234–241
– reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process20041360061210.1109/TIP.2003.819861
– ident: 6951_CR16
– volume: 9409
  start-page: 94090J–94090J
  year: 2015
  ident: 6951_CR17
  publication-title: Proc SPIE Int Soc Opt Eng
– start-page: 534
  volume-title: Advances in Multimedia Information Processing – PCM 2017
  year: 2018
  ident: 6951_CR22
  doi: 10.1007/978-3-319-77380-3_51
– ident: 6951_CR20
  doi: 10.1007/978-3-319-24574-4_28
– volume: 9
  start-page: 249
  year: 2010
  ident: 6951_CR9
  publication-title: J Mach Learn Res
– ident: 6951_CR2
– ident: 6951_CR8
– ident: 6951_CR26
  doi: 10.1109/ACSSC.2003.1292216
– volume: 7
  start-page: 868
  issue: 3
  year: 2012
  ident: 6951_CR7
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2012.2190402
– ident: 6951_CR28
– volume: 24
  start-page: 1547
  issue: 10
  year: 2017
  ident: 6951_CR24
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2017.2745572
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 6951_CR12
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2389824
– ident: 6951_CR30
  doi: 10.1109/ICIP.2012.6467150
– volume: 88
  start-page: 303
  year: 2010
  ident: 6951_CR6
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-009-0275-4
– ident: 6951_CR11
– volume: 13
  start-page: 1200
  year: 2018
  ident: 6951_CR31
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2017.2779446
– ident: 6951_CR19
– ident: 6951_CR5
  doi: 10.1109/CVPR.2009.5206848
– ident: 6951_CR23
  doi: 10.1109/CVPR.2016.308
– ident: 6951_CR15
– volume: 27
  start-page: 2672
  issue: NIPS
  year: 2014
  ident: 6951_CR10
  publication-title: Adv Neural Inf Proces
– volume: 2014
  start-page: 1
  issue: 1
  year: 2014
  ident: 6951_CR14
  publication-title: EURASIP J Inf Secur
  doi: 10.1186/1687-417X-2014-1
– ident: 6951_CR21
– ident: 6951_CR25
– volume: 3
  start-page: 47
  year: 2017
  ident: 6951_CR32
  publication-title: IEEE Trans Comput Imaging
  doi: 10.1109/TCI.2016.2644865
– ident: 6951_CR1
– ident: 6951_CR13
  doi: 10.1109/CVPR.2016.90
– volume: 12
  start-page: 2545
  year: 2017
  ident: 6951_CR29
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2017.2710946
– ident: 6951_CR18
– volume: 13
  start-page: 600
  year: 2004
  ident: 6951_CR27
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2003.819861
– start-page: 306
  volume-title: Information Hiding
  year: 1998
  ident: 6951_CR3
  doi: 10.1007/3-540-49380-8_21
– volume-title: Elements of information theory
  year: 1991
  ident: 6951_CR4
  doi: 10.1002/0471200611
SSID ssj0016524
Score 2.55408
Snippet Nowadays, there are plenty of works introducing convolutional neural networks (CNNs) to the steganalysis and exceeding conventional steganalysis algorithms....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 8559
SubjectTerms Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Divergence
Generative adversarial networks
Layouts
Machine learning
Multimedia Information Systems
Special Purpose and Application-Based Systems
Steganography
Visibility
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60XvTgoypWq-TgSQlkH0mzeCpiqYKeLPS25DFbhLKKWz3015vso6uigtfdSQ7zyMwwM98AnKOKTRhxQaUNkMYDhlQi41RIp0-KcSdoPyh8_yDGk_huyqf1HHfRdLs3JcnypW6H3QI_SsICSYXfDb9chw3uU3enxJNwuCodCF5vspWMOncYNKXMn6746ozaCPNbUbT0NaNd2K6DRDKspLoHa5h3YadZwEBqe-zC1ic0wX24us39pLieI3Gim6m8RqMm70-KzEp4af-2EeV3MBfKax7Jqy7w4gAmo5vH6zGtdyNQE_FkQROXB1gms4FgoY6Vs6IoiXRmJYo4M5ohtzZLhJHaWuVyQCUzqdEFVx4cUhmMDqGTP-d4BERK4yhkFhiFsRBahQZNjIlF7r5Z2wPWMCk1NXC4318xT1vIY8_X1PE19XxNlz24WB15qVAz_iLuN5xPawMqUh-JeHC4UPTgspFG-_vXy47_RX0Cmy4ASqpOnD50Fq9veOqCjIU-K5XqA4lAyjM
  priority: 102
  providerName: Springer Nature
Title Invisible steganography via generative adversarial networks
URI https://link.springer.com/article/10.1007/s11042-018-6951-z
https://www.proquest.com/docview/2151552726
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4oXPTgAzWiSPbgSdPYfZVuPBgkPNRIjJEET5tu2yUmZEFBD_x6p9AFNZHLHrptDzPtzLTT-T6Acy0C6fkhI1y5mgQ1qgnXNCSM43oSNERFm0Lhxy7r9IL7fti3F24T-6wyt4lzQ61G0tyRXxnXZNDCPHYzfieGNcpkVy2FxiYU0QRzPHwVb5vdp-dlHoGFltaWU4K-0c3zmvPiOdeUplCXE2a45me_PdMq3PyTIZ07ntYe7NiI0akvVLwPGzorwW7OxuDYzVmC7R_QggdwfZeZsvFkqB3U40BkFpra-XoTzmCONW0MnSMMIfNEmGXoZIsn4ZND6LWaL40OsUQJRPphNCURHgoU5WmNUS8JBG4pP_KTVHHNglQmVIdKpRGTPFFK4IFQ8JQnGiMtgxQppPaPoJCNMn0MDucSe_DUlUIHjCXCk1oGOlI6xDalykBzIcXSoogbMothvMI_NnKNUa6xkWs8K8PFcsh4AaGxrnMll3xsd9MkXum-DJe5Nla__53sZP1kp7CF4U-0eIdTgcL041OfYYgxTaqwyVvtKhTr7deHZtWuKmxtsAZ-e179G5Xk0r4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFEDBjVhOF9CALJzLOEIIIWDZ5apAoguOPUFIKBy7gOCj-EY8OVhAgo42cVyMn2fGGc97ACuoQ-MHkeTKesjDTYFcoYi4VA5PWkRuoalR-PRMti7Co8vosg_e614YulZZ-8TCUds7Q__INyg0EVuYL3fuHzipRlF1tZbQKGFxjK8v7sjW2W7vu_Vd9f3mwflei1eqAtwEUdzlscugrVDZphR-GmqHvyAO0swqlGFmUoGRtVksjUqt1e70pFWmUnRpCdEqaoOBm7cfBsMgiGlHqebhZ9VCRpWIrhLcRWKvrqIWrXoeNcIIT3FJyvZv3-NgL7n9UY8twlxzHEar_JTtloCagD7MJ2Gs1n5glSuYhJEvRIZTsNXOqUk9vUXmUHOt84oImz3faHZdMFuTW2Wa5J87mkDP8vICemcaLv7FgDMwkN_lOAtMKeNGqMwzGkMpU-0bNCHGFiP3zNoGiNpIiak4y0k64zbpsS2TXRNn14Tsmrw1YO3zk_uSsOOvwQu15ZNq73aSHtIasF6vRu_1r5PN_T3ZMgy1zk9PkpP22fE8DLvEKy5vAC3AQPfxCRddctNNlwpEMbj6bwh_AN7BCys
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ7gkRB9EEWNJ6h9gBdMQ_dXrxtjiAoXjh8XYiThbe22s4SE7B3eqYE_zb_Omdsuhybyxututw_TrzPT7cz3AayjTV2cZFoaH6FMewqlQZVJbQhPVmW00NwofDTUeyfp_ml2ugC_214YLqtsfeLMUfuR43_kWxyamC0s1ltVKIs43ulvjy8lK0jxTWsrp9FA5ACvftHxbfJhsENrvRHH_d2vn_dkUBiQLsnyqcwpm_bKVD2t4jK1hMUkT8rKG9Rp5UqFmfdVrp0pvbd0krKmMiVSisIUi9ZhQvM-gMUenYpUBxY_7Q6Pv9zcYegsSOoaJSkuR-2d6qxxL-K2GBUZqVnn_vrvqDhPdf-5nZ0Fvf4TeByyVfGxgddTWMB6BZZbJQgRHMMKPLpFa_gM3g9qblkvL1AQhs5sHWixxc9zK85mPNfsZIVlMeiJ5S0g6qYcffIcTu7FhC-gU49qfAnCGEcjTBU5i6nWpY0duhRzjxk9874LqjVS4QKDOQtpXBRz7mW2a0F2LdiuxXUXNm8-GTf0HXcNXmstX4SdPCnmuOvCu3Y15q__O9mruyd7C0sE3-JwMDxYhYeUheVNOdAadKbff-BrynSm5ZsAKQHf7hvFfwCm_hC9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Invisible+steganography+via+generative+adversarial+networks&rft.jtitle=Multimedia+tools+and+applications&rft.au=Zhang%2C+Ru&rft.au=Dong%2C+Shiqi&rft.au=Liu%2C+Jianyi&rft.date=2019-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=7&rft.spage=8559&rft.epage=8575&rft_id=info:doi/10.1007%2Fs11042-018-6951-z&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon