Flexible and Comprehensive Framework of Element Selection Based on Nonconvex Sparse Optimization
We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element selection is a fundamental technique for reducing dimensionality of high-dimensional data by simple operations without the use of scalar multipli...
Saved in:
Published in | IEEE access Vol. 12; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element selection is a fundamental technique for reducing dimensionality of high-dimensional data by simple operations without the use of scalar multiplication. Restorability is one of the commonly used criteria in element selection, and the element selection problem based on restorability is formulated as a minimization problem of a loss function representing the restoration error between the original data and the restored data. However, conventional methods are applicable only to a limited class of loss functions such as ℓ 2 norm loss. To enable the use of a wide variety of criteria, we reformulate the element selection problem as a nonconvex sparse optimization problem and derive the optimization algorithm based on Douglas-Rachford splitting method. The proposed algorithm is applicable to any loss function as long as its proximal operator is available, e.g., ℓ 1 norm loss and ℓ ∞ norm loss as well as ℓ 2 norm loss. We conducted numerical experiments using artificial and real data, and their results indicate that the above loss functions are successfully minimized by the proposed algorithm. |
---|---|
AbstractList | We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element selection is a fundamental technique for reducing dimensionality of high-dimensional data by simple operations without the use of scalar multiplication. Restorability is one of the commonly used criteria in element selection, and the element selection problem based on restorability is formulated as a minimization problem of a loss function representing the restoration error between the original data and the restored data. However, conventional methods are applicable only to a limited class of loss functions such as [Formula Omitted] norm loss. To enable the use of a wide variety of criteria, we reformulate the element selection problem as a nonconvex sparse optimization problem and derive the optimization algorithm based on Douglas–Rachford splitting method. The proposed algorithm is applicable to any loss function as long as its proximal operator is available, e.g., [Formula Omitted] norm loss and [Formula Omitted] norm loss as well as [Formula Omitted] norm loss. We conducted numerical experiments using artificial and real data, and their results indicate that the above loss functions are successfully minimized by the proposed algorithm. We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element selection is a fundamental technique for reducing dimensionality of high-dimensional data by simple operations without the use of scalar multiplication. Restorability is one of the commonly used criteria in element selection, and the element selection problem based on restorability is formulated as a minimization problem of a loss function representing the restoration error between the original data and the restored data. However, conventional methods are applicable only to a limited class of loss functions such as ℓ 2 norm loss. To enable the use of a wide variety of criteria, we reformulate the element selection problem as a nonconvex sparse optimization problem and derive the optimization algorithm based on Douglas-Rachford splitting method. The proposed algorithm is applicable to any loss function as long as its proximal operator is available, e.g., ℓ 1 norm loss and ℓ ∞ norm loss as well as ℓ 2 norm loss. We conducted numerical experiments using artificial and real data, and their results indicate that the above loss functions are successfully minimized by the proposed algorithm. We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element selection is a fundamental technique for reducing dimensionality of high-dimensional data by simple operations without the use of scalar multiplication. Restorability is one of the commonly used criteria in element selection, and the element selection problem based on restorability is formulated as a minimization problem of a loss function representing the restoration error between the original data and the restored data. However, conventional methods are applicable only to a limited class of loss functions such as <tex-math notation="LaTeX">$\ell _{2}$ </tex-math> norm loss. To enable the use of a wide variety of criteria, we reformulate the element selection problem as a nonconvex sparse optimization problem and derive the optimization algorithm based on Douglas-Rachford splitting method. The proposed algorithm is applicable to any loss function as long as its proximal operator is available, e.g., <tex-math notation="LaTeX">$\ell _{1}$ </tex-math> norm loss and <tex-math notation="LaTeX">$\ell _{\infty} $ </tex-math> norm loss as well as <tex-math notation="LaTeX">$\ell _{2}$ </tex-math> norm loss. We conducted numerical experiments using artificial and real data, and their results indicate that the above loss functions are successfully minimized by the proposed algorithm. |
Author | Ueno, Natsuki Ono, Nobutaka Kawamura, Taiga |
Author_xml | – sequence: 1 givenname: Taiga orcidid: 0009-0008-3584-7822 surname: Kawamura fullname: Kawamura, Taiga organization: Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan – sequence: 2 givenname: Natsuki surname: Ueno fullname: Ueno, Natsuki organization: Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan – sequence: 3 givenname: Nobutaka orcidid: 0000-0003-4242-2773 surname: Ono fullname: Ono, Nobutaka organization: Graduate School of Systems Design, Tokyo Metropolitan University, Tokyo, Japan |
BookMark | eNpNUcFu1DAUtFCRKKVfAAdLnHex_Rw7PpZoFypV9LBwNk7yDF4SO9hpKXw9WVKhvssbjWbmPWlekrOYIhLymrMt58y8u2qa3eGwFUzILYDiRvJn5FxwZTZQgTp7gl-Qy1KObJl6oSp9Tr7uB3wI7YDUxZ42aZwyfsdYwj3SfXYj_kr5B02e7gYcMc70gAN2c0iRvncFe7qATyl2Kd7jAz1MLhekt9McxvDHnWSvyHPvhoKXj_uCfNnvPjcfNze3H66bq5tNB5WZN0YAqha9qUQtOe8cQ8e9kq0zHnWl-9Z4jZqh7Az4Gh1jCBLR9UZp4BwuyPWa2yd3tFMOo8u_bXLB_iNS_mZdnkM3oOW1gdYoVjOjpcS-7RUI7Z2stYG-c0vW2zVryunnHZbZHtNdjsv7VhihhNIK9KKCVdXlVEpG__8qZ_bUjF2bsadm7GMzi-vN6gqI-MQhuQFg8Be0qoxC |
CODEN | IAECCG |
Cites_doi | 10.2307/1993056 10.1109/TCI.2016.2575740 10.1007/BF02288367 10.1109/CISS.2014.6814074 10.1007/BF01581204 10.1109/JSTSP.2020.3042071 10.1007/978-3-319-22482-4_28 10.1109/focs.2008.82 10.1109/ACCESS.2018.2886471 10.1109/TSP.2022.3156012 10.1109/TIT.2014.2345260 10.1109/JSEN.2021.3073978 10.1109/TIP.2017.2745200 10.23919/EUSIPCO54536.2021.9616073 10.1109/cvpr.2005.309 10.1109/ICASSP49357.2023.10095559 10.1145/1857907.1857911 10.1007/s00041-008-9045-x 10.1109/TSP.2017.2711501 10.1016/j.procs.2020.01.079 10.1002/wics.101 10.1137/18M1163993 10.1177/10943420020160030901 10.1561/2400000003 10.1109/TSP.2008.2007095 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2 10.1080/14786440109462720 10.1109/TSP.2018.2841887 10.1109/TASLP.2021.3059264 10.1007/978-1-4419-9569-8_10 10.1109/TSP.2018.2868269 10.1214/aoms/1177703732 10.1088/0266-5611/28/11/115010 10.1109/ICASSP.2014.6853752 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3361941 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 1 |
ExternalDocumentID | oai_doaj_org_article_1893b960809744edbd6327fa48793dca 10_1109_ACCESS_2024_3361941 10419330 |
Genre | orig-research |
GrantInformation_xml | – fundername: JST CREST grantid: JPMJCR19A3 |
GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IFIPE IPLJI JAVBF KQ8 M~E O9- OCL OK1 RIA RIE RIG RNS 4.4 AAYXX CITATION EJD M43 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-923e6bef9528411ca0ea1f64ba9fe757db9f7e70e4c93f8ea00e34eead9673113 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Tue Oct 22 14:58:06 EDT 2024 Thu Oct 10 19:27:36 EDT 2024 Fri Aug 23 01:01:53 EDT 2024 Wed Jun 26 19:40:09 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-923e6bef9528411ca0ea1f64ba9fe757db9f7e70e4c93f8ea00e34eead9673113 |
ORCID | 0009-0008-3584-7822 0000-0003-4242-2773 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10419330 |
PQID | 2926267637 |
PQPubID | 4845423 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1893b960809744edbd6327fa48793dca proquest_journals_2926267637 crossref_primary_10_1109_ACCESS_2024_3361941 ieee_primary_10419330 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 Krause (ref7) 2008; 9 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Xiao (ref27) 2017 ref28 ref29 ref8 ref9 ref4 ref3 ref6 ref5 Cunningham (ref1) 2015; 16 |
References_xml | – ident: ref25 doi: 10.2307/1993056 – ident: ref20 doi: 10.1109/TCI.2016.2575740 – ident: ref5 doi: 10.1007/BF02288367 – ident: ref16 doi: 10.1109/CISS.2014.6814074 – ident: ref26 doi: 10.1007/BF01581204 – ident: ref22 doi: 10.1109/JSTSP.2020.3042071 – ident: ref23 doi: 10.1007/978-3-319-22482-4_28 – ident: ref15 doi: 10.1109/focs.2008.82 – ident: ref30 doi: 10.1109/ACCESS.2018.2886471 – ident: ref9 doi: 10.1109/TSP.2022.3156012 – ident: ref17 doi: 10.1109/TIT.2014.2345260 – ident: ref8 doi: 10.1109/JSEN.2021.3073978 – ident: ref32 doi: 10.1109/TIP.2017.2745200 – ident: ref6 doi: 10.23919/EUSIPCO54536.2021.9616073 – ident: ref13 doi: 10.1109/cvpr.2005.309 – ident: ref29 doi: 10.1109/ICASSP49357.2023.10095559 – ident: ref14 doi: 10.1145/1857907.1857911 – ident: ref34 doi: 10.1007/s00041-008-9045-x – year: 2017 ident: ref27 article-title: Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms publication-title: arXiv:1708.07747 contributor: fullname: Xiao – ident: ref33 doi: 10.1109/TSP.2017.2711501 – ident: ref2 doi: 10.1016/j.procs.2020.01.079 – ident: ref3 doi: 10.1002/wics.101 – ident: ref24 doi: 10.1137/18M1163993 – ident: ref10 doi: 10.1177/10943420020160030901 – volume: 9 start-page: 235 issue: 8 year: 2008 ident: ref7 article-title: Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies publication-title: J. Mach. Learn. Res. contributor: fullname: Krause – ident: ref35 doi: 10.1561/2400000003 – ident: ref11 doi: 10.1109/TSP.2008.2007095 – ident: ref28 doi: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2 – ident: ref4 doi: 10.1080/14786440109462720 – ident: ref18 doi: 10.1109/TSP.2018.2841887 – volume: 16 start-page: 2859 issue: 89 year: 2015 ident: ref1 article-title: Linear dimensionality reduction: Survey, insights, and generalizations publication-title: J. Mach. Learn. Res. contributor: fullname: Cunningham – ident: ref21 doi: 10.1109/TASLP.2021.3059264 – ident: ref37 doi: 10.1007/978-1-4419-9569-8_10 – ident: ref31 doi: 10.1109/TSP.2018.2868269 – ident: ref12 doi: 10.1214/aoms/1177703732 – ident: ref19 doi: 10.1088/0266-5611/28/11/115010 – ident: ref36 doi: 10.1109/ICASSP.2014.6853752 |
SSID | ssj0000816957 |
Score | 2.3477108 |
Snippet | We propose an element selection method for high-dimensional data that is applicable to a wide range of optimization criteria in a unifying manner. Element... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Criteria Dimensionality reduction Douglas–Rachford splitting method element selection Indexes Mathematical analysis Minimization Operators (mathematics) Optimization proximal operator Relaxation methods Signal processing Sparse matrices sparse optimization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6J8yQMjgTh27HiEiqpCogxQqZuxk7MYIK2gSPx8znaKihhY2KLEkuN3tu-dc3lHyJkshC8t45ktvcpEAXWmZW0z0K6qnHWuidUb7sZyNBG303K6Uuor5IQleeAE3CVDh-qQZlc5Ml8BjWskL5S3SLQ1b-pEjXK9EkzFPbhiUpeqkxnC55dXgwGOCAPCQlxwHmJ39sMVRcX-rsTKr305OpvhFtnsWCK9Sm-3Tdag3SEbK9qBu-RpGKQs3QtQ2zY0LOs3eE7Z6HS4zLiiM09vUoI4fYgVb9AM9Bo9V0PxYjxrY9b5J32YY4AL9B43kNfuz8w9MhnePA5GWVcuIat5qRcZUjWQDrwu0eUwVtscLPNSOKs9qFI1TnsFKgdRa-4rsHkOXABOJS0VZ4zvk147a-GA0Ap5IdQItdDYOnzLA2kRcCibcIjs-uR8iZyZJ1UME6OJXJsEtAlAmw7oPrkO6H43DZLW8QYa2nSGNn8Zuk_2gm1W-hMsnMb0yfHSWKZbf--mCDKIEvdOdfgffR-R9TCedPRyTHqLtw84QTKycKdx3n0BRFTaTA priority: 102 providerName: Directory of Open Access Journals |
Title | Flexible and Comprehensive Framework of Element Selection Based on Nonconvex Sparse Optimization |
URI | https://ieeexplore.ieee.org/document/10419330 https://www.proquest.com/docview/2926267637 https://doaj.org/article/1893b960809744edbd6327fa48793dca |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NSxwxFA_qSQ_9sJZuayWHHjvrZJJJJkddXKTQ7UEFbzEfLxTazoruQulf35ePFW0p9BaGDMnML3l5v5f3QcgH2YnYW8Yb20fViA58o6W3DWg3DM46F3L1hs8LeX4lPl331zVYPcfCAEB2PoNpaua7_LD062Qqwx0uWCLg22RbaV2CtR4MKqmChO5VzSzEWn18MpvhRyAH7MSU80TX2ZPTJyfpr1VV_hLF-XyZPyeLzcyKW8m36Xrlpv7XH0kb_3vqL8izqmnSk7I0XpItGPfJ3qP8g6_IzTylw3Tfgdox0CQa7uBr8Win843XFl1GelaczOlFrpqDUNJTPP0CxcZiOWbP9Z_04hZJMtAvKIR-1OjOA3I1P7ucnTe15ELjea9XDap7IB1E3eOxxZi3LVgWpXBWR1C9Ck5HBaoF4TWPA9i2BS4Al6OWijPGX5OdcTnCG0IH1C3BuyCFxt7pPhCkHZSGPiRDtJuQjxsozG3JrGEyI2m1KciZhJypyE3IaYLroWtKi50f4G82dZcZhtqXQ042tEiTBAQcnXcqWmRlmgdvJ-QgQfNovILKhBxu0Dd1D9-bLqVSlCh_1dt_vPaO7KYpFovMIdlZ3a3hPeooK3eUuf1RXqG_AezR5bY |
link.rule.ids | 315,783,787,799,867,2109,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHIADzyIWCvjAkSxx7NjxsV11tUC7HNpKvRk_xkICslXZlRC_nvFjqwJC4mZFjuzks8cz45lvCHktOxF7y3hj-6ga0YFvtPS2Ae2GwVnnQq7ecLyUizPx_rw_r8nqORcGAHLwGUxTM9_lh5XfJFcZ7nDBkgF-k9xCxXqQJV3ryqWSakjoXlVuIdbqt_uzGX4GWoGdmHKeDHb22_mTafprXZW_hHE-Yeb3yXI7txJY8mW6Wbup__kHbeN_T_4BuVd1TbpfFsdDcgPGR-TuNQbCx-TTPBFiuq9A7RhoEg6X8LnEtNP5Nm6LriI9LGHm9CTXzUEw6QGef4FiY7kac-z6D3pygWYy0I8ohr7V_M5dcjY_PJ0tmlp0ofG81-sGFT6QDqLu8eBizNsWLItSOKsjqF4Fp6MC1YLwmscBbNsCF4ALUkvFGeNPyM64GuEpoQNql-BdkEJj73QjCNIOSkMfkivaTcibLRTmonBrmGyTtNoU5ExCzlTkJuQgwXXVNRFj5wf4m03dZ4ah_uXQKhtaNJQEBByddypatMs0D95OyG6C5tp4BZUJ2duib-ou_m66RKYoUQKrZ_947RW5vTg9PjJH75YfnpM7abrFP7NHdtaXG3iBGsvavczr9BenzugM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flexible+and+Comprehensive+Framework+of+Element+Selection+Based+on+Nonconvex+Sparse+Optimization&rft.jtitle=IEEE+access&rft.au=Kawamura%2C+Taiga&rft.au=Ueno%2C+Natsuki&rft.au=Ono%2C+Nobutaka&rft.date=2024-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=12&rft.spage=21337&rft_id=info:doi/10.1109%2FACCESS.2024.3361941&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |