Disentangled Representation Learning for Robust Radar Inter-Pulse Modulation Feature Extraction and Recognition
Modern Multi-Function Radars (MFRs) are sophisticated sensors that are capable of flexibly adapting their control parameters in transmitted pulse sequences. In complex electromagnetic environments, efficiently and accurately recognizing the inter-pulse modulations of non-cooperative radar pulse sequ...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 19; p. 3585 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modern Multi-Function Radars (MFRs) are sophisticated sensors that are capable of flexibly adapting their control parameters in transmitted pulse sequences. In complex electromagnetic environments, efficiently and accurately recognizing the inter-pulse modulations of non-cooperative radar pulse sequences is a key step for modern Electronic Support (ES) systems. Existing recognition methods focus more on algorithmic designs, such as neural network structure designs, to improve recognition performance. However, in open electromagnetic environments with increased flexibility in radar transmission, these methods would suffer performance degradation due to domain shifts between training and testing datasets. To address this issue, this study proposes a robust radar inter-pulse modulation feature extraction and recognition method based on disentangled representation learning. At first, inspired by the Representation Learning Theory (RLT), the received radar pulse sequences can be disentangled into three explanatory factors related to (i) modulation types, (ii) modulation parameters, and (iii) measurement characteristics, such as measurement noise. Then, an explainable radar pulse sequence disentanglement network is proposed based on auto-encoding variational Bayes. The features extracted through the proposed method can effectively represent the key latent factors related to recognition tasks and maintain performance under domain shift conditions. Experiments on both ideal and non-ideal situations demonstrate the effectiveness, robustness, and superiority of the proposed method in comparison with other methods. |
---|---|
AbstractList | Modern Multi-Function Radars (MFRs) are sophisticated sensors that are capable of flexibly adapting their control parameters in transmitted pulse sequences. In complex electromagnetic environments, efficiently and accurately recognizing the inter-pulse modulations of non-cooperative radar pulse sequences is a key step for modern Electronic Support (ES) systems. Existing recognition methods focus more on algorithmic designs, such as neural network structure designs, to improve recognition performance. However, in open electromagnetic environments with increased flexibility in radar transmission, these methods would suffer performance degradation due to domain shifts between training and testing datasets. To address this issue, this study proposes a robust radar inter-pulse modulation feature extraction and recognition method based on disentangled representation learning. At first, inspired by the Representation Learning Theory (RLT), the received radar pulse sequences can be disentangled into three explanatory factors related to (i) modulation types, (ii) modulation parameters, and (iii) measurement characteristics, such as measurement noise. Then, an explainable radar pulse sequence disentanglement network is proposed based on auto-encoding variational Bayes. The features extracted through the proposed method can effectively represent the key latent factors related to recognition tasks and maintain performance under domain shift conditions. Experiments on both ideal and non-ideal situations demonstrate the effectiveness, robustness, and superiority of the proposed method in comparison with other methods. |
Audience | Academic |
Author | Zhu, Mengtao Zhang, Ziwei Li, Yunjie Zhang, Luyao |
Author_xml | – sequence: 1 givenname: Luyao orcidid: 0009-0003-4217-8755 surname: Zhang fullname: Zhang, Luyao – sequence: 2 givenname: Mengtao orcidid: 0000-0003-0502-3386 surname: Zhu fullname: Zhu, Mengtao – sequence: 3 givenname: Ziwei orcidid: 0000-0003-0750-9726 surname: Zhang fullname: Zhang, Ziwei – sequence: 4 givenname: Yunjie orcidid: 0000-0003-3721-0178 surname: Li fullname: Li, Yunjie |
BookMark | eNpNUU1r3DAQFSGFpmku_QWG3ApO9Om1jiFN2oUtLUtyFmNpbLRspK0kQ_Pvo12XttJBM495TzPzPpDzEAMS8onRGyE0vU2ZdUwL1aszcsHpireSa37-X_yeXOW8o_UIwTSVFyR-8RlDgTDt0TVbPCQ85cXH0GwQUvBhasaYmm0c5lyaLThIzToUTO3PeZ-x-R7dvF8IjwhlTtg8_C4J7AmCcJS1cQr-mH8k70aorKs_7yV5fnx4uv_Wbn58Xd_fbVorlC6t7nA1ug7lYPkgJYAUI2jgenCgGPAVrPpR91TyOoujAq2lqrfM1ql6hSAuyXrRdRF25pD8C6RXE8GbExDTZCAVb_dowPXoJFOcOSmFgsFayYb6t1R1ZXSoWteL1iHFXzPmYnZxTqG2bwRjXddRrlStulmqJqiiPozxuIN6Hb54W50afcXveiYl1bJjlfB5IdgUc044_m2TUXM01PwzVLwBB-eVBA |
Cites_doi | 10.1109/IJCNN.2016.7727371 10.1109/MAES.2019.2953762 10.1109/TAES.2022.3181554 10.1145/3534678.3539140 10.1109/TCOMM.2022.3170988 10.1016/j.sigpro.2020.107961 10.1109/ICASSP.2019.8683561 10.1109/TSP.2020.2983833 10.3390/rs15133415 10.1109/TRS.2023.3275210 10.1109/ATIT49449.2019.9030505 10.1109/JPROC.2012.2203089 10.1049/iet-rsn.2018.5202 10.1109/IRS.2008.4585772 10.1525/9780520411586-036 10.1109/CVPR46437.2021.00947 10.1016/j.apm.2022.12.035 10.1109/TSP.2023.3326650 10.1109/MSP.2006.1593335 10.1109/TAES.2020.2987443 10.1109/ACCESS.2020.2982654 10.1109/WDD.2012.7311299 10.1109/LCOMM.2018.2864725 10.1109/TAES.2018.2874139 10.1109/MAES.2019.2957847 10.1016/j.dsp.2022.103462 10.1109/TPAMI.1979.4766909 10.1016/j.neunet.2010.06.008 10.1109/TAES.2021.3122411 10.1049/iet-rsn.2020.0060 10.1109/MetroAeroSpace48742.2020.9160213 10.3390/rs14051252 10.1109/RADAR.2014.6875638 10.1016/j.dsp.2022.103874 10.1109/TSP.2021.3107633 10.1126/science.1127647 10.1109/TPAMI.2013.50 10.1109/TCOMM.2023.3268286 10.3390/rs14225728 10.1109/TMTT.2021.3112199 10.1109/CVPR46437.2021.00808 10.1561/2200000089 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs16193585 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_ad8ed41521d4435abcc41b6e4452920b A814409461 10_3390_rs16193585 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c359t-96e7fd6e4bc2b44aa43fa9a29bda51a27a78f98042000d03ecc058c1c19085ea3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:16:43 EDT 2025 Fri Jul 25 11:41:41 EDT 2025 Tue May 27 03:54:45 EDT 2025 Tue Jul 01 01:33:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-96e7fd6e4bc2b44aa43fa9a29bda51a27a78f98042000d03ecc058c1c19085ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0003-4217-8755 0000-0003-0750-9726 0000-0003-0502-3386 0000-0003-3721-0178 |
OpenAccessLink | https://doaj.org/article/ad8ed41521d4435abcc41b6e4452920b |
PQID | 3116660255 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ad8ed41521d4435abcc41b6e4452920b proquest_journals_3116660255 gale_infotracacademiconefile_A814409461 crossref_primary_10_3390_rs16193585 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Zhu (ref_12) 2022; 58 ref_13 Girin (ref_46) 2021; 15 ref_54 ref_53 ref_52 Haykin (ref_8) 2012; 100 Kauppi (ref_9) 2010; 23 ref_19 Li (ref_17) 2020; 14 ref_15 Chi (ref_11) 2022; 126 Du (ref_10) 2023; 133 Wang (ref_36) 2022; Volume 35 Xie (ref_44) 2023; 71 ref_24 ref_23 Hinton (ref_55) 2008; 9 Li (ref_16) 2020; 8 ref_29 Yang (ref_39) 2022; 19 ref_27 Hua (ref_20) 2022; 70 Haykin (ref_1) 2006; 23 Davies (ref_56) 1979; PAMI-1 Bouchacourt (ref_34) 2018; 32 Li (ref_22) 2018; 22 ref_35 Revillon (ref_57) 2019; 13 Thornton (ref_6) 2022; 58 ref_33 ref_32 Selvi (ref_7) 2020; 56 ref_31 Wei (ref_18) 2021; 69 Du (ref_14) 2021; 69 Varshney (ref_26) 2023; 1 ref_38 ref_37 Tang (ref_25) 2020; 68 ref_47 ref_45 ref_42 Gurbuz (ref_2) 2019; 34 ref_41 ref_40 Bao (ref_49) 2024; 71 Liu (ref_21) 2019; 55 Tang (ref_28) 2021; 182 ref_48 Bengio (ref_30) 2013; 35 Hinton (ref_51) 2006; 313 Lei (ref_43) 2023; 117 Charlish (ref_3) 2020; 35 ref_5 ref_4 |
References_xml | – ident: ref_15 doi: 10.1109/IJCNN.2016.7727371 – volume: 34 start-page: 6 year: 2019 ident: ref_2 article-title: An Overview of Cognitive Radar: Past, Present, and Future publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2019.2953762 – volume: 58 start-page: 5798 year: 2022 ident: ref_6 article-title: Universal Learning Waveform Selection Strategies for Adaptive Target Tracking publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2022.3181554 – ident: ref_5 – ident: ref_35 doi: 10.1145/3534678.3539140 – volume: 70 start-page: 4107 year: 2022 ident: ref_20 article-title: Unsupervised Learning Discriminative MIG Detectors in Nonhomogeneous Clutter publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2022.3170988 – volume: 182 start-page: 107961 year: 2021 ident: ref_28 article-title: Information-theoretic waveform design for MIMO radar detection in range-spread clutter publication-title: Signal Process. doi: 10.1016/j.sigpro.2020.107961 – ident: ref_40 doi: 10.1109/ICASSP.2019.8683561 – volume: 68 start-page: 2143 year: 2020 ident: ref_25 article-title: Polyphase Waveform Design for MIMO Radar Space Time Adaptive Processing publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2020.2983833 – ident: ref_23 doi: 10.3390/rs15133415 – volume: 1 start-page: 69 year: 2023 ident: ref_26 article-title: Low-PAPR OFDM Waveform Design for Radar and Communication Systems publication-title: IEEE Trans. Radar Syst. doi: 10.1109/TRS.2023.3275210 – ident: ref_54 doi: 10.1109/ATIT49449.2019.9030505 – volume: 100 start-page: 3102 year: 2012 ident: ref_8 article-title: Cognitive Radar: Step Toward Bridging the Gap Between Neuroscience and Engineering publication-title: Proc. IEEE doi: 10.1109/JPROC.2012.2203089 – volume: 13 start-page: 128 year: 2019 ident: ref_57 article-title: Radar emitters classification and clustering with a scale mixture of normal distributions publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2018.5202 – ident: ref_13 doi: 10.1109/IRS.2008.4585772 – ident: ref_52 doi: 10.1525/9780520411586-036 – ident: ref_4 – ident: ref_31 – ident: ref_32 doi: 10.1109/CVPR46437.2021.00947 – volume: 117 start-page: 549 year: 2023 ident: ref_43 article-title: Feature disentanglement learning model for ocean temperature field forecast publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2022.12.035 – volume: 71 start-page: 3968 year: 2024 ident: ref_49 article-title: Bayesian Nonparametric Hidden Markov Model for Agile Radar Pulse Sequences Streaming Analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2023.3326650 – volume: 23 start-page: 30 year: 2006 ident: ref_1 article-title: Cognitive radar: A way of the future publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2006.1593335 – volume: 56 start-page: 3904 year: 2020 ident: ref_7 article-title: Reinforcement Learning for Adaptable Bandwidth Tracking Radars publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2020.2987443 – ident: ref_48 – ident: ref_41 – volume: 32 start-page: 1 year: 2018 ident: ref_34 article-title: Multi-Level Variational Autoencoder: Learning Disentangled Representations From Grouped Observations publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – volume: 8 start-page: 57426 year: 2020 ident: ref_16 article-title: Attention-Based Radar PRI Modulation Recognition with Recurrent Neural Networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982654 – ident: ref_45 – ident: ref_24 doi: 10.1109/WDD.2012.7311299 – volume: 22 start-page: 2286 year: 2018 ident: ref_22 article-title: Toward Convolutional Neural Networks on Pulse Repetition Interval Modulation Recognition publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2018.2864725 – ident: ref_53 – volume: 55 start-page: 1624 year: 2019 ident: ref_21 article-title: Classification, Denoising, and Deinterleaving of Pulse Streams with Recurrent Neural Networks publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2018.2874139 – volume: 35 start-page: 8 year: 2020 ident: ref_3 article-title: The Development From Adaptive to Cognitive Radar Resource Management publication-title: IEEE Aerosp. Electron. Syst. Mag. doi: 10.1109/MAES.2019.2957847 – volume: 19 start-page: 1 year: 2022 ident: ref_39 article-title: Time–Frequency Feature Enhancement of Moving Target Based on Adaptive Short-Time Sparse Representation publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 126 start-page: 103462 year: 2022 ident: ref_11 article-title: A novel segmentation approach for work mode boundary detection in MFR pulse sequence publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2022.103462 – ident: ref_47 – volume: PAMI-1 start-page: 224 year: 1979 ident: ref_56 article-title: A Cluster Separation Measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – volume: 23 start-page: 1226 year: 2010 ident: ref_9 article-title: Hierarchical classification of dynamically varying radar pulse repetition interval modulation patterns publication-title: Neural Netw. doi: 10.1016/j.neunet.2010.06.008 – volume: 58 start-page: 1733 year: 2022 ident: ref_12 article-title: Model-Based Representation and Deinterleaving of Mixed Radar Pulse Sequences with Neural Machine Translation Network publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2021.3122411 – volume: 14 start-page: 1343 year: 2020 ident: ref_17 article-title: Work modes recognition and boundary identification of MFR pulse sequences with a hierarchical seq2seq LSTM publication-title: IET Radar Sonar Navig. doi: 10.1049/iet-rsn.2020.0060 – volume: Volume 35 start-page: 38775 year: 2022 ident: ref_36 article-title: Learning Latent Seasonal-Trend Representations for Time Series Forecasting publication-title: Proceedings of the Advances in Neural Information Processing Systems – ident: ref_29 doi: 10.1109/MetroAeroSpace48742.2020.9160213 – ident: ref_37 doi: 10.3390/rs14051252 – ident: ref_27 doi: 10.1109/RADAR.2014.6875638 – ident: ref_50 – volume: 133 start-page: 103874 year: 2023 ident: ref_10 article-title: Robust Bayesian attention belief network for radar work mode recognition publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2022.103874 – ident: ref_33 – volume: 69 start-page: 5051 year: 2021 ident: ref_14 article-title: Balanced Neural Architecture Search and Its Application in Specific Emitter Identification publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2021.3107633 – volume: 313 start-page: 504 year: 2006 ident: ref_51 article-title: Reducing the Dimensionality of Data with Neural Networks publication-title: Science doi: 10.1126/science.1127647 – volume: 9 start-page: 2579 year: 2008 ident: ref_55 article-title: Visualizing Data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 35 start-page: 1798 year: 2013 ident: ref_30 article-title: Representation Learning: A Review and New Perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – ident: ref_19 – volume: 71 start-page: 3946 year: 2023 ident: ref_44 article-title: Disentangled Representation Learning for RF Fingerprint Extraction Under Unknown Channel Statistics publication-title: IEEE Trans. Commun. doi: 10.1109/TCOMM.2023.3268286 – ident: ref_38 doi: 10.3390/rs14225728 – volume: 69 start-page: 5160 year: 2021 ident: ref_18 article-title: Self-Attention Bi-LSTM Networks for Radar Signal Modulation Recognition publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2021.3112199 – ident: ref_42 doi: 10.1109/CVPR46437.2021.00808 – volume: 15 start-page: 1 year: 2021 ident: ref_46 article-title: Dynamical Variational Autoencoders: A Comprehensive Review publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000089 |
SSID | ssj0000331904 |
Score | 2.3770828 |
Snippet | Modern Multi-Function Radars (MFRs) are sophisticated sensors that are capable of flexibly adapting their control parameters in transmitted pulse sequences. In... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3585 |
SubjectTerms | Artificial intelligence Comparative analysis Datasets disentangled neural network Environmental degradation Feature extraction generative model inter-pulse modulation recognition Learning Learning theory Machine learning Methods Neural networks Noise measurement Parameters Pattern recognition Performance degradation Pulse modulation Radar Radar systems Radar transmission representation learning Representations robust feature extraction Robustness Sequences Signal processing Technology application Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3La9RAGB90e9BLsT5way0DCp6GJpmZ7MxJWt1ShJayWOht-Oa1CpLUbBb0v_ebyWyLB70mISTf8zffk5D3DcjG2cYzaBaSoVBwBhEii-hstGott3lN5-VVe3EjvtzK2xJw25Syyp1NzIba9y7FyE94nRJcCQF_vPvJ0taolF0tKzQekz00wUrNyN7Z8up6dR9lqTiKWCWmuaQcz_cnwwYxTkr-yb88UR7Y_y-znH3N-TOyX0AiPZ24ekAehe45eVL2lX_7_YL0n7_npqFu_SN4usrVrKWJqKNlZOqaIh6lq95uNyNdgYeB5vAfu96iO6SXvS-bu2iCgdsh0OWvcZj6HCh06bWltqjvXpKb8-XXTxesrE5gjks9Mt2GRfRtENY1VggAwSNoaLT1IGvkCyxU1Ao1FmnkK46MrKRytUNqKRmAvyKzru_Ca0LRhTvLIyIHQOgUvY4Lr5UNMcgm-qDn5N2OjOZumpBh8GSRiG0eiD0nZ4nC90-kqdb5Qj-sTVESA14FnxGFFwjjwDonaot_kbLDTWXn5EPij0m6lwgCpYUAPzRNsTKnKqWqtWjrOTnasdAUpdyYBxE6_P_tN-Rpg9hlqtk7IrNx2Ia3iD1Ge1wE7A8o59vT priority: 102 providerName: ProQuest |
Title | Disentangled Representation Learning for Robust Radar Inter-Pulse Modulation Feature Extraction and Recognition |
URI | https://www.proquest.com/docview/3116660255 https://doaj.org/article/ad8ed41521d4435abcc41b6e4452920b |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxQxFA61PehFaq24WpdACz0N3cmP2eS4bXct4payttBbeJkkVSgzZXYW9L_3JZNqPYgXTwvDMoTvJfm-N-8XIUcMJKstcwWwqSxwU_ACAoQiINloVVlu05jO5WV1cSM-3crbJ6O-Yk7Y0B54AO4EnPIusYwTSO1g61qUtvIiRgzZxMbbFznviTOV7mCOW2sihn6kHP36k26N2iYG_eQfDJQa9f_tOk4cs9glL7M4pLNhUa_Ilm_2yPM8p_zrj9ekPf-WioWau3vv6CplsebioYbmVql3FHUoXbV2s-7pChx0NH32K642SIN02bo8sYtG-bfpPJ1_77uhvoFCE1-bc4raZp_cLObXZxdFHplQ1FzqvtCVnwaH6NiaWSEABA-ggWnrQJZoD5iqoBWeVMTITTgacCJVXdaIlpIe-Buy3bSNf0soUndteUDFACiZgtNh6rSyPnjJgvN6RA4fYTQPQ2cMgx5FBNv8BntETiPCv_4Ru1mnB2hjk21s_mXjETmO9jHxzEVAIJcO4EJj9yozUzFErUVVjsjBowlNPoxrw8sYG43O07v_sZr35AVDZTNk9B2Q7b7b-A-oTHo7Js_U4uOY7MzOl5-_4O_p_PJqNU5b8yfYV-b_ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4ikWCrUEiFPUxHay8QGhQrtsabdCq1bqzdixvUVCSclmBf1T_Y2dcZxWPcCt1ziy7PFnz2fPi5B3TOesMswmmo3zBEDBE-21TzwoG1kWhptQpnN2VExPxLfT_HSNXA6xMOhWOZyJ4aC2TYVv5Ns8QwMXMuBP578TrBqF1tWhhEYPiwN38QeubMuP-7uwvu8Zm-wdf5kmsapAUvFcdoks3NjbwglTMSOE1oJ7LTWTxuo8gyHrcellCWCG08KmHOaY5mWVVaA6y9xpDv3eI_cFB02OkemTr9dvOikHQKeiz4IK7el2uwRGhabG_JbeC-UB_qUEgmabPCIPIyWlOz2GHpM1Vz8hG7E6-tnFU9Ls_gwhSvXil7N0HnxnY8hSTWOC1gUF9kvnjVktOzrXVrc0PDYm31egfOmssbFOGEXSuWod3fvbtX1UBdU1dhs9mZr6GTm5E5E-J-t1U7sXhAJhqAz3wFM0EDVvpR9bWRrnXc68dXJE3g5iVOd9Pg4F9xgUtroR9oh8Rglf_4E5tMOHpl2ouCWVtqWzgb9YAaRRm6oSmYFZoC2apWZEPuD6KNzpKBAdAxZgoJgzS-2UaBiXoshGZHNYQhWPgKW6AezL_zdvkY3p8exQHe4fHbwiDxiwpt5bcJOsd-3KvQbW05k3AWqU_LhrbF8Bxe0Xyg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE91oYAlQJyiTey8fECoZXfVUrparajUm7Fje0FCSclmBf1r_DrGjtOKA9x6TSLLGX-e-ex5AbymMqOVojqStMgiBAWLpJU2smhseJkrpnybztNFfnSWfjzPznfg95AL48IqB53oFbVuKndHPmGJc3A5BjyxISxiOZ2_v_gRuQ5SztM6tNPoIXJiLn_i8W3z7niKa_2G0vns84ejKHQYiCqW8S7iuSmszk2qKqrSVMqUWckl5UrLLMHpy6K0vERgo-bQMcP_jbOySio0o2VmJMNxb8Fu4U5FI9g9nC2Wq6sbnpghvOO0r4nKGI8n7Qb5lXM8Zn9ZQd8s4F8mwdu5-X24FwgqOegR9QB2TP0Q7oRe6V8vH0Ez_eYTlur1d6PJykfShgSmmoRyrWuCXJisGrXddGQltWyJv3qMlls0xeS00aFrGHEUdNsaMvvVtX2OBZG1GzbENTX1Yzi7EaE-gVHd1GYPCNKHSjGLrEUibbOa20LzUhlrMmq14WN4NYhRXPTVOQSeapywxbWwx3DoJHz1hauo7R807VqEDSqkLo32bEanSCGlqqo0UfgXzjNNYzWGt259hNv3TiAypC_gRF0FLXFQOjc5T_NkDPvDEoqgEDbiGr5P___6JdxGXItPx4uTZ3CXIoXqQwf3YdS1W_McKVCnXgSsEfhy0_D-AyRMHVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disentangled+Representation+Learning+for+Robust+Radar+Inter-Pulse+Modulation+Feature+Extraction+and+Recognition&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Luyao+Zhang&rft.au=Mengtao+Zhu&rft.au=Ziwei+Zhang&rft.au=Yunjie+Li&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=19&rft_id=info:doi/10.3390%2Frs16193585&rft.externalDocID=A814409461 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |