Disentangled Representation Learning for Robust Radar Inter-Pulse Modulation Feature Extraction and Recognition

Modern Multi-Function Radars (MFRs) are sophisticated sensors that are capable of flexibly adapting their control parameters in transmitted pulse sequences. In complex electromagnetic environments, efficiently and accurately recognizing the inter-pulse modulations of non-cooperative radar pulse sequ...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 19; p. 3585
Main Authors Zhang, Luyao, Zhu, Mengtao, Zhang, Ziwei, Li, Yunjie
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modern Multi-Function Radars (MFRs) are sophisticated sensors that are capable of flexibly adapting their control parameters in transmitted pulse sequences. In complex electromagnetic environments, efficiently and accurately recognizing the inter-pulse modulations of non-cooperative radar pulse sequences is a key step for modern Electronic Support (ES) systems. Existing recognition methods focus more on algorithmic designs, such as neural network structure designs, to improve recognition performance. However, in open electromagnetic environments with increased flexibility in radar transmission, these methods would suffer performance degradation due to domain shifts between training and testing datasets. To address this issue, this study proposes a robust radar inter-pulse modulation feature extraction and recognition method based on disentangled representation learning. At first, inspired by the Representation Learning Theory (RLT), the received radar pulse sequences can be disentangled into three explanatory factors related to (i) modulation types, (ii) modulation parameters, and (iii) measurement characteristics, such as measurement noise. Then, an explainable radar pulse sequence disentanglement network is proposed based on auto-encoding variational Bayes. The features extracted through the proposed method can effectively represent the key latent factors related to recognition tasks and maintain performance under domain shift conditions. Experiments on both ideal and non-ideal situations demonstrate the effectiveness, robustness, and superiority of the proposed method in comparison with other methods.
AbstractList Modern Multi-Function Radars (MFRs) are sophisticated sensors that are capable of flexibly adapting their control parameters in transmitted pulse sequences. In complex electromagnetic environments, efficiently and accurately recognizing the inter-pulse modulations of non-cooperative radar pulse sequences is a key step for modern Electronic Support (ES) systems. Existing recognition methods focus more on algorithmic designs, such as neural network structure designs, to improve recognition performance. However, in open electromagnetic environments with increased flexibility in radar transmission, these methods would suffer performance degradation due to domain shifts between training and testing datasets. To address this issue, this study proposes a robust radar inter-pulse modulation feature extraction and recognition method based on disentangled representation learning. At first, inspired by the Representation Learning Theory (RLT), the received radar pulse sequences can be disentangled into three explanatory factors related to (i) modulation types, (ii) modulation parameters, and (iii) measurement characteristics, such as measurement noise. Then, an explainable radar pulse sequence disentanglement network is proposed based on auto-encoding variational Bayes. The features extracted through the proposed method can effectively represent the key latent factors related to recognition tasks and maintain performance under domain shift conditions. Experiments on both ideal and non-ideal situations demonstrate the effectiveness, robustness, and superiority of the proposed method in comparison with other methods.
Audience Academic
Author Zhu, Mengtao
Zhang, Ziwei
Li, Yunjie
Zhang, Luyao
Author_xml – sequence: 1
  givenname: Luyao
  orcidid: 0009-0003-4217-8755
  surname: Zhang
  fullname: Zhang, Luyao
– sequence: 2
  givenname: Mengtao
  orcidid: 0000-0003-0502-3386
  surname: Zhu
  fullname: Zhu, Mengtao
– sequence: 3
  givenname: Ziwei
  orcidid: 0000-0003-0750-9726
  surname: Zhang
  fullname: Zhang, Ziwei
– sequence: 4
  givenname: Yunjie
  orcidid: 0000-0003-3721-0178
  surname: Li
  fullname: Li, Yunjie
BookMark eNpNUU1r3DAQFSGFpmku_QWG3ApO9Om1jiFN2oUtLUtyFmNpbLRspK0kQ_Pvo12XttJBM495TzPzPpDzEAMS8onRGyE0vU2ZdUwL1aszcsHpireSa37-X_yeXOW8o_UIwTSVFyR-8RlDgTDt0TVbPCQ85cXH0GwQUvBhasaYmm0c5lyaLThIzToUTO3PeZ-x-R7dvF8IjwhlTtg8_C4J7AmCcJS1cQr-mH8k70aorKs_7yV5fnx4uv_Wbn58Xd_fbVorlC6t7nA1ug7lYPkgJYAUI2jgenCgGPAVrPpR91TyOoujAq2lqrfM1ql6hSAuyXrRdRF25pD8C6RXE8GbExDTZCAVb_dowPXoJFOcOSmFgsFayYb6t1R1ZXSoWteL1iHFXzPmYnZxTqG2bwRjXddRrlStulmqJqiiPozxuIN6Hb54W50afcXveiYl1bJjlfB5IdgUc044_m2TUXM01PwzVLwBB-eVBA
Cites_doi 10.1109/IJCNN.2016.7727371
10.1109/MAES.2019.2953762
10.1109/TAES.2022.3181554
10.1145/3534678.3539140
10.1109/TCOMM.2022.3170988
10.1016/j.sigpro.2020.107961
10.1109/ICASSP.2019.8683561
10.1109/TSP.2020.2983833
10.3390/rs15133415
10.1109/TRS.2023.3275210
10.1109/ATIT49449.2019.9030505
10.1109/JPROC.2012.2203089
10.1049/iet-rsn.2018.5202
10.1109/IRS.2008.4585772
10.1525/9780520411586-036
10.1109/CVPR46437.2021.00947
10.1016/j.apm.2022.12.035
10.1109/TSP.2023.3326650
10.1109/MSP.2006.1593335
10.1109/TAES.2020.2987443
10.1109/ACCESS.2020.2982654
10.1109/WDD.2012.7311299
10.1109/LCOMM.2018.2864725
10.1109/TAES.2018.2874139
10.1109/MAES.2019.2957847
10.1016/j.dsp.2022.103462
10.1109/TPAMI.1979.4766909
10.1016/j.neunet.2010.06.008
10.1109/TAES.2021.3122411
10.1049/iet-rsn.2020.0060
10.1109/MetroAeroSpace48742.2020.9160213
10.3390/rs14051252
10.1109/RADAR.2014.6875638
10.1016/j.dsp.2022.103874
10.1109/TSP.2021.3107633
10.1126/science.1127647
10.1109/TPAMI.2013.50
10.1109/TCOMM.2023.3268286
10.3390/rs14225728
10.1109/TMTT.2021.3112199
10.1109/CVPR46437.2021.00808
10.1561/2200000089
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs16193585
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_ad8ed41521d4435abcc41b6e4452920b
A814409461
10_3390_rs16193585
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c359t-96e7fd6e4bc2b44aa43fa9a29bda51a27a78f98042000d03ecc058c1c19085ea3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:16:43 EDT 2025
Fri Jul 25 11:41:41 EDT 2025
Tue May 27 03:54:45 EDT 2025
Tue Jul 01 01:33:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-96e7fd6e4bc2b44aa43fa9a29bda51a27a78f98042000d03ecc058c1c19085ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0003-4217-8755
0000-0003-0750-9726
0000-0003-0502-3386
0000-0003-3721-0178
OpenAccessLink https://doaj.org/article/ad8ed41521d4435abcc41b6e4452920b
PQID 3116660255
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_ad8ed41521d4435abcc41b6e4452920b
proquest_journals_3116660255
gale_infotracacademiconefile_A814409461
crossref_primary_10_3390_rs16193585
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Zhu (ref_12) 2022; 58
ref_13
Girin (ref_46) 2021; 15
ref_54
ref_53
ref_52
Haykin (ref_8) 2012; 100
Kauppi (ref_9) 2010; 23
ref_19
Li (ref_17) 2020; 14
ref_15
Chi (ref_11) 2022; 126
Du (ref_10) 2023; 133
Wang (ref_36) 2022; Volume 35
Xie (ref_44) 2023; 71
ref_24
ref_23
Hinton (ref_55) 2008; 9
Li (ref_16) 2020; 8
ref_29
Yang (ref_39) 2022; 19
ref_27
Hua (ref_20) 2022; 70
Haykin (ref_1) 2006; 23
Davies (ref_56) 1979; PAMI-1
Bouchacourt (ref_34) 2018; 32
Li (ref_22) 2018; 22
ref_35
Revillon (ref_57) 2019; 13
Thornton (ref_6) 2022; 58
ref_33
ref_32
Selvi (ref_7) 2020; 56
ref_31
Wei (ref_18) 2021; 69
Du (ref_14) 2021; 69
Varshney (ref_26) 2023; 1
ref_38
ref_37
Tang (ref_25) 2020; 68
ref_47
ref_45
ref_42
Gurbuz (ref_2) 2019; 34
ref_41
ref_40
Bao (ref_49) 2024; 71
Liu (ref_21) 2019; 55
Tang (ref_28) 2021; 182
ref_48
Bengio (ref_30) 2013; 35
Hinton (ref_51) 2006; 313
Lei (ref_43) 2023; 117
Charlish (ref_3) 2020; 35
ref_5
ref_4
References_xml – ident: ref_15
  doi: 10.1109/IJCNN.2016.7727371
– volume: 34
  start-page: 6
  year: 2019
  ident: ref_2
  article-title: An Overview of Cognitive Radar: Past, Present, and Future
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2019.2953762
– volume: 58
  start-page: 5798
  year: 2022
  ident: ref_6
  article-title: Universal Learning Waveform Selection Strategies for Adaptive Target Tracking
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2022.3181554
– ident: ref_5
– ident: ref_35
  doi: 10.1145/3534678.3539140
– volume: 70
  start-page: 4107
  year: 2022
  ident: ref_20
  article-title: Unsupervised Learning Discriminative MIG Detectors in Nonhomogeneous Clutter
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2022.3170988
– volume: 182
  start-page: 107961
  year: 2021
  ident: ref_28
  article-title: Information-theoretic waveform design for MIMO radar detection in range-spread clutter
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2020.107961
– ident: ref_40
  doi: 10.1109/ICASSP.2019.8683561
– volume: 68
  start-page: 2143
  year: 2020
  ident: ref_25
  article-title: Polyphase Waveform Design for MIMO Radar Space Time Adaptive Processing
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2020.2983833
– ident: ref_23
  doi: 10.3390/rs15133415
– volume: 1
  start-page: 69
  year: 2023
  ident: ref_26
  article-title: Low-PAPR OFDM Waveform Design for Radar and Communication Systems
  publication-title: IEEE Trans. Radar Syst.
  doi: 10.1109/TRS.2023.3275210
– ident: ref_54
  doi: 10.1109/ATIT49449.2019.9030505
– volume: 100
  start-page: 3102
  year: 2012
  ident: ref_8
  article-title: Cognitive Radar: Step Toward Bridging the Gap Between Neuroscience and Engineering
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2012.2203089
– volume: 13
  start-page: 128
  year: 2019
  ident: ref_57
  article-title: Radar emitters classification and clustering with a scale mixture of normal distributions
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2018.5202
– ident: ref_13
  doi: 10.1109/IRS.2008.4585772
– ident: ref_52
  doi: 10.1525/9780520411586-036
– ident: ref_4
– ident: ref_31
– ident: ref_32
  doi: 10.1109/CVPR46437.2021.00947
– volume: 117
  start-page: 549
  year: 2023
  ident: ref_43
  article-title: Feature disentanglement learning model for ocean temperature field forecast
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2022.12.035
– volume: 71
  start-page: 3968
  year: 2024
  ident: ref_49
  article-title: Bayesian Nonparametric Hidden Markov Model for Agile Radar Pulse Sequences Streaming Analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2023.3326650
– volume: 23
  start-page: 30
  year: 2006
  ident: ref_1
  article-title: Cognitive radar: A way of the future
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2006.1593335
– volume: 56
  start-page: 3904
  year: 2020
  ident: ref_7
  article-title: Reinforcement Learning for Adaptable Bandwidth Tracking Radars
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2020.2987443
– ident: ref_48
– ident: ref_41
– volume: 32
  start-page: 1
  year: 2018
  ident: ref_34
  article-title: Multi-Level Variational Autoencoder: Learning Disentangled Representations From Grouped Observations
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 8
  start-page: 57426
  year: 2020
  ident: ref_16
  article-title: Attention-Based Radar PRI Modulation Recognition with Recurrent Neural Networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982654
– ident: ref_45
– ident: ref_24
  doi: 10.1109/WDD.2012.7311299
– volume: 22
  start-page: 2286
  year: 2018
  ident: ref_22
  article-title: Toward Convolutional Neural Networks on Pulse Repetition Interval Modulation Recognition
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2018.2864725
– ident: ref_53
– volume: 55
  start-page: 1624
  year: 2019
  ident: ref_21
  article-title: Classification, Denoising, and Deinterleaving of Pulse Streams with Recurrent Neural Networks
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2018.2874139
– volume: 35
  start-page: 8
  year: 2020
  ident: ref_3
  article-title: The Development From Adaptive to Cognitive Radar Resource Management
  publication-title: IEEE Aerosp. Electron. Syst. Mag.
  doi: 10.1109/MAES.2019.2957847
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_39
  article-title: Time–Frequency Feature Enhancement of Moving Target Based on Adaptive Short-Time Sparse Representation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 126
  start-page: 103462
  year: 2022
  ident: ref_11
  article-title: A novel segmentation approach for work mode boundary detection in MFR pulse sequence
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2022.103462
– ident: ref_47
– volume: PAMI-1
  start-page: 224
  year: 1979
  ident: ref_56
  article-title: A Cluster Separation Measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– volume: 23
  start-page: 1226
  year: 2010
  ident: ref_9
  article-title: Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2010.06.008
– volume: 58
  start-page: 1733
  year: 2022
  ident: ref_12
  article-title: Model-Based Representation and Deinterleaving of Mixed Radar Pulse Sequences with Neural Machine Translation Network
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2021.3122411
– volume: 14
  start-page: 1343
  year: 2020
  ident: ref_17
  article-title: Work modes recognition and boundary identification of MFR pulse sequences with a hierarchical seq2seq LSTM
  publication-title: IET Radar Sonar Navig.
  doi: 10.1049/iet-rsn.2020.0060
– volume: Volume 35
  start-page: 38775
  year: 2022
  ident: ref_36
  article-title: Learning Latent Seasonal-Trend Representations for Time Series Forecasting
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– ident: ref_29
  doi: 10.1109/MetroAeroSpace48742.2020.9160213
– ident: ref_37
  doi: 10.3390/rs14051252
– ident: ref_27
  doi: 10.1109/RADAR.2014.6875638
– ident: ref_50
– volume: 133
  start-page: 103874
  year: 2023
  ident: ref_10
  article-title: Robust Bayesian attention belief network for radar work mode recognition
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2022.103874
– ident: ref_33
– volume: 69
  start-page: 5051
  year: 2021
  ident: ref_14
  article-title: Balanced Neural Architecture Search and Its Application in Specific Emitter Identification
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2021.3107633
– volume: 313
  start-page: 504
  year: 2006
  ident: ref_51
  article-title: Reducing the Dimensionality of Data with Neural Networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref_55
  article-title: Visualizing Data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 35
  start-page: 1798
  year: 2013
  ident: ref_30
  article-title: Representation Learning: A Review and New Perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– ident: ref_19
– volume: 71
  start-page: 3946
  year: 2023
  ident: ref_44
  article-title: Disentangled Representation Learning for RF Fingerprint Extraction Under Unknown Channel Statistics
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOMM.2023.3268286
– ident: ref_38
  doi: 10.3390/rs14225728
– volume: 69
  start-page: 5160
  year: 2021
  ident: ref_18
  article-title: Self-Attention Bi-LSTM Networks for Radar Signal Modulation Recognition
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2021.3112199
– ident: ref_42
  doi: 10.1109/CVPR46437.2021.00808
– volume: 15
  start-page: 1
  year: 2021
  ident: ref_46
  article-title: Dynamical Variational Autoencoders: A Comprehensive Review
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000089
SSID ssj0000331904
Score 2.3770828
Snippet Modern Multi-Function Radars (MFRs) are sophisticated sensors that are capable of flexibly adapting their control parameters in transmitted pulse sequences. In...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3585
SubjectTerms Artificial intelligence
Comparative analysis
Datasets
disentangled neural network
Environmental degradation
Feature extraction
generative model
inter-pulse modulation recognition
Learning
Learning theory
Machine learning
Methods
Neural networks
Noise measurement
Parameters
Pattern recognition
Performance degradation
Pulse modulation
Radar
Radar systems
Radar transmission
representation learning
Representations
robust feature extraction
Robustness
Sequences
Signal processing
Technology application
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3La9RAGB90e9BLsT5way0DCp6GJpmZ7MxJWt1ShJayWOht-Oa1CpLUbBb0v_ebyWyLB70mISTf8zffk5D3DcjG2cYzaBaSoVBwBhEii-hstGott3lN5-VVe3EjvtzK2xJw25Syyp1NzIba9y7FyE94nRJcCQF_vPvJ0taolF0tKzQekz00wUrNyN7Z8up6dR9lqTiKWCWmuaQcz_cnwwYxTkr-yb88UR7Y_y-znH3N-TOyX0AiPZ24ekAehe45eVL2lX_7_YL0n7_npqFu_SN4usrVrKWJqKNlZOqaIh6lq95uNyNdgYeB5vAfu96iO6SXvS-bu2iCgdsh0OWvcZj6HCh06bWltqjvXpKb8-XXTxesrE5gjks9Mt2GRfRtENY1VggAwSNoaLT1IGvkCyxU1Ao1FmnkK46MrKRytUNqKRmAvyKzru_Ca0LRhTvLIyIHQOgUvY4Lr5UNMcgm-qDn5N2OjOZumpBh8GSRiG0eiD0nZ4nC90-kqdb5Qj-sTVESA14FnxGFFwjjwDonaot_kbLDTWXn5EPij0m6lwgCpYUAPzRNsTKnKqWqtWjrOTnasdAUpdyYBxE6_P_tN-Rpg9hlqtk7IrNx2Ia3iD1Ge1wE7A8o59vT
  priority: 102
  providerName: ProQuest
Title Disentangled Representation Learning for Robust Radar Inter-Pulse Modulation Feature Extraction and Recognition
URI https://www.proquest.com/docview/3116660255
https://doaj.org/article/ad8ed41521d4435abcc41b6e4452920b
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA61PehFaq24WpdACz0N3cmP2eS4bXct4payttBbeJkkVSgzZXYW9L_3JZNqPYgXTwvDMoTvJfm-N-8XIUcMJKstcwWwqSxwU_ACAoQiINloVVlu05jO5WV1cSM-3crbJ6O-Yk7Y0B54AO4EnPIusYwTSO1g61qUtvIiRgzZxMbbFznviTOV7mCOW2sihn6kHP36k26N2iYG_eQfDJQa9f_tOk4cs9glL7M4pLNhUa_Ilm_2yPM8p_zrj9ekPf-WioWau3vv6CplsebioYbmVql3FHUoXbV2s-7pChx0NH32K642SIN02bo8sYtG-bfpPJ1_77uhvoFCE1-bc4raZp_cLObXZxdFHplQ1FzqvtCVnwaH6NiaWSEABA-ggWnrQJZoD5iqoBWeVMTITTgacCJVXdaIlpIe-Buy3bSNf0soUndteUDFACiZgtNh6rSyPnjJgvN6RA4fYTQPQ2cMgx5FBNv8BntETiPCv_4Ru1mnB2hjk21s_mXjETmO9jHxzEVAIJcO4EJj9yozUzFErUVVjsjBowlNPoxrw8sYG43O07v_sZr35AVDZTNk9B2Q7b7b-A-oTHo7Js_U4uOY7MzOl5-_4O_p_PJqNU5b8yfYV-b_
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWCrUEiFPUxHay8QGhQrtsabdCq1bqzdixvUVCSclmBf1T_Y2dcZxWPcCt1ziy7PFnz2fPi5B3TOesMswmmo3zBEDBE-21TzwoG1kWhptQpnN2VExPxLfT_HSNXA6xMOhWOZyJ4aC2TYVv5Ns8QwMXMuBP578TrBqF1tWhhEYPiwN38QeubMuP-7uwvu8Zm-wdf5kmsapAUvFcdoks3NjbwglTMSOE1oJ7LTWTxuo8gyHrcellCWCG08KmHOaY5mWVVaA6y9xpDv3eI_cFB02OkemTr9dvOikHQKeiz4IK7el2uwRGhabG_JbeC-UB_qUEgmabPCIPIyWlOz2GHpM1Vz8hG7E6-tnFU9Ls_gwhSvXil7N0HnxnY8hSTWOC1gUF9kvnjVktOzrXVrc0PDYm31egfOmssbFOGEXSuWod3fvbtX1UBdU1dhs9mZr6GTm5E5E-J-t1U7sXhAJhqAz3wFM0EDVvpR9bWRrnXc68dXJE3g5iVOd9Pg4F9xgUtroR9oh8Rglf_4E5tMOHpl2ouCWVtqWzgb9YAaRRm6oSmYFZoC2apWZEPuD6KNzpKBAdAxZgoJgzS-2UaBiXoshGZHNYQhWPgKW6AezL_zdvkY3p8exQHe4fHbwiDxiwpt5bcJOsd-3KvQbW05k3AWqU_LhrbF8Bxe0Xyg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE91oYAlQJyiTey8fECoZXfVUrparajUm7Fje0FCSclmBf1r_DrGjtOKA9x6TSLLGX-e-ex5AbymMqOVojqStMgiBAWLpJU2smhseJkrpnybztNFfnSWfjzPznfg95AL48IqB53oFbVuKndHPmGJc3A5BjyxISxiOZ2_v_gRuQ5SztM6tNPoIXJiLn_i8W3z7niKa_2G0vns84ejKHQYiCqW8S7iuSmszk2qKqrSVMqUWckl5UrLLMHpy6K0vERgo-bQMcP_jbOySio0o2VmJMNxb8Fu4U5FI9g9nC2Wq6sbnpghvOO0r4nKGI8n7Qb5lXM8Zn9ZQd8s4F8mwdu5-X24FwgqOegR9QB2TP0Q7oRe6V8vH0Ez_eYTlur1d6PJykfShgSmmoRyrWuCXJisGrXddGQltWyJv3qMlls0xeS00aFrGHEUdNsaMvvVtX2OBZG1GzbENTX1Yzi7EaE-gVHd1GYPCNKHSjGLrEUibbOa20LzUhlrMmq14WN4NYhRXPTVOQSeapywxbWwx3DoJHz1hauo7R807VqEDSqkLo32bEanSCGlqqo0UfgXzjNNYzWGt259hNv3TiAypC_gRF0FLXFQOjc5T_NkDPvDEoqgEDbiGr5P___6JdxGXItPx4uTZ3CXIoXqQwf3YdS1W_McKVCnXgSsEfhy0_D-AyRMHVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangled+Representation+Learning+for+Robust+Radar+Inter-Pulse+Modulation+Feature+Extraction+and+Recognition&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Luyao+Zhang&rft.au=Mengtao+Zhu&rft.au=Ziwei+Zhang&rft.au=Yunjie+Li&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=19&rft_id=info:doi/10.3390%2Frs16193585&rft.externalDocID=A814409461
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon