Flexible and Comprehensive Framework of Element Selection Based on Nonconvex Sparse Optimization

We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element selection is a fundamental technique for reducing dimensionality of high-dimensional data by simple operations without the use of scalar multipli...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; p. 1
Main Authors Kawamura, Taiga, Ueno, Natsuki, Ono, Nobutaka
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element selection is a fundamental technique for reducing dimensionality of high-dimensional data by simple operations without the use of scalar multiplication. Restorability is one of the commonly used criteria in element selection, and the element selection problem based on restorability is formulated as a minimization problem of a loss function representing the restoration error between the original data and the restored data. However, conventional methods are applicable only to a limited class of loss functions such as ℓ 2 norm loss. To enable the use of a wide variety of criteria, we reformulate the element selection problem as a nonconvex sparse optimization problem and derive the optimization algorithm based on Douglas-Rachford splitting method. The proposed algorithm is applicable to any loss function as long as its proximal operator is available, e.g., ℓ 1 norm loss and ℓ ∞ norm loss as well as ℓ 2 norm loss. We conducted numerical experiments using artificial and real data, and their results indicate that the above loss functions are successfully minimized by the proposed algorithm.
AbstractList We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element selection is a fundamental technique for reducing dimensionality of high-dimensional data by simple operations without the use of scalar multiplication. Restorability is one of the commonly used criteria in element selection, and the element selection problem based on restorability is formulated as a minimization problem of a loss function representing the restoration error between the original data and the restored data. However, conventional methods are applicable only to a limited class of loss functions such as [Formula Omitted] norm loss. To enable the use of a wide variety of criteria, we reformulate the element selection problem as a nonconvex sparse optimization problem and derive the optimization algorithm based on Douglas–Rachford splitting method. The proposed algorithm is applicable to any loss function as long as its proximal operator is available, e.g., [Formula Omitted] norm loss and [Formula Omitted] norm loss as well as [Formula Omitted] norm loss. We conducted numerical experiments using artificial and real data, and their results indicate that the above loss functions are successfully minimized by the proposed algorithm.
We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element selection is a fundamental technique for reducing dimensionality of high-dimensional data by simple operations without the use of scalar multiplication. Restorability is one of the commonly used criteria in element selection, and the element selection problem based on restorability is formulated as a minimization problem of a loss function representing the restoration error between the original data and the restored data. However, conventional methods are applicable only to a limited class of loss functions such as ℓ 2 norm loss. To enable the use of a wide variety of criteria, we reformulate the element selection problem as a nonconvex sparse optimization problem and derive the optimization algorithm based on Douglas-Rachford splitting method. The proposed algorithm is applicable to any loss function as long as its proximal operator is available, e.g., ℓ 1 norm loss and ℓ ∞ norm loss as well as ℓ 2 norm loss. We conducted numerical experiments using artificial and real data, and their results indicate that the above loss functions are successfully minimized by the proposed algorithm.
We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element selection is a fundamental technique for reducing dimensionality of high-dimensional data by simple operations without the use of scalar multiplication. Restorability is one of the commonly used criteria in element selection, and the element selection problem based on restorability is formulated as a minimization problem of a loss function representing the restoration error between the original data and the restored data. However, conventional methods are applicable only to a limited class of loss functions such as <tex-math notation="LaTeX">$\ell _{2}$ </tex-math> norm loss. To enable the use of a wide variety of criteria, we reformulate the element selection problem as a nonconvex sparse optimization problem and derive the optimization algorithm based on Douglas-Rachford splitting method. The proposed algorithm is applicable to any loss function as long as its proximal operator is available, e.g., <tex-math notation="LaTeX">$\ell _{1}$ </tex-math> norm loss and <tex-math notation="LaTeX">$\ell _{\infty} $ </tex-math> norm loss as well as <tex-math notation="LaTeX">$\ell _{2}$ </tex-math> norm loss. We conducted numerical experiments using artificial and real data, and their results indicate that the above loss functions are successfully minimized by the proposed algorithm.
Author Ueno, Natsuki
Ono, Nobutaka
Kawamura, Taiga
Author_xml – sequence: 1
  givenname: Taiga
  orcidid: 0009-0008-3584-7822
  surname: Kawamura
  fullname: Kawamura, Taiga
  organization: Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
– sequence: 2
  givenname: Natsuki
  surname: Ueno
  fullname: Ueno, Natsuki
  organization: Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
– sequence: 3
  givenname: Nobutaka
  orcidid: 0000-0003-4242-2773
  surname: Ono
  fullname: Ono, Nobutaka
  organization: Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan
BookMark eNpNUcFu1DAUtFCRKKVfAAdLnHex_Rw7PpZoFypV9LBwNk7yDF4SO9hpKXw9WVKhvssbjWbmPWlekrOYIhLymrMt58y8u2qa3eGwFUzILYDiRvJn5FxwZTZQgTp7gl-Qy1KObJl6oSp9Tr7uB3wI7YDUxZ42aZwyfsdYwj3SfXYj_kr5B02e7gYcMc70gAN2c0iRvncFe7qATyl2Kd7jAz1MLhekt9McxvDHnWSvyHPvhoKXj_uCfNnvPjcfNze3H66bq5tNB5WZN0YAqha9qUQtOe8cQ8e9kq0zHnWl-9Z4jZqh7Az4Gh1jCBLR9UZp4BwuyPWa2yd3tFMOo8u_bXLB_iNS_mZdnkM3oOW1gdYoVjOjpcS-7RUI7Z2stYG-c0vW2zVryunnHZbZHtNdjsv7VhihhNIK9KKCVdXlVEpG__8qZ_bUjF2bsadm7GMzi-vN6gqI-MQhuQFg8Be0qoxC
CODEN IAECCG
Cites_doi 10.2307/1993056
10.1109/TCI.2016.2575740
10.1007/BF02288367
10.1109/CISS.2014.6814074
10.1007/BF01581204
10.1109/JSTSP.2020.3042071
10.1007/978-3-319-22482-4_28
10.1109/focs.2008.82
10.1109/ACCESS.2018.2886471
10.1109/TSP.2022.3156012
10.1109/TIT.2014.2345260
10.1109/JSEN.2021.3073978
10.1109/TIP.2017.2745200
10.23919/EUSIPCO54536.2021.9616073
10.1109/cvpr.2005.309
10.1109/ICASSP49357.2023.10095559
10.1145/1857907.1857911
10.1007/s00041-008-9045-x
10.1109/TSP.2017.2711501
10.1016/j.procs.2020.01.079
10.1002/wics.101
10.1137/18M1163993
10.1177/10943420020160030901
10.1561/2400000003
10.1109/TSP.2008.2007095
10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
10.1080/14786440109462720
10.1109/TSP.2018.2841887
10.1109/TASLP.2021.3059264
10.1007/978-1-4419-9569-8_10
10.1109/TSP.2018.2868269
10.1214/aoms/1177703732
10.1088/0266-5611/28/11/115010
10.1109/ICASSP.2014.6853752
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3361941
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_1893b960809744edbd6327fa48793dca
10_1109_ACCESS_2024_3361941
10419330
Genre orig-research
GrantInformation_xml – fundername: JST CREST
  grantid: JPMJCR19A3
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IFIPE
IPLJI
JAVBF
KQ8
M~E
O9-
OCL
OK1
RIA
RIE
RIG
RNS
4.4
AAYXX
CITATION
EJD
M43
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-923e6bef9528411ca0ea1f64ba9fe757db9f7e70e4c93f8ea00e34eead9673113
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Tue Oct 22 14:58:06 EDT 2024
Thu Oct 10 19:27:36 EDT 2024
Fri Aug 23 01:01:53 EDT 2024
Wed Jun 26 19:40:09 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-923e6bef9528411ca0ea1f64ba9fe757db9f7e70e4c93f8ea00e34eead9673113
ORCID 0009-0008-3584-7822
0000-0003-4242-2773
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10419330
PQID 2926267637
PQPubID 4845423
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_1893b960809744edbd6327fa48793dca
proquest_journals_2926267637
crossref_primary_10_1109_ACCESS_2024_3361941
ieee_primary_10419330
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Krause (ref7) 2008; 9
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Xiao (ref27) 2017
ref28
ref29
ref8
ref9
ref4
ref3
ref6
ref5
Cunningham (ref1) 2015; 16
References_xml – ident: ref25
  doi: 10.2307/1993056
– ident: ref20
  doi: 10.1109/TCI.2016.2575740
– ident: ref5
  doi: 10.1007/BF02288367
– ident: ref16
  doi: 10.1109/CISS.2014.6814074
– ident: ref26
  doi: 10.1007/BF01581204
– ident: ref22
  doi: 10.1109/JSTSP.2020.3042071
– ident: ref23
  doi: 10.1007/978-3-319-22482-4_28
– ident: ref15
  doi: 10.1109/focs.2008.82
– ident: ref30
  doi: 10.1109/ACCESS.2018.2886471
– ident: ref9
  doi: 10.1109/TSP.2022.3156012
– ident: ref17
  doi: 10.1109/TIT.2014.2345260
– ident: ref8
  doi: 10.1109/JSEN.2021.3073978
– ident: ref32
  doi: 10.1109/TIP.2017.2745200
– ident: ref6
  doi: 10.23919/EUSIPCO54536.2021.9616073
– ident: ref13
  doi: 10.1109/cvpr.2005.309
– ident: ref29
  doi: 10.1109/ICASSP49357.2023.10095559
– ident: ref14
  doi: 10.1145/1857907.1857911
– ident: ref34
  doi: 10.1007/s00041-008-9045-x
– year: 2017
  ident: ref27
  article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms
  publication-title: arXiv:1708.07747
  contributor:
    fullname: Xiao
– ident: ref33
  doi: 10.1109/TSP.2017.2711501
– ident: ref2
  doi: 10.1016/j.procs.2020.01.079
– ident: ref3
  doi: 10.1002/wics.101
– ident: ref24
  doi: 10.1137/18M1163993
– ident: ref10
  doi: 10.1177/10943420020160030901
– volume: 9
  start-page: 235
  issue: 8
  year: 2008
  ident: ref7
  article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Krause
– ident: ref35
  doi: 10.1561/2400000003
– ident: ref11
  doi: 10.1109/TSP.2008.2007095
– ident: ref28
  doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
– ident: ref4
  doi: 10.1080/14786440109462720
– ident: ref18
  doi: 10.1109/TSP.2018.2841887
– volume: 16
  start-page: 2859
  issue: 89
  year: 2015
  ident: ref1
  article-title: Linear dimensionality reduction: Survey, insights, and generalizations
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Cunningham
– ident: ref21
  doi: 10.1109/TASLP.2021.3059264
– ident: ref37
  doi: 10.1007/978-1-4419-9569-8_10
– ident: ref31
  doi: 10.1109/TSP.2018.2868269
– ident: ref12
  doi: 10.1214/aoms/1177703732
– ident: ref19
  doi: 10.1088/0266-5611/28/11/115010
– ident: ref36
  doi: 10.1109/ICASSP.2014.6853752
SSID ssj0000816957
Score 2.3477108
Snippet We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Publisher
StartPage 1
SubjectTerms Algorithms
Criteria
Dimensionality reduction
Douglas–Rachford splitting method
element selection
Indexes
Mathematical analysis
Minimization
Operators (mathematics)
Optimization
proximal operator
Relaxation methods
Signal processing
Sparse matrices
sparse optimization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6J8yQMjgTh27HiEiqpCogxQqZuxk7MYIK2gSPx8znaKihhY2KLEkuN3tu-dc3lHyJkshC8t45ktvcpEAXWmZW0z0K6qnHWuidUb7sZyNBG303K6Uuor5IQleeAE3CVDh-qQZlc5Ml8BjWskL5S3SLQ1b-pEjXK9EkzFPbhiUpeqkxnC55dXgwGOCAPCQlxwHmJ39sMVRcX-rsTKr305OpvhFtnsWCK9Sm-3Tdag3SEbK9qBu-RpGKQs3QtQ2zY0LOs3eE7Z6HS4zLiiM09vUoI4fYgVb9AM9Bo9V0PxYjxrY9b5J32YY4AL9B43kNfuz8w9MhnePA5GWVcuIat5qRcZUjWQDrwu0eUwVtscLPNSOKs9qFI1TnsFKgdRa-4rsHkOXABOJS0VZ4zvk147a-GA0Ap5IdQItdDYOnzLA2kRcCibcIjs-uR8iZyZJ1UME6OJXJsEtAlAmw7oPrkO6H43DZLW8QYa2nSGNn8Zuk_2gm1W-hMsnMb0yfHSWKZbf--mCDKIEvdOdfgffR-R9TCedPRyTHqLtw84QTKycKdx3n0BRFTaTA
  priority: 102
  providerName: Directory of Open Access Journals
Title Flexible and Comprehensive Framework of Element Selection Based on Nonconvex Sparse Optimization
URI https://ieeexplore.ieee.org/document/10419330
https://www.proquest.com/docview/2926267637
https://doaj.org/article/1893b960809744edbd6327fa48793dca
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSxwxFA_qSQ_9sJZuayWHHjvrZJJJJkddXKTQ7UEFbzEfLxTazoruQulf35ePFW0p9BaGDMnML3l5v5f3QcgH2YnYW8Yb20fViA58o6W3DWg3DM46F3L1hs8LeX4lPl331zVYPcfCAEB2PoNpaua7_LD062Qqwx0uWCLg22RbaV2CtR4MKqmChO5VzSzEWn18MpvhRyAH7MSU80TX2ZPTJyfpr1VV_hLF-XyZPyeLzcyKW8m36Xrlpv7XH0kb_3vqL8izqmnSk7I0XpItGPfJ3qP8g6_IzTylw3Tfgdox0CQa7uBr8Win843XFl1GelaczOlFrpqDUNJTPP0CxcZiOWbP9Z_04hZJMtAvKIR-1OjOA3I1P7ucnTe15ELjea9XDap7IB1E3eOxxZi3LVgWpXBWR1C9Ck5HBaoF4TWPA9i2BS4Al6OWijPGX5OdcTnCG0IH1C3BuyCFxt7pPhCkHZSGPiRDtJuQjxsozG3JrGEyI2m1KciZhJypyE3IaYLroWtKi50f4G82dZcZhtqXQ042tEiTBAQcnXcqWmRlmgdvJ-QgQfNovILKhBxu0Dd1D9-bLqVSlCh_1dt_vPaO7KYpFovMIdlZ3a3hPeooK3eUuf1RXqG_AezR5bY
link.rule.ids 315,783,787,799,867,2109,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADzyIWCvjAkSxx7NjxsV11tUC7HNpKvRk_xkICslXZlRC_nvFjqwJC4mZFjuzks8cz45lvCHktOxF7y3hj-6ga0YFvtPS2Ae2GwVnnQq7ecLyUizPx_rw_r8nqORcGAHLwGUxTM9_lh5XfJFcZ7nDBkgF-k9xCxXqQJV3ryqWSakjoXlVuIdbqt_uzGX4GWoGdmHKeDHb22_mTafprXZW_hHE-Yeb3yXI7txJY8mW6Wbup__kHbeN_T_4BuVd1TbpfFsdDcgPGR-TuNQbCx-TTPBFiuq9A7RhoEg6X8LnEtNP5Nm6LriI9LGHm9CTXzUEw6QGef4FiY7kac-z6D3pygWYy0I8ohr7V_M5dcjY_PJ0tmlp0ofG81-sGFT6QDqLu8eBizNsWLItSOKsjqF4Fp6MC1YLwmscBbNsCF4ALUkvFGeNPyM64GuEpoQNql-BdkEJj73QjCNIOSkMfkivaTcibLRTmonBrmGyTtNoU5ExCzlTkJuQgwXXVNRFj5wf4m03dZ4ah_uXQKhtaNJQEBByddypatMs0D95OyG6C5tp4BZUJ2duib-ou_m66RKYoUQKrZ_947RW5vTg9PjJH75YfnpM7abrFP7NHdtaXG3iBGsvavczr9BenzugM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+Comprehensive+Framework+of+Element+Selection+Based+on+Nonconvex+Sparse+Optimization&rft.jtitle=IEEE+access&rft.au=Kawamura%2C+Taiga&rft.au=Ueno%2C+Natsuki&rft.au=Ono%2C+Nobutaka&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=12&rft.spage=21337&rft_id=info:doi/10.1109%2FACCESS.2024.3361941&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon