A Comparative Study of Methods for Estimating the Thickness of Glacial Debris: A Case Study of the Koxkar Glacier in the Tian Shan Mountains
The local or overall mass balance of a glacier is significantly influenced by the spatial heterogeneity of its overlying debris thickness. Accurately estimating the debris thickness of glaciers is essential for understanding their hydrological processes and the impact of climate change. This study f...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 23; p. 4356 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs16234356 |
Cover
Loading…
Abstract | The local or overall mass balance of a glacier is significantly influenced by the spatial heterogeneity of its overlying debris thickness. Accurately estimating the debris thickness of glaciers is essential for understanding their hydrological processes and the impact of climate change. This study focuses on the Koxkar Glacier in the Tian Shan Mountains, using debris thickness data to compare the accuracy of three commonly used approaches for estimating the spatial distribution of debris thickness. The three measurement approaches include two empirical relationships between the land surface temperature (LST) and debris thickness approaches, empirical relationship approach 1 and empirical relationship approach 2, and the energy balance of debris approach. The analysis also explores the potential influence of topographic factors on the debris distribution. By incorporating temperature data from the debris profiles, this study examines the applicability of each approach and identifies areas for possible improvement. The results indicate that (1) all three debris thickness estimation approaches effectively capture the distribution characteristics of glacial debris, although empirical relationship approach 2 outperforms the others in describing the spatial patterns; (2) the accuracy of each approach varies depending on the debris thickness, with the energy balance of debris approach being most accurate for debris less than 50 cm thick, while empirical relationship approach 1 performs better for debris thicker than 50 cm and empirical relationship approach 2 demonstrates the highest overall accuracy; and (3) topographic factors, particularly the elevation, significantly influence the accuracy of debris thickness estimates. Furthermore, the empirical relationships between the LST and debris thickness require field data and focus solely on the surface temperature, neglecting other influencing factors. The energy balance of debris approach is constrained by its linear assumption of the temperature profile, which is only valid within a specific range of debris thickness; beyond this range, it significantly underestimates the values. These findings provide evidence-based support for improving remote-sensing methods for debris thickness estimation. |
---|---|
AbstractList | The local or overall mass balance of a glacier is significantly influenced by the spatial heterogeneity of its overlying debris thickness. Accurately estimating the debris thickness of glaciers is essential for understanding their hydrological processes and the impact of climate change. This study focuses on the Koxkar Glacier in the Tian Shan Mountains, using debris thickness data to compare the accuracy of three commonly used approaches for estimating the spatial distribution of debris thickness. The three measurement approaches include two empirical relationships between the land surface temperature (LST) and debris thickness approaches, empirical relationship approach 1 and empirical relationship approach 2, and the energy balance of debris approach. The analysis also explores the potential influence of topographic factors on the debris distribution. By incorporating temperature data from the debris profiles, this study examines the applicability of each approach and identifies areas for possible improvement. The results indicate that (1) all three debris thickness estimation approaches effectively capture the distribution characteristics of glacial debris, although empirical relationship approach 2 outperforms the others in describing the spatial patterns; (2) the accuracy of each approach varies depending on the debris thickness, with the energy balance of debris approach being most accurate for debris less than 50 cm thick, while empirical relationship approach 1 performs better for debris thicker than 50 cm and empirical relationship approach 2 demonstrates the highest overall accuracy; and (3) topographic factors, particularly the elevation, significantly influence the accuracy of debris thickness estimates. Furthermore, the empirical relationships between the LST and debris thickness require field data and focus solely on the surface temperature, neglecting other influencing factors. The energy balance of debris approach is constrained by its linear assumption of the temperature profile, which is only valid within a specific range of debris thickness; beyond this range, it significantly underestimates the values. These findings provide evidence-based support for improving remote-sensing methods for debris thickness estimation. |
Audience | Academic |
Author | Han, Haidong Zhao, Qiudong Qin, Yan Liu, Jun Liu, Yongqiang |
Author_xml | – sequence: 1 givenname: Jun surname: Liu fullname: Liu, Jun – sequence: 2 givenname: Yan orcidid: 0000-0002-0242-3272 surname: Qin fullname: Qin, Yan – sequence: 3 givenname: Haidong surname: Han fullname: Han, Haidong – sequence: 4 givenname: Qiudong surname: Zhao fullname: Zhao, Qiudong – sequence: 5 givenname: Yongqiang surname: Liu fullname: Liu, Yongqiang |
BookMark | eNpNkctuUzEQhi1UJErppk9giR1SWl_POWYXhdJWtGLRdm3N8SVxmtjBdir6Djw0DgdBbcu2Zv7_04zmPTqKKTqEzig551yRi1xox7jgsnuDjhnp2UwwxY5e_d-h01LWpC3OqSLiGP2a40Xa7iBDDc8O39e9fcHJ4ztXV8kW7FPGl6WGbcvHJa4rhx9WwTxFV8pBd7UBE2CDv7gxh_IZNxyUV5yD4Vv6-QR5krqMQ5wwASK-X7XrLu1jhRDLB_TWw6a407_vCXr8evmwuJ7dfr-6WcxvZ4ZLVWdqGK1lyghlvRGsA8G56YWDsWdWStaOs32vjGUHJfGCM6GIpF0nB28HfoJuJq5NsNa73LrLLzpB0H8CKS815BrMxmnixNCD4mwcmRBeKCU8k-Ooxq6Xjd1YHyfWLqcfe1eqXqd9jq18zakQVA6csKY6n1RLaNAQfaoZTNvWbYNpY_ShxecDVUq2jmgzfJoMJqdSsvP_yqREH6at_0-b_wZsBZx_ |
Cites_doi | 10.1175/2009JAMC2167.1 10.1016/j.geomorph.2020.107092 10.1017/jog.2022.67 10.1029/2018GL080158 10.1029/2022GL099049 10.1029/2012JD017795 10.1016/j.rse.2004.02.003 10.1029/2003JD004359 10.5194/tc-9-1617-2015 10.1016/0034-4257(82)90043-8 10.5194/tc-8-1317-2014 10.1017/jog.2022.116 10.3189/002214311798843331 10.1017/jog.2019.22 10.2166/nh.1983.0016 10.1016/j.geomorph.2017.08.012 10.5194/tc-15-265-2021 10.3389/feart.2021.657440 10.1002/esp.3299 10.1002/2016JF004102 10.1029/2009JD011705 10.1016/j.coldregions.2007.03.004 10.1038/nature23878 10.1016/j.rse.2017.12.028 10.1016/j.scitotenv.2016.05.138 10.1029/2003JD003973 10.1016/j.geomorph.2023.108686 10.1016/j.rse.2019.111267 10.5194/hess-18-2679-2014 10.3189/172756408784700680 10.1016/S1040-6182(99)00034-8 10.3389/feart.2019.00331 10.1029/2017JF004395 10.1029/2020GL091311 10.5194/tc-12-1195-2018 10.3189/172756506781828584 10.1038/s43247-022-00588-2 10.1016/j.earscirev.2012.03.008 10.1038/s41561-020-0615-0 10.1029/2009JD013224 10.3189/2012JoG11J194 10.5194/tc-6-367-2012 10.1017/jog.2020.111 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/rs16234356 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (subscription) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_0e487a932bb244f4994f25bb9b675dd0 A819954261 10_3390_rs16234356 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c359t-98bdd29c49dfc426a433c74eab72d552552ed779cd28bdd0f432490516658fd83 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:24:43 EDT 2025 Fri Jul 25 12:03:27 EDT 2025 Tue Jun 10 21:05:11 EDT 2025 Tue Jul 01 01:33:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-98bdd29c49dfc426a433c74eab72d552552ed779cd28bdd0f432490516658fd83 |
Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
ORCID | 0000-0002-0242-3272 |
OpenAccessLink | https://doaj.org/article/0e487a932bb244f4994f25bb9b675dd0 |
PQID | 3144158302 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0e487a932bb244f4994f25bb9b675dd0 proquest_journals_3144158302 gale_infotracacademiconefile_A819954261 crossref_primary_10_3390_rs16234356 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Han (ref_33) 2005; 1 Soncini (ref_39) 2016; 565 Sobrino (ref_37) 2004; 90 Reid (ref_17) 2012; 117 Li (ref_35) 2021; 43 ref_13 Delaney (ref_1) 2022; 49 Huang (ref_18) 2018; 206 Stewart (ref_28) 2021; 67 Wang (ref_48) 2014; 33 ref_52 Nicholson (ref_2) 2006; 52 Chang (ref_38) 2016; 31 Harrison (ref_15) 2018; 12 Strasser (ref_43) 2004; 109 Benn (ref_25) 2012; 114 Rounce (ref_40) 2021; 48 Fujita (ref_55) 2014; 18 Scherler (ref_3) 2018; 45 Benn (ref_9) 2000; 65/66 McCarthy (ref_16) 2022; 3 Rounce (ref_42) 2014; 8 Nicholson (ref_14) 2013; 38 Foster (ref_41) 2012; 58 Herreid (ref_4) 2020; 13 Kraaijenbrink (ref_11) 2017; 549 Brock (ref_44) 2010; 115 Collier (ref_7) 2015; 9 Zhang (ref_54) 2017; 729 Sun (ref_47) 2024; 41 Guo (ref_57) 2020; 39 Zhang (ref_29) 2011; 57 Favier (ref_45) 2004; 109 Ferguson (ref_10) 2020; 357 Artis (ref_36) 1982; 12 ref_32 Moore (ref_49) 1983; 14 (ref_5) 1959; 41 Liu (ref_31) 2015; 70 Ding (ref_34) 2014; 36 Mihalcea (ref_21) 2008; 52 Hock (ref_12) 2019; 65 Bisset (ref_27) 2023; 69 McKenzie (ref_23) 2023; 69 Brenning (ref_22) 2012; 6 Rounce (ref_26) 2018; 123 Pratap (ref_19) 2023; 431 Mihalcea (ref_24) 2008; 48 Huang (ref_20) 2017; 122 Gibson (ref_51) 2017; 295 Suzuki (ref_56) 2007; 24 Mattson (ref_6) 1993; 218 Yang (ref_46) 2009; 48 Schuenemann (ref_50) 2009; 114 Zhang (ref_30) 2005; 3 Wu (ref_53) 2019; 231 Anderson (ref_8) 2021; 15 |
References_xml | – volume: 48 start-page: 2474 year: 2009 ident: ref_46 article-title: Method Development for Estimating Sensible Heat Flux over the Tibetan Plateau from CMA Data publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2009JAMC2167.1 – volume: 357 start-page: 107092 year: 2020 ident: ref_10 article-title: On the Influence of Debris Cover on Glacier Morphology: How High-Relief Structures Evolve from Smooth Surfaces publication-title: Geomorphology doi: 10.1016/j.geomorph.2020.107092 – ident: ref_32 – volume: 69 start-page: 353 year: 2023 ident: ref_23 article-title: Using Ground-Based Thermal Imagery to Estimate Debris Thickness over Glacial Ice: Fieldwork Considerations to Improve the Effectiveness publication-title: J. Glaciol. doi: 10.1017/jog.2022.67 – volume: 45 start-page: 11798 year: 2018 ident: ref_3 article-title: Global Assessment of Supraglacial Debris-Cover Extents publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL080158 – volume: 729 start-page: 1606 year: 2017 ident: ref_54 article-title: Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China publication-title: Acta Geogr. Sin. – volume: 49 start-page: e2022GL099049 year: 2022 ident: ref_1 article-title: Debris Cover Limits Subglacial Erosion and Promotes Till Accumulation publication-title: Geophys. Res. Lett. doi: 10.1029/2022GL099049 – volume: 117 start-page: D18105 year: 2012 ident: ref_17 article-title: Including Debris Cover Effects in a Distributed Model of Glacier Ablation publication-title: J. Geophys. Res. Atmospheres doi: 10.1029/2012JD017795 – volume: 90 start-page: 434 year: 2004 ident: ref_37 article-title: Land Surface Temperature Retrieval from LANDSAT TM 5 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2004.02.003 – volume: 109 start-page: D18105 year: 2004 ident: ref_45 article-title: One-Year Measurements of Surface Heat Budget on the Ablation Zone of Antizana Glacier 15, Ecuadorian Andes publication-title: J. Geophys. Res. Atmospheres doi: 10.1029/2003JD004359 – volume: 9 start-page: 1617 year: 2015 ident: ref_7 article-title: Impact of Debris Cover on Glacier Ablation and Atmosphere–Glacier Feedbacks in the Karakoram publication-title: Cryosphere doi: 10.5194/tc-9-1617-2015 – volume: 12 start-page: 313 year: 1982 ident: ref_36 article-title: Survey of Emissivity Variability in Thermography of Urban Areas publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(82)90043-8 – volume: 8 start-page: 1317 year: 2014 ident: ref_42 article-title: Debris Thickness of Glaciers in the Everest Area (Nepal Himalaya) Derived from Satellite Imagery Using a Nonlinear Energy Balance Model publication-title: Cryosphere doi: 10.5194/tc-8-1317-2014 – volume: 41 start-page: 228 year: 1959 ident: ref_5 article-title: Ice Melting under a Thin Layer of Moraine, and the Existence of Ice Cores in Moraine Ridges publication-title: Geogr. Ann. – volume: 69 start-page: 981 year: 2023 ident: ref_27 article-title: Using Thermal UAV Imagery to Model Distributed Debris Thicknesses and Sub-Debris Melt Rates on Debris-Covered Glaciers publication-title: J. Glaciol. doi: 10.1017/jog.2022.116 – volume: 57 start-page: 1147 year: 2011 ident: ref_29 article-title: Distribution of Debris Thickness and Its Effect on Ice Melt at Hailuogou Glacier, Southeastern Tibetan Plateau, Using in Situ Surveys and ASTER Imagery publication-title: J. Glaciol. doi: 10.3189/002214311798843331 – volume: 65 start-page: 453 year: 2019 ident: ref_12 article-title: GlacierMIP—A Model Intercomparison of Global-Scale Glacier Mass-Balance Models and Projections publication-title: J. Glaciol. doi: 10.1017/jog.2019.22 – volume: 14 start-page: 193 year: 1983 ident: ref_49 article-title: On the Use of Bulk Aerodynamic Formulae Over Melting Snow publication-title: Hydrol. Res. doi: 10.2166/nh.1983.0016 – volume: 295 start-page: 572 year: 2017 ident: ref_51 article-title: Temporal Variations in Supraglacial Debris Distribution on Baltoro Glacier, Karakoram between 2001 and 2012 publication-title: Geomorphology doi: 10.1016/j.geomorph.2017.08.012 – volume: 15 start-page: 265 year: 2021 ident: ref_8 article-title: Debris Cover and the Thinning of Kennicott Glacier, Alaska: In Situ Measurements, Automated Ice Cliff Delineation and Distributed Melt Estimates publication-title: Cryosphere doi: 10.5194/tc-15-265-2021 – ident: ref_52 doi: 10.3389/feart.2021.657440 – volume: 38 start-page: 490 year: 2013 ident: ref_14 article-title: Properties of Natural Supraglacial Debris in Relation to Modelling Sub-Debris Ice Ablation publication-title: Earth Surf. Process. Landf. doi: 10.1002/esp.3299 – volume: 122 start-page: 925 year: 2017 ident: ref_20 article-title: Estimation of Supraglacial Debris Thickness Using a Novel Target Decomposition on L-Band Polarimetric SAR Images in the Tianshan Mountains publication-title: J. Geophys. Res. Earth Surf. doi: 10.1002/2016JF004102 – volume: 114 start-page: D20113 year: 2009 ident: ref_50 article-title: Changes in Synoptic Weather Patterns and Greenland Precipitation in the 20th and 21st Centuries: 1. Evaluation of Late 20th Century Simulations from IPCC Models publication-title: J. Geophys. Res. Atmospheres doi: 10.1029/2009JD011705 – volume: 33 start-page: 762 year: 2014 ident: ref_48 article-title: Analysis of aerodynamic roughness of the debris-covered Keqicar glacier publication-title: Plateau Meteorol. – volume: 36 start-page: 20 year: 2014 ident: ref_34 article-title: Study of the ice tongue ablation features of a large glacier in the south slopes of the Mt. Tuomuer in the Tianshan Mountains publication-title: J. Glaciol. Geocryol. – volume: 31 start-page: 122 year: 2016 ident: ref_38 article-title: Comparison Study on Land Surface Temperature Retrieval on Alpine Mountainous Cold Regions: A Case Study of the Reach of Shule River Basin publication-title: Remote Sens. Inf. – volume: 52 start-page: 341 year: 2008 ident: ref_21 article-title: Using ASTER Satellite and Ground-Based Surface Temperature Measurements to Derive Supraglacial Debris Cover and Thickness Patterns on Miage Glacier (Mont Blanc Massif, Italy) publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2007.03.004 – volume: 1 start-page: 88 year: 2005 ident: ref_33 article-title: Estimati on and Analysis of Heat Balance Parameters in the Ablati on Season of Debris-Covered Kerqikaer Glacier, Tianshan Mountains publication-title: J. Glaciol. Geocryol. – volume: 218 start-page: 289 year: 1993 ident: ref_6 article-title: Ablation on Debris Covered Glaciers: An Example from the Rakhiot Glacier, Punjab, Himalaya publication-title: Snow Glacier Hydrol. – volume: 549 start-page: 257 year: 2017 ident: ref_11 article-title: Impact of a Global Temperature Rise of 1.5 Degrees Celsius on Asia’s Glaciers publication-title: Nature doi: 10.1038/nature23878 – volume: 24 start-page: 13 year: 2007 ident: ref_56 article-title: Spatial Distribution of Thermal Properties on Debris-Covered Glaciers in the Himalayas Derived from ASTER Data publication-title: Bull. Glaciol. Res. – volume: 41 start-page: 36 year: 2024 ident: ref_47 article-title: Temporal and spatial variations in multi-year surface sensible heat flux in Qinghai Province publication-title: Arid. Zone Res. – volume: 206 start-page: 63 year: 2018 ident: ref_18 article-title: Analysis of Thickness Changes and the Associated Driving Factors on a Debris-Covered Glacier in the Tienshan Mountain publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.12.028 – volume: 565 start-page: 1084 year: 2016 ident: ref_39 article-title: Future Hydrological Regimes and Glacier Cover in the Everest Region: The Case Study of the Upper Dudh Koshi Basin publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.138 – volume: 109 start-page: D03103 year: 2004 ident: ref_43 article-title: Spatial and Temporal Variability of Meteorological Variables at Haut Glacier d’Arolla (Switzerland) during the Ablation Season 2001: Measurements and Simulations publication-title: J. Geophys. Res. Atmospheres doi: 10.1029/2003JD003973 – volume: 70 start-page: 3 year: 2015 ident: ref_31 article-title: The contemporary glaciers in China based on the Second Chinese Glacier Inventory publication-title: Acta Geogr. Sin. – volume: 431 start-page: 108686 year: 2023 ident: ref_19 article-title: Differential Surface Melting of a Debris-Covered Glacier and Its Geomorphological Control—A Case Study from Batal Glacier, Western Himalaya publication-title: Geomorphology doi: 10.1016/j.geomorph.2023.108686 – volume: 231 start-page: 111267 year: 2019 ident: ref_53 article-title: The Effect of Thermal Radiation from Surrounding Terrain on Glacier Surface Temperatures Retrieved from Remote Sensing Data: A Case Study from Qiyi Glacier, China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111267 – volume: 3 start-page: 337 year: 2005 ident: ref_30 article-title: Study of the Positive Degree-day Factors on the Koxkar Baqi Glaci er on the South Slope of Tianshan Mountains publication-title: J. Glaciol. Geocryol. – volume: 18 start-page: 2679 year: 2014 ident: ref_55 article-title: Modelling Runoff from a Himalayan Debris-Covered Glacier publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-2679-2014 – volume: 48 start-page: 49 year: 2008 ident: ref_24 article-title: Spatial Distribution of Debris Thickness and Melting from Remote-Sensing and Meteorological Data, at Debris-Covered Baltoro Glacier, Karakoram, Pakistan publication-title: Ann. Glaciol. doi: 10.3189/172756408784700680 – volume: 65/66 start-page: 15 year: 2000 ident: ref_9 article-title: Mass Balance and Equilibrium-Line Altitudes of Glaciers in High-Mountain Environments publication-title: Quat. Int. doi: 10.1016/S1040-6182(99)00034-8 – ident: ref_13 doi: 10.3389/feart.2019.00331 – volume: 123 start-page: 1094 year: 2018 ident: ref_26 article-title: Quantifying Debris Thickness of Debris-Covered Glaciers in the Everest Region of Nepal Through Inversion of a Subdebris Melt Model publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2017JF004395 – volume: 48 start-page: e2020GL091311 year: 2021 ident: ref_40 article-title: Distributed Global Debris Thickness Estimates Reveal Debris Significantly Impacts Glacier Mass Balance publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL091311 – volume: 12 start-page: 1195 year: 2018 ident: ref_15 article-title: Climate Change and the Global Pattern of Moraine-Dammed Glacial Lake Outburst Floods publication-title: Cryosphere doi: 10.5194/tc-12-1195-2018 – volume: 43 start-page: 1018 year: 2021 ident: ref_35 article-title: Research on the changes of the Urumqi Glacier No. 1, Tianshan Mountains based on multisource remote sensing data publication-title: J. Glaciol. Geocryol. – volume: 52 start-page: 463 year: 2006 ident: ref_2 article-title: Calculating Ice Melt beneath a Debris Layer Using Meteorological Data publication-title: J. Glaciol. doi: 10.3189/172756506781828584 – volume: 3 start-page: 269 year: 2022 ident: ref_16 article-title: Supraglacial Debris Thickness and Supply Rate in High-Mountain Asia publication-title: Commun. Earth Environ. doi: 10.1038/s43247-022-00588-2 – volume: 114 start-page: 156 year: 2012 ident: ref_25 article-title: Response of Debris-Covered Glaciers in the Mount Everest Region to Recent Warming, and Implications for Outburst Flood Hazards publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2012.03.008 – volume: 13 start-page: 621 year: 2020 ident: ref_4 article-title: The State of Rock Debris Covering Earth’s Glaciers publication-title: Nat. Geosci. doi: 10.1038/s41561-020-0615-0 – volume: 39 start-page: 1983 year: 2020 ident: ref_57 article-title: Research progress of accurate measurement and characterization model of effective thermal conductivity of rock publication-title: Chin. J. Rock Mech. Eng. – volume: 115 start-page: D09106 year: 2010 ident: ref_44 article-title: Meteorology and Surface Energy Fluxes in the 2005–2007 Ablation Seasons at the Miage Debris-covered Glacier, Mont Blanc Massif, Italian Alps publication-title: J. Geophys. Res. Atmospheres doi: 10.1029/2009JD013224 – volume: 58 start-page: 677 year: 2012 ident: ref_41 article-title: A Physically Based Method for Estimating Supraglacial Debris Thickness from Thermal Band Remote-Sensing Data publication-title: J. Glaciol. doi: 10.3189/2012JoG11J194 – volume: 6 start-page: 367 year: 2012 ident: ref_22 article-title: Thermal Remote Sensing of Ice-Debris Landforms Using ASTER: An Example from the Chilean Andes publication-title: Cryosphere doi: 10.5194/tc-6-367-2012 – volume: 67 start-page: 366 year: 2021 ident: ref_28 article-title: Using Climate Reanalysis Data in Conjunction with Multi-Temporal Satellite Thermal Imagery to Derive Supraglacial Debris Thickness Changes from Energy-Balance Modelling publication-title: J. Glaciol. doi: 10.1017/jog.2020.111 |
SSID | ssj0000331904 |
Score | 2.382869 |
Snippet | The local or overall mass balance of a glacier is significantly influenced by the spatial heterogeneity of its overlying debris thickness. Accurately... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 4356 |
SubjectTerms | Ablation Case studies Climate change Climatic changes Comparative analysis Comparative studies Cooling Debris debris thickness debris-covered glacier Detritus Energy Energy balance Energy distribution Environmental impact Estimation Glacial drift Glaciers Heat Heterogeneity Land surface temperature Mass balance Methods Mountains precision evaluation Radiation Remote sensing Spatial data Spatial distribution Spatial heterogeneity Temperature profiles Temperature requirements Thickness measurement |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Li9swEB7a7KG9lD5pdtMiaKEnE68lP9RLyS7ZhpYspd3A3oReTsIu9tbOQvMf-qM7YysJPbQYfLBlITSamW_G0jcA77nksfenRVQ6kUXCoqYbFDVlm8q4tMLx7rjY_DKbLcSX6_Q6JNzasK1yZxM7Q-1qSznyMe-QP7FVfbr7GVHVKPq7GkpoPIQjNMFFOoCjs-nlt-_7LEvMcYnFoucl5Rjfj5v2FD0-goTsL0_UEfb_yyx3vubiKTwJIJFNeqk-gwe-eg6PQr3y1fYF_J6w8wNtN6PNgFtWl2ze1YNuGSJRNkXlJThaLRmCPHa1WtsbsmvU7vOtplQ5Q2uDSv6RYXfozQ790Adf6183uumb-oatq74bXE7sxwpvc6oyoddV-xIWF9Or81kU6ipElqdyE8nCOJdIK6RDaSSZFpzbXHht8sSlKQYZiXd5Lq1LqGVcEmsf8XhlCFdKV_BXMKjqyr8GVkjnubT43lmRG4EX-n8vjI-d1E4M4d1ujtVdT5-hMOwgSaiDJIZwRtO_b0GU192DulmqoEEq9hhbaYSbxiAkKTFSE2WSGiMNxjw4yiF8IOEpUsxNo60O5wtwoERxpSYFnUaniHEIo518VdDYVh3W1_H_X5_A4wSBTb-lZQSDTXPv3yAw2Zi3YfX9ASBf4qo priority: 102 providerName: ProQuest |
Title | A Comparative Study of Methods for Estimating the Thickness of Glacial Debris: A Case Study of the Koxkar Glacier in the Tian Shan Mountains |
URI | https://www.proquest.com/docview/3144158302 https://doaj.org/article/0e487a932bb244f4994f25bb9b675dd0 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xOJQLooWqy2NlqZV6igix8zC3BXZBhUWIh8TN8ivd1VZZlN1K5T_wo5lxQhcOqJcqUiIlE8vyzHi-sexvAL5xyWPvD4qodCKLhEVPN6hqWm0q49IKx8NxseFldnYnftyn969KfdGesIYeuBm4_dgjpNaIMozBSFQiQBdlkhojDUJd50K2jjHvVTIV5mCOphWLho-UY16_X88OMNIjOMjeRKBA1P_edBxizGAD1ltwyHpNpz7Ckq8-wYe2TvnocROeeux4QdfNaBPgI5uWbBjqQM8YIlDWR6clGFr9ZAju2O1obCc0n5Hc6S9NS-QMZxl07kOGzWEUW7RDP5xP_0x03Yj6mo2rphk0I3YzwtuQqkvocTXbgrtB__b4LGrrKUSWp3IeycI4l0grpEMtJJkWnNtceG3yxKUpJheJd3kurUtIMi6JrY_4uzKEKaUr-GdYqaaV_wKskM5zafG7syI3Ai-M-14YHzupnejA15cxVg8NbYbCdIM0oRaa6MARDf9fCaK6Di_QAFRrAOpfBtCB76Q8RQ45r7XV7bkC7ChRW6leQafQKVPswO6LflXrqTPFQ0ZJLGjb_6M3O7CWIOxpNrzswsq8_u33ELbMTReWi8FpF1Z7J8OLG3we9S-vrrvBbp8Bj6Ltuw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lAuFU8RWmAlQJysut71Y5FQlZaUlDQRglTqbfE-3ESt7NYOovkP_BZ-IzN-NOIAt8qSD_Z4tdqZnflmvDMD8IZL7ju3l3iZFZEnDO50jaymaFPmZ0ZYXqeLjSfR8FR8PgvP1uB3lwtDxyo7nVgralsYipHv8hr5U7Wq_atrj7pG0d_VroVGIxYjt_yJLlv14fgj8vdtEBwNpodDr-0q4BkeyoUnE21tII2QFucSRKng3MTCpToObBgixA6cjWNpbECUfkY166iKVYTGOrMJx3HvwQbCDIm7aONgMPny9Taq43MUaV80dVA5l_5uWe0hwkDq6C_LVzcI-JcZqG3b0QPYakEp6zdS9BDWXP4INtv-6LPlY_jVZ4erMuGMDh8uWZGxcd1_umKIfNkAlQXB3_ycIahk09ncXJAeJbpPlymF5hlqN1Qq7xkOh9ZzNQ59MCpuLtKyIXUlm-fNMCi-7NsMb2PqapHO8-oJnN7Jij-F9bzI3TNgibSOS4PvrRGxFngh3nBCO9_K1IoevO7WWF015ToUujnECbXiRA8OaPlvKajEdv2gKM9Vu2OV79CXSxHeao0QKEPPUGRBqLXU6GPhLHvwjpinSBEsytSkbT4DTpRKaql-Qtnv5KH2YKfjr2o1RKVW8vz8_69fweZwOj5RJ8eT0TbcDxBUNcdpdmB9Uf5wLxAULfTLVhIZfL9r4f8DyOQfSA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuFU8RWmAlQJysuN71Y5EQStuElpCoglbqbet9uImK7GIHQf4Dv4hfx4wfjTjArbLkg3e8Wu2MZ74Z78wAvOKS-87tJl5mReQJg1-6RlZTtCnzMyMsr9PFprPo8FR8PAvPNuB3lwtDxyo7nVgralsYipEPeI38qVrVIGuPRRwfjN9fffOogxT9ae3aaTQiMnGrH-i-Ve-ODpDXr4NgPDrZP_TaDgOe4aFcejLR1gbSCGlxXUGUCs5NLFyq48CGIcLtwNk4lsYGROlnVL-OKlpFaLgzm3Cc9xZsxmgVkx5s7o1mx5-vIzw-R_H2RVMTlXPpD8pqF9EGApToLytYNwv4l0mo7dz4Hmy1AJUNG4m6DxsufwB32l7p89VD-DVk--uS4YwOIq5YkbFp3Yu6YoiC2QgVB0Hh_IIhwGQn84W5JJ1KdB--phSmZ6jpUMG8ZTgdWtL1PPTCpPh5mZYNqSvZIm-mQVFmX-Z4m1KHi3SRV4_g9EZ2_DH08iJ3T4Al0jouDY5bI2It8ELs4YR2vpWpFX142e2xumpKdyh0eYgTas2JPuzR9l9TULnt-kFRXqj261W-Q78uRairNcKhDL1EkQWh1lKjv4Wr7MMbYp4ipbAsU5O2uQ24UCqvpYYJZcKTt9qHnY6_qtUWlVrL9tP_D7-A2yj06tPRbLINdwPEV83Jmh3oLcvv7hnio6V-3goig_Oblv0_3dkjdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Study+of+Methods+for+Estimating+the+Thickness+of+Glacial+Debris%3A+A+Case+Study+of+the+Koxkar+Glacier+in+the+Tian+Shan+Mountains&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Jun&rft.au=Qin%2C+Yan&rft.au=Han%2C+Haidong&rft.au=Zhao%2C+Qiudong&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=23&rft_id=info:doi/10.3390%2Frs16234356&rft.externalDocID=A819954261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |