Invisible steganography via generative adversarial networks
Nowadays, there are plenty of works introducing convolutional neural networks (CNNs) to the steganalysis and exceeding conventional steganalysis algorithms. These works have shown the improving potential of deep learning in information hiding domain. There are also several works based on deep learni...
Saved in:
Published in | Multimedia tools and applications Vol. 78; no. 7; pp. 8559 - 8575 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-018-6951-z |
Cover
Loading…
Abstract | Nowadays, there are plenty of works introducing convolutional neural networks (CNNs) to the steganalysis and exceeding conventional steganalysis algorithms. These works have shown the improving potential of deep learning in information hiding domain. There are also several works based on deep learning to do image steganography, but these works still have problems in capacity, invisibility and security. In this paper, we propose a novel CNN architecture named as ISGAN to conceal a secret gray image into a color cover image on the sender side and exactly extract the secret image out on the receiver side. There are three contributions in our work: (i) we improve the invisibility by hiding the secret image only in the Y channel of the cover image; (ii) We introduce the generative adversarial networks to strengthen the security by minimizing the divergence between the empirical probability distributions of stego images and natural images. (iii) In order to associate with the human visual system better, we construct a mixed loss function which is more appropriate for steganography to generate more realistic stego images and reveal out more better secret images. Experiment results show that ISGAN can achieve start-of-art performances on LFW, PASCAL-VOC12 and ImageNet datasets. |
---|---|
AbstractList | Nowadays, there are plenty of works introducing convolutional neural networks (CNNs) to the steganalysis and exceeding conventional steganalysis algorithms. These works have shown the improving potential of deep learning in information hiding domain. There are also several works based on deep learning to do image steganography, but these works still have problems in capacity, invisibility and security. In this paper, we propose a novel CNN architecture named as ISGAN to conceal a secret gray image into a color cover image on the sender side and exactly extract the secret image out on the receiver side. There are three contributions in our work: (i) we improve the invisibility by hiding the secret image only in the Y channel of the cover image; (ii) We introduce the generative adversarial networks to strengthen the security by minimizing the divergence between the empirical probability distributions of stego images and natural images. (iii) In order to associate with the human visual system better, we construct a mixed loss function which is more appropriate for steganography to generate more realistic stego images and reveal out more better secret images. Experiment results show that ISGAN can achieve start-of-art performances on LFW, PASCAL-VOC12 and ImageNet datasets. |
Author | Dong, Shiqi Zhang, Ru Liu, Jianyi |
Author_xml | – sequence: 1 givenname: Ru surname: Zhang fullname: Zhang, Ru organization: School of Cyberspace Security, Beijing University of Posts and Telecommunications – sequence: 2 givenname: Shiqi surname: Dong fullname: Dong, Shiqi email: shiqidong@bupt.edu.cn organization: School of Cyberspace Security, Beijing University of Posts and Telecommunications – sequence: 3 givenname: Jianyi surname: Liu fullname: Liu, Jianyi organization: School of Cyberspace Security, Beijing University of Posts and Telecommunications |
BookMark | eNp9kFFLwzAQx4NMcJt-AN8KPkdzadOk-CRD52Dgiz6HtL3WzJrOpKtsn96OCoKgT3cP97v_3W9GJq51SMglsGtgTN4EAJZwykDRNBNADydkCkLGVEoOk6GPFaNSMDgjsxA2jEEqeDIltyvX22DzBqPQYW1cW3uzfd1HvTVRjQ696WyPkSl79MF4a5rIYffZ-rdwTk4r0wS8-K5z8vJw_7x4pOun5Wpxt6ZFLLKOZplMSqYqmTKeJyaNVZzFeVUqTJOqyBmKsqyytFB5WRqRZEZVKkcAnkjOTYHxnFyNe7e-_dhh6PSm3Xk3RGoOAoTgkqfDFIxThW9D8Fjprbfvxu81MH10pEdHenCkj470YWDkL6aw3fBw6zpvbPMvyUcyDCmuRv9z09_QF3QJfqI |
CitedBy_id | crossref_primary_10_1016_j_neunet_2023_05_053 crossref_primary_10_1016_j_jvcir_2024_104351 crossref_primary_10_1109_ACCESS_2020_2971528 crossref_primary_10_1016_j_sigpro_2022_108908 crossref_primary_10_1007_s11042_024_19162_3 crossref_primary_10_1109_TCE_2024_3354824 crossref_primary_10_4018_IJDAI_297110 crossref_primary_10_1109_ACCESS_2025_3546255 crossref_primary_10_32604_cmc_2023_045311 crossref_primary_10_3390_math11204322 crossref_primary_10_1016_j_eswa_2023_121955 crossref_primary_10_1007_s00530_025_01689_6 crossref_primary_10_1109_TCSS_2023_3268950 crossref_primary_10_1109_ACCESS_2021_3105590 crossref_primary_10_1049_ipr2_12329 crossref_primary_10_1007_s11042_020_09929_9 crossref_primary_10_1049_ipr2_13138 crossref_primary_10_3390_sym15050979 crossref_primary_10_54105_ijainn_D1054_062422 crossref_primary_10_1109_TCSVT_2024_3466961 crossref_primary_10_3390_e24121762 crossref_primary_10_3390_nano12071075 crossref_primary_10_1002_widm_1481 crossref_primary_10_1007_s00521_022_07499_5 crossref_primary_10_1007_s11042_021_10979_w crossref_primary_10_1109_ACCESS_2021_3113953 crossref_primary_10_3390_e24070878 crossref_primary_10_1016_j_jvcir_2022_103483 crossref_primary_10_3390_s20247253 crossref_primary_10_1109_TIFS_2024_3421273 crossref_primary_10_3390_electronics14010025 crossref_primary_10_3390_s22176497 crossref_primary_10_1038_s41598_022_17362_1 crossref_primary_10_1109_TCSVT_2023_3269468 crossref_primary_10_3390_electronics11071142 crossref_primary_10_1016_j_knosys_2021_107022 crossref_primary_10_1109_TIFS_2023_3268843 crossref_primary_10_1109_TCSVT_2023_3348291 crossref_primary_10_1109_TIFS_2023_3305839 crossref_primary_10_1016_j_procs_2023_01_091 crossref_primary_10_1016_j_neucom_2024_127593 crossref_primary_10_3390_sym12091426 crossref_primary_10_32604_cmc_2024_055150 crossref_primary_10_1109_TDSC_2021_3132987 crossref_primary_10_1109_TIP_2021_3107999 crossref_primary_10_1007_s00371_023_03214_0 crossref_primary_10_1088_1742_6596_2337_1_012009 crossref_primary_10_1016_j_jvcir_2021_103244 crossref_primary_10_32604_cmc_2024_045908 crossref_primary_10_1016_j_eswa_2024_124390 crossref_primary_10_1007_s00530_024_01332_w crossref_primary_10_1109_LSP_2024_3465350 crossref_primary_10_1061_JCEMD4_COENG_14718 crossref_primary_10_1155_2022_2641615 crossref_primary_10_3390_electronics12183808 crossref_primary_10_1016_j_jvcir_2023_104035 crossref_primary_10_32604_cmes_2024_050148 crossref_primary_10_1109_TCSVT_2022_3161419 crossref_primary_10_1155_2024_5034640 crossref_primary_10_3390_e25020284 crossref_primary_10_3390_e22101140 crossref_primary_10_1117_1_JEI_32_4_043006 crossref_primary_10_32604_cmc_2022_027807 crossref_primary_10_3390_app142210458 crossref_primary_10_1016_j_knosys_2024_112885 crossref_primary_10_1109_ACCESS_2021_3053998 crossref_primary_10_32604_iasc_2022_027274 crossref_primary_10_1016_j_patrec_2021_04_026 crossref_primary_10_3390_app14031225 crossref_primary_10_1155_2022_4345494 crossref_primary_10_1016_j_eswa_2023_119841 crossref_primary_10_1109_TNNLS_2022_3175627 crossref_primary_10_1109_ACCESS_2024_3354710 crossref_primary_10_1007_s11042_021_11778_z crossref_primary_10_1007_s00530_024_01427_4 crossref_primary_10_1155_2021_4179340 crossref_primary_10_1145_3694965 crossref_primary_10_1016_j_eswa_2024_123715 crossref_primary_10_1016_j_image_2022_116894 crossref_primary_10_1016_j_ins_2022_07_120 crossref_primary_10_1109_TDSC_2024_3363692 crossref_primary_10_4018_IJSESD_312181 crossref_primary_10_1117_1_JEI_33_3_033026 crossref_primary_10_1155_2023_3813977 crossref_primary_10_1364_AO_469155 crossref_primary_10_3390_e24070982 crossref_primary_10_1088_1742_6596_2089_1_012066 crossref_primary_10_3390_math8091394 crossref_primary_10_1016_j_jisa_2023_103631 crossref_primary_10_1109_ACCESS_2023_3326709 crossref_primary_10_1007_s11042_022_13596_3 crossref_primary_10_1007_s11042_022_13172_9 crossref_primary_10_1016_j_eswa_2025_126391 crossref_primary_10_1109_ACCESS_2022_3182712 crossref_primary_10_1109_TIFS_2020_3023279 crossref_primary_10_1016_j_patcog_2022_108842 crossref_primary_10_1109_ACCESS_2020_3024193 crossref_primary_10_3390_electronics12132881 crossref_primary_10_1049_ipr2_13127 crossref_primary_10_1186_s13640_020_00534_2 crossref_primary_10_12677_airr_2024_134078 |
Cites_doi | 10.1007/978-3-319-77380-3_51 10.1007/978-3-319-24574-4_28 10.1109/ACSSC.2003.1292216 10.1109/TIFS.2012.2190402 10.1109/LSP.2017.2745572 10.1109/TPAMI.2015.2389824 10.1109/ICIP.2012.6467150 10.1007/s11263-009-0275-4 10.1109/TIFS.2017.2779446 10.1109/CVPR.2009.5206848 10.1109/CVPR.2016.308 10.1186/1687-417X-2014-1 10.1109/TCI.2016.2644865 10.1109/CVPR.2016.90 10.1109/TIFS.2017.2710946 10.1109/TIP.2003.819861 10.1007/3-540-49380-8_21 10.1002/0471200611 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-018-6951-z |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 8575 |
ExternalDocumentID | 10_1007_s11042_018_6951_z |
GrantInformation_xml | – fundername: the NSF of China grantid: U1636112; U1636212 – fundername: The National key Research and Development Program of China grantid: No.2016YFB0800404 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c359t-9974d08f7602b4a638393bfd8e64fcb0e5ddf96c8bdda549a8f8be1124722ace3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 02:28:29 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Tue Jul 01 02:06:55 EDT 2025 Fri Feb 21 02:37:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Generative adversarial networks Convolutional neural network Image steganography |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-9974d08f7602b4a638393bfd8e64fcb0e5ddf96c8bdda549a8f8be1124722ace3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s11042-018-6951-z |
PQID | 2151552726 |
PQPubID | 54626 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2151552726 crossref_primary_10_1007_s11042_018_6951_z crossref_citationtrail_10_1007_s11042_018_6951_z springer_journals_10_1007_s11042_018_6951_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190400 2019-4-00 20190401 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190400 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | TangWTanSLiBHuangJAutomatic steganographic distortion learning using a generative adversarial networkIEEE Signal Process Lett201724101547155110.1109/LSP.2017.2745572 Yang J, et al (2018) Spatial image steganography based on generative adversarial network. arXiv:1804.07939 CoverTMThomasJAElements of information theory1991New YorkWiley10.1002/0471200611 YeJNiJYiYDeep learning hierarchical representations for image steganalysisIEEE Trans Inf Forensics Secur2017122545255710.1109/TIFS.2017.2710946 EveringhamMGoolLVWilliamsCKIWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vis20108830333810.1007/s11263-009-0275-4 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778 HolubVFridrichJDenemarkTUniversal distortion function for steganography in an arbitrary domainEURASIP J Inf Secur20142014111310.1186/1687-417X-2014-1 Baluja S (2017) Hiding images in plain sight: Deep steganography. In: Proceedings of advances in neural information processing systems 30 (NIPS), pp 2069–2079 Guanshuo XU (2017) Deep convolutional neural network to detect JUNIWARD. In: Proceedings of 5th ACM workshop Inf Hiding Multimedia Secur (IH&MMSec), p 6773 Huang GB, Mattar M, Lee H, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments, University of Massachusetts, Amherst. Technical Report 07-49, October ZengJLarge-scale JPEG steganalysis using hybrid deep-learning frameworkIEEE Trans Inf Forensics Secur2018131200121410.1109/TIFS.2017.2779446 GlorotXBengioYUnderstanding the difficulty of training deep feedforward neural networksJ Mach Learn Res20109249256 QianYDongJWangWTanTDeep learning for steganalysis via convolutional neural networksProc SPIE Int Soc Opt Eng2015940994090J–94090J10 Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. In: Proceedings of the 34th international conference on machine learning (ICML), pp 214–223 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd international conference on machine learning (ICML), vol 37, pp 448–456 Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of international conference on learning representations (ICLR) Volkhonskiy D, Borisenko B, Burnaev E (2016) Generative adversarial networks for image steganography. In ICLR 2016 Open Review Deng J, Dong W, Socher R, Li L-J, Li K, Li F-F (2009) ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 248–255 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2818–2826 Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The 37th asilomar conference on signals, system and computers, vol 2, pp 1398–1402 Rehman AU, Rahim R, Nadeem S, Hussain SU (2017) End-to-end trained cnn encoder-decoder networks for image steganography. arXiv:1711.07201 FridrichJKodovskyJRich models for steganalysis of digital imagesIEEE Trans Inf Forensics Secur20127386888210.1109/TIFS.2012.2190402 GoodfellowIPouget-AbadieJMirzaMBingXUWarde-FarleyDOzairSCourvilleABengioYGenerative adversarial netsAdv Neural Inf Proces201427NIPS26722680 ShiHaichaoDongJingWangWeiQianYinlongZhangXiaoyuSSGAN: Secure Steganography Based on Generative Adversarial NetworksAdvances in Multimedia Information Processing – PCM 20172018ChamSpringer International Publishing53454410.1007/978-3-319-77380-3_51 WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process20041360061210.1109/TIP.2003.819861 ZhaoHGalloOFrosioILoss functions for image restoration with neural networksIEEE Trans Comput Imaging20173475710.1109/TCI.2016.2644865 HeKZhangXRenSSunJSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Trans Pattern Anal Mach Intell20153791904191610.1109/TPAMI.2015.2389824 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of international conference on medical image computing and computer-assisted intervention, pp 234–241 Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Xi C (2016) Improved techniques for training GANs. In: Proceedings of advances in neural information processing systems 29 (NIPS), pp 2234–2242 CachinChristianAn Information-Theoretic Model for SteganographyInformation Hiding1998Berlin, HeidelbergSpringer Berlin Heidelberg30631810.1007/3-540-49380-8_21 Hayes J, Danezis G (2017) Generating steganographic images via adversarial training. In: Proceedings of advances in neural information processing systems 30 (NIPS), pp 1954–1963 Zhang L, Zhang L, Mou X, Zhang D (2012) A comprehensive evaluation of full reference image quality assessment algorithms. In: Proceedings of the 19th IEEE international conference on image processing, pp 1477–1480 I Goodfellow (6951_CR10) 2014; 27 6951_CR16 W Tang (6951_CR24) 2017; 24 6951_CR18 6951_CR19 6951_CR13 6951_CR15 X Glorot (6951_CR9) 2010; 9 H Zhao (6951_CR32) 2017; 3 6951_CR1 6951_CR2 M Everingham (6951_CR6) 2010; 88 Z Wang (6951_CR27) 2004; 13 6951_CR5 K He (6951_CR12) 2015; 37 6951_CR30 6951_CR8 6951_CR11 Haichao Shi (6951_CR22) 2018 Y Qian (6951_CR17) 2015; 9409 6951_CR28 6951_CR23 6951_CR25 6951_CR26 J Fridrich (6951_CR7) 2012; 7 V Holub (6951_CR14) 2014; 2014 TM Cover (6951_CR4) 1991 J Ye (6951_CR29) 2017; 12 J Zeng (6951_CR31) 2018; 13 Christian Cachin (6951_CR3) 1998 6951_CR20 6951_CR21 |
References_xml | – reference: Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd international conference on machine learning (ICML), vol 37, pp 448–456 – reference: Wang Z, Simoncelli EP, Bovik AC (2003) Multiscale structural similarity for image quality assessment. In: The 37th asilomar conference on signals, system and computers, vol 2, pp 1398–1402 – reference: GlorotXBengioYUnderstanding the difficulty of training deep feedforward neural networksJ Mach Learn Res20109249256 – reference: EveringhamMGoolLVWilliamsCKIWinnJZissermanAThe pascal visual object classes (voc) challengeInt J Comput Vis20108830333810.1007/s11263-009-0275-4 – reference: ShiHaichaoDongJingWangWeiQianYinlongZhangXiaoyuSSGAN: Secure Steganography Based on Generative Adversarial NetworksAdvances in Multimedia Information Processing – PCM 20172018ChamSpringer International Publishing53454410.1007/978-3-319-77380-3_51 – reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 2818–2826 – reference: ZhaoHGalloOFrosioILoss functions for image restoration with neural networksIEEE Trans Comput Imaging20173475710.1109/TCI.2016.2644865 – reference: CoverTMThomasJAElements of information theory1991New YorkWiley10.1002/0471200611 – reference: Radford A, Metz L, Chintala S (2016) Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of international conference on learning representations (ICLR) – reference: Yang J, et al (2018) Spatial image steganography based on generative adversarial network. arXiv:1804.07939 – reference: CachinChristianAn Information-Theoretic Model for SteganographyInformation Hiding1998Berlin, HeidelbergSpringer Berlin Heidelberg30631810.1007/3-540-49380-8_21 – reference: Deng J, Dong W, Socher R, Li L-J, Li K, Li F-F (2009) ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 248–255 – reference: YeJNiJYiYDeep learning hierarchical representations for image steganalysisIEEE Trans Inf Forensics Secur2017122545255710.1109/TIFS.2017.2710946 – reference: HeKZhangXRenSSunJSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Trans Pattern Anal Mach Intell20153791904191610.1109/TPAMI.2015.2389824 – reference: Guanshuo XU (2017) Deep convolutional neural network to detect JUNIWARD. In: Proceedings of 5th ACM workshop Inf Hiding Multimedia Secur (IH&MMSec), p 6773 – reference: Rehman AU, Rahim R, Nadeem S, Hussain SU (2017) End-to-end trained cnn encoder-decoder networks for image steganography. arXiv:1711.07201 – reference: Baluja S (2017) Hiding images in plain sight: Deep steganography. In: Proceedings of advances in neural information processing systems 30 (NIPS), pp 2069–2079 – reference: Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Xi C (2016) Improved techniques for training GANs. In: Proceedings of advances in neural information processing systems 29 (NIPS), pp 2234–2242 – reference: Hayes J, Danezis G (2017) Generating steganographic images via adversarial training. In: Proceedings of advances in neural information processing systems 30 (NIPS), pp 1954–1963 – reference: ZengJLarge-scale JPEG steganalysis using hybrid deep-learning frameworkIEEE Trans Inf Forensics Secur2018131200121410.1109/TIFS.2017.2779446 – reference: QianYDongJWangWTanTDeep learning for steganalysis via convolutional neural networksProc SPIE Int Soc Opt Eng2015940994090J–94090J10 – reference: Huang GB, Mattar M, Lee H, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments, University of Massachusetts, Amherst. Technical Report 07-49, October – reference: TangWTanSLiBHuangJAutomatic steganographic distortion learning using a generative adversarial networkIEEE Signal Process Lett201724101547155110.1109/LSP.2017.2745572 – reference: FridrichJKodovskyJRich models for steganalysis of digital imagesIEEE Trans Inf Forensics Secur20127386888210.1109/TIFS.2012.2190402 – reference: HolubVFridrichJDenemarkTUniversal distortion function for steganography in an arbitrary domainEURASIP J Inf Secur20142014111310.1186/1687-417X-2014-1 – reference: GoodfellowIPouget-AbadieJMirzaMBingXUWarde-FarleyDOzairSCourvilleABengioYGenerative adversarial netsAdv Neural Inf Proces201427NIPS26722680 – reference: Zhang L, Zhang L, Mou X, Zhang D (2012) A comprehensive evaluation of full reference image quality assessment algorithms. In: Proceedings of the 19th IEEE international conference on image processing, pp 1477–1480 – reference: Arjovsky M, Chintala S, Bottou L (2017) Wasserstein GAN. In: Proceedings of the 34th international conference on machine learning (ICML), pp 214–223 – reference: He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778 – reference: Volkhonskiy D, Borisenko B, Burnaev E (2016) Generative adversarial networks for image steganography. In ICLR 2016 Open Review – reference: Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Proceedings of international conference on medical image computing and computer-assisted intervention, pp 234–241 – reference: WangZBovikACSheikhHRSimoncelliEPImage quality assessment: from error visibility to structural similarityIEEE Trans Image Process20041360061210.1109/TIP.2003.819861 – ident: 6951_CR16 – volume: 9409 start-page: 94090J–94090J year: 2015 ident: 6951_CR17 publication-title: Proc SPIE Int Soc Opt Eng – start-page: 534 volume-title: Advances in Multimedia Information Processing – PCM 2017 year: 2018 ident: 6951_CR22 doi: 10.1007/978-3-319-77380-3_51 – ident: 6951_CR20 doi: 10.1007/978-3-319-24574-4_28 – volume: 9 start-page: 249 year: 2010 ident: 6951_CR9 publication-title: J Mach Learn Res – ident: 6951_CR2 – ident: 6951_CR8 – ident: 6951_CR26 doi: 10.1109/ACSSC.2003.1292216 – volume: 7 start-page: 868 issue: 3 year: 2012 ident: 6951_CR7 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2012.2190402 – ident: 6951_CR28 – volume: 24 start-page: 1547 issue: 10 year: 2017 ident: 6951_CR24 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2017.2745572 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 6951_CR12 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2389824 – ident: 6951_CR30 doi: 10.1109/ICIP.2012.6467150 – volume: 88 start-page: 303 year: 2010 ident: 6951_CR6 publication-title: Int J Comput Vis doi: 10.1007/s11263-009-0275-4 – ident: 6951_CR11 – volume: 13 start-page: 1200 year: 2018 ident: 6951_CR31 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2017.2779446 – ident: 6951_CR19 – ident: 6951_CR5 doi: 10.1109/CVPR.2009.5206848 – ident: 6951_CR23 doi: 10.1109/CVPR.2016.308 – ident: 6951_CR15 – volume: 27 start-page: 2672 issue: NIPS year: 2014 ident: 6951_CR10 publication-title: Adv Neural Inf Proces – volume: 2014 start-page: 1 issue: 1 year: 2014 ident: 6951_CR14 publication-title: EURASIP J Inf Secur doi: 10.1186/1687-417X-2014-1 – ident: 6951_CR21 – ident: 6951_CR25 – volume: 3 start-page: 47 year: 2017 ident: 6951_CR32 publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2016.2644865 – ident: 6951_CR1 – ident: 6951_CR13 doi: 10.1109/CVPR.2016.90 – volume: 12 start-page: 2545 year: 2017 ident: 6951_CR29 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2017.2710946 – ident: 6951_CR18 – volume: 13 start-page: 600 year: 2004 ident: 6951_CR27 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – start-page: 306 volume-title: Information Hiding year: 1998 ident: 6951_CR3 doi: 10.1007/3-540-49380-8_21 – volume-title: Elements of information theory year: 1991 ident: 6951_CR4 doi: 10.1002/0471200611 |
SSID | ssj0016524 |
Score | 2.55408 |
Snippet | Nowadays, there are plenty of works introducing convolutional neural networks (CNNs) to the steganalysis and exceeding conventional steganalysis algorithms.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8559 |
SubjectTerms | Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Divergence Generative adversarial networks Layouts Machine learning Multimedia Information Systems Special Purpose and Application-Based Systems Steganography Visibility |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60XvTgoypWq-TgSQlkH0mzeCpiqYKeLPS25DFbhLKKWz3015vso6uigtfdSQ7zyMwwM98AnKOKTRhxQaUNkMYDhlQi41RIp0-KcSdoPyh8_yDGk_huyqf1HHfRdLs3JcnypW6H3QI_SsICSYXfDb9chw3uU3enxJNwuCodCF5vspWMOncYNKXMn6746ozaCPNbUbT0NaNd2K6DRDKspLoHa5h3YadZwEBqe-zC1ic0wX24us39pLieI3Gim6m8RqMm70-KzEp4af-2EeV3MBfKax7Jqy7w4gAmo5vH6zGtdyNQE_FkQROXB1gms4FgoY6Vs6IoiXRmJYo4M5ohtzZLhJHaWuVyQCUzqdEFVx4cUhmMDqGTP-d4BERK4yhkFhiFsRBahQZNjIlF7r5Z2wPWMCk1NXC4318xT1vIY8_X1PE19XxNlz24WB15qVAz_iLuN5xPawMqUh-JeHC4UPTgspFG-_vXy47_RX0Cmy4ASqpOnD50Fq9veOqCjIU-K5XqA4lAyjM priority: 102 providerName: Springer Nature |
Title | Invisible steganography via generative adversarial networks |
URI | https://link.springer.com/article/10.1007/s11042-018-6951-z https://www.proquest.com/docview/2151552726 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEJ4oXPTgAzWiSPbgSdPYfZVuPBgkPNRIjJEET5tu2yUmZEFBD_x6p9AFNZHLHrptDzPtzLTT-T6Acy0C6fkhI1y5mgQ1qgnXNCSM43oSNERFm0Lhxy7r9IL7fti3F24T-6wyt4lzQ61G0tyRXxnXZNDCPHYzfieGNcpkVy2FxiYU0QRzPHwVb5vdp-dlHoGFltaWU4K-0c3zmvPiOdeUplCXE2a45me_PdMq3PyTIZ07ntYe7NiI0akvVLwPGzorwW7OxuDYzVmC7R_QggdwfZeZsvFkqB3U40BkFpra-XoTzmCONW0MnSMMIfNEmGXoZIsn4ZND6LWaL40OsUQJRPphNCURHgoU5WmNUS8JBG4pP_KTVHHNglQmVIdKpRGTPFFK4IFQ8JQnGiMtgxQppPaPoJCNMn0MDucSe_DUlUIHjCXCk1oGOlI6xDalykBzIcXSoogbMothvMI_NnKNUa6xkWs8K8PFcsh4AaGxrnMll3xsd9MkXum-DJe5Nla__53sZP1kp7CF4U-0eIdTgcL041OfYYgxTaqwyVvtKhTr7deHZtWuKmxtsAZ-e179G5Xk0r4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25TsQwEB1xFEDBjVhOF9CALJzLOEIIIWDZ5apAoguOPUFIKBy7gOCj-EY8OVhAgo42cVyMn2fGGc97ACuoQ-MHkeTKesjDTYFcoYi4VA5PWkRuoalR-PRMti7Co8vosg_e614YulZZ-8TCUds7Q__INyg0EVuYL3fuHzipRlF1tZbQKGFxjK8v7sjW2W7vu_Vd9f3mwflei1eqAtwEUdzlscugrVDZphR-GmqHvyAO0swqlGFmUoGRtVksjUqt1e70pFWmUnRpCdEqaoOBm7cfBsMgiGlHqebhZ9VCRpWIrhLcRWKvrqIWrXoeNcIIT3FJyvZv3-NgL7n9UY8twlxzHEar_JTtloCagD7MJ2Gs1n5glSuYhJEvRIZTsNXOqUk9vUXmUHOt84oImz3faHZdMFuTW2Wa5J87mkDP8vICemcaLv7FgDMwkN_lOAtMKeNGqMwzGkMpU-0bNCHGFiP3zNoGiNpIiak4y0k64zbpsS2TXRNn14Tsmrw1YO3zk_uSsOOvwQu15ZNq73aSHtIasF6vRu_1r5PN_T3ZMgy1zk9PkpP22fE8DLvEKy5vAC3AQPfxCRddctNNlwpEMbj6bwh_AN7BCys |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fTxQxEJ7gkRB9EEWNJ6h9gBdMQ_dXrxtjiAoXjh8XYiThbe22s4SE7B3eqYE_zb_Omdsuhybyxututw_TrzPT7cz3AayjTV2cZFoaH6FMewqlQZVJbQhPVmW00NwofDTUeyfp_ml2ugC_214YLqtsfeLMUfuR43_kWxyamC0s1ltVKIs43ulvjy8lK0jxTWsrp9FA5ACvftHxbfJhsENrvRHH_d2vn_dkUBiQLsnyqcwpm_bKVD2t4jK1hMUkT8rKG9Rp5UqFmfdVrp0pvbd0krKmMiVSisIUi9ZhQvM-gMUenYpUBxY_7Q6Pv9zcYegsSOoaJSkuR-2d6qxxL-K2GBUZqVnn_vrvqDhPdf-5nZ0Fvf4TeByyVfGxgddTWMB6BZZbJQgRHMMKPLpFa_gM3g9qblkvL1AQhs5sHWixxc9zK85mPNfsZIVlMeiJ5S0g6qYcffIcTu7FhC-gU49qfAnCGEcjTBU5i6nWpY0duhRzjxk9874LqjVS4QKDOQtpXBRz7mW2a0F2LdiuxXUXNm8-GTf0HXcNXmstX4SdPCnmuOvCu3Y15q__O9mruyd7C0sE3-JwMDxYhYeUheVNOdAadKbff-BrynSm5ZsAKQHf7hvFfwCm_hC9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Invisible+steganography+via+generative+adversarial+networks&rft.jtitle=Multimedia+tools+and+applications&rft.au=Zhang%2C+Ru&rft.au=Dong%2C+Shiqi&rft.au=Liu%2C+Jianyi&rft.date=2019-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=78&rft.issue=7&rft.spage=8559&rft.epage=8575&rft_id=info:doi/10.1007%2Fs11042-018-6951-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |