Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm
Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis...
Saved in:
Published in | Progress in neuro-psychopharmacology & biological psychiatry Vol. 76; pp. 65 - 71 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
02.06.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers.
The study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination.
A separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy.
A high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis.
•Biomarkers for depression were identified using machine learning.•A combined biomarker panel consisting of proteins and HRV indexes was developed.•Classification accuracy of 80.1% was achieved by combining HRV and proteomic data.•Biomarkers: apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, SampEn |
---|---|
AbstractList | OBJECTIVEMajor depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers.METHODSThe study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination.RESULTSA separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy.CONCLUSIONSA high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis. Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers. The study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination. A separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy. A high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis. Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers. The study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination. A separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy. A high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis. •Biomarkers for depression were identified using machine learning.•A combined biomarker panel consisting of proteins and HRV indexes was developed.•Classification accuracy of 80.1% was achieved by combining HRV and proteomic data.•Biomarkers: apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, SampEn |
Author | Ha, Kyooseob Ahn, Yong Min Lee, Min Young Kim, Kwang Pyo Kim, Eun Young Kim, Se Hyun |
Author_xml | – sequence: 1 givenname: Eun Young surname: Kim fullname: Kim, Eun Young organization: Department of Medicine, Seoul National University Hospital, Seoul, Republic of Korea – sequence: 2 givenname: Min Young surname: Lee fullname: Lee, Min Young organization: Institute for Systems Biology, Seattle, WA, United States – sequence: 3 givenname: Se Hyun surname: Kim fullname: Kim, Se Hyun organization: Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang, Republic of Korea – sequence: 4 givenname: Kyooseob surname: Ha fullname: Ha, Kyooseob organization: Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea – sequence: 5 givenname: Kwang Pyo surname: Kim fullname: Kim, Kwang Pyo organization: Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea – sequence: 6 givenname: Yong Min surname: Ahn fullname: Ahn, Yong Min email: aym@snu.ac.kr organization: Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28223106$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1u3DAQhInAQXx28gQBApZppJDUH1WkCJwfGzCQJqmJFbm640EkFZIycI-St42ss5sUrnaxmG-wmLkiFz54JOQ9ZyVnvP10LGc_D3MpGO9KJkrG61dkx2Uni1rw9oLsmFj3RtbtJblK6cgY4xWr3pBLIYWoOGt35O9XC3sfkk00jNTBMURqcI6Ykn1AamwK0WCkw4nq4Abrrd9Tt0zZumBgotaPITrINng6xuDoASFmGiGv8MmDszpR8IYmjIujcwwZw3Zc0mYF-mA9FtOKbd4w7UO0-eDektcjTAnfPc1r8vv7t183t8X9zx93N1_uC101fS7kOPY1kwJGAwB12w41H1mDoh_qhnNsuhqB6QGqoZacQ9UJ2Y6mx65rhamG6pp8PPuuv_1ZMGXlbNI4TeAxLEmtgbJetkzKVfrhSboMDo2ao3UQT-o5zlXQnwU6hpQijkrbvIWTI9hJcaYeq1NHtVWnHqtTTKi1upWt_mOf7V-mPp8pXCN6sBhV0ha9RmMj6qxMsC_y_wAPmLgc |
CitedBy_id | crossref_primary_10_1016_j_jpsychires_2021_07_041 crossref_primary_10_1007_s10586_019_02953_x crossref_primary_10_1021_acs_jproteome_3c00580 crossref_primary_10_3389_fpsyt_2021_731220 crossref_primary_10_1016_j_ijpsycho_2023_08_001 crossref_primary_10_1016_j_psychres_2022_114842 crossref_primary_10_3390_jcm8070963 crossref_primary_10_3390_jpm11100957 crossref_primary_10_1155_2020_5246350 crossref_primary_10_1080_03007995_2022_2038487 crossref_primary_10_1080_14789450_2018_1444483 crossref_primary_10_1007_s12559_022_10042_2 crossref_primary_10_1016_j_cca_2024_120093 crossref_primary_10_3390_s22239102 crossref_primary_10_1016_j_compbiomed_2024_109521 crossref_primary_10_47992_IJHSP_2581_6411_0061 crossref_primary_10_1155_2022_1739882 crossref_primary_10_1038_s41598_018_35147_3 crossref_primary_10_1177_0706743717748883 crossref_primary_10_1007_s00216_018_1543_3 crossref_primary_10_1016_j_compbiomed_2024_108959 crossref_primary_10_3389_fnmol_2017_00272 crossref_primary_10_1038_s41398_019_0623_2 crossref_primary_10_1007_s11831_022_09733_8 crossref_primary_10_1021_acs_jproteome_1c00058 crossref_primary_10_3389_fpsyt_2018_00735 crossref_primary_10_1177_0144598718822400 |
Cites_doi | 10.1161/01.CIR.93.5.1043 10.1136/jnnp.23.1.56 10.1023/A:1012487302797 10.1017/S0033291700035558 10.1017/S1461145712000302 10.1017/S1461145714000819 10.1103/PhysRevE.64.061911 10.1016/j.biopsych.2009.12.012 10.1016/0002-9149(87)90795-8 10.1037/0022-006X.56.6.893 10.1038/nri1200 10.4088/JCP.15m10381 10.1176/appi.ajp.161.2.262 10.1016/S0031-9384(03)00156-2 10.1016/j.atherosclerosis.2009.01.004 10.1161/hc4201.097834 10.1210/jc.2012-3104 10.1111/j.1464-5491.2009.02686.x 10.1109/TBME.1985.325532 10.1038/tp.2016.73 10.1007/s12160-009-9101-z 10.1016/j.pnpbp.2016.04.009 10.3938/jkps.44.569 10.1016/j.ijpsycho.2013.06.018 10.1016/j.pnpbp.2009.05.004 10.1016/j.biopsycho.2013.02.013 10.15252/emmm.201404873 10.1016/j.schres.2017.01.018 10.1093/bioinformatics/btm344 10.1161/01.CIR.90.2.878 10.1063/1.166090 10.1097/00000542-199304000-00011 10.1016/j.ijcard.2009.09.543 10.1007/s10558-007-9049-1 10.3389/fncom.2015.00037 10.1155/2012/149516 10.1152/ajpheart.00856.2009 10.1007/s11517-006-0119-0 10.1097/PSY.0b013e31815c1b85 10.1155/JBB.2005.147 10.1161/01.CIR.102.11.1239 10.1007/s00406-009-0093-2 10.1038/tp.2015.88 10.3389/fphys.2013.00026 10.3389/fpsyt.2014.00080 10.1016/j.pnpbp.2006.04.012 10.1002/dmrr.2281 10.1109/51.620503 10.3389/fnhum.2010.00192 10.1097/TA.0b013e318142d2f0 10.1136/heart.88.4.378 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.pnpbp.2017.02.014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1878-4216 |
EndPage | 71 |
ExternalDocumentID | 28223106 10_1016_j_pnpbp_2017_02_014 S0278584616302007 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATCM AAXLA AAXUO ABCQJ ABFRF ABIVO ABJNI ABMAC ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM L7B M2V M34 M41 MO0 MOBAO N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SES SSN SSP SSZ T5K TEORI ~G- .GJ 29P 53G 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMQ HMT HVGLF HZ~ R2- SEW SNS SPT SSH WUQ ZGI CGR CUY CVF ECM EFKBS EIF NPM 7X8 |
ID | FETCH-LOGICAL-c359t-8ff94082afdaaa466b41f05e29b4511e574ea0cba3b4811a37286fd9e7762d3b3 |
IEDL.DBID | .~1 |
ISSN | 0278-5846 |
IngestDate | Tue Aug 05 09:30:53 EDT 2025 Mon Jul 21 06:05:16 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Tue Jul 01 01:50:19 EDT 2025 Fri Feb 23 02:24:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biomarker Heart rate variability Machine-learning Major depressive disorder Proteomics |
Language | English |
License | Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-8ff94082afdaaa466b41f05e29b4511e574ea0cba3b4811a37286fd9e7762d3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28223106 |
PQID | 1870986088 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1870986088 pubmed_primary_28223106 crossref_citationtrail_10_1016_j_pnpbp_2017_02_014 crossref_primary_10_1016_j_pnpbp_2017_02_014 elsevier_sciencedirect_doi_10_1016_j_pnpbp_2017_02_014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-06-02 |
PublicationDateYYYYMMDD | 2017-06-02 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Progress in neuro-psychopharmacology & biological psychiatry |
PublicationTitleAlternate | Prog Neuropsychopharmacol Biol Psychiatry |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Hautala, Karjalainen, Kiviniemi, Kinnunen, Makikallio, Huikuri (bb0275) 2010; 298 Yang, Liu, Sui, Pearlson, Calhoun (bb0225) 2010; 4 Soares-Miranda, Sandercock, Vale, Santos, Abreu, Moreira (bb0055) 2012; 28 Pinto, Passos, Gomes, Reckziegel, Kapczinski, Mwangi (bb0210) 2017 Chalmers, Quintana, Abbott, Kemp (bb0080) 2014; 5 Thayer, Yamamoto, Brosschot (bb0070) 2010; 141 Kurths, Voss, Saparin, Witt, Kleiner, Wessel (bb0185) 1995; 5 Batchinsky, Cancio, Salinas, Kuusela, Cooke, Wang (bb0280) 2007; 63 Lippman, Stein, Lerman (bb0145) 1994; 267 Fleisher, Pincus, Rosenbaum (bb0285) 1993; 78 Dekker, Crow, Folsom, Hannan, Liao, Swenne (bb0035) 2000; 102 Guyon, Weston, Barnhill, Vapnik (bb0100) 2002; 46 Sarandol, Sarandol, Eker, Karaagac, Hizli, Dirican (bb0235) 2006; 30 Rajendra Acharya, Paul Joseph, Kannathal, Lim, Suri (bb0175) 2006; 44 Koskinen, Kahonen, Jula, Mattsson, Laitinen, Keltikangas-Jarvinen (bb0045) 2009; 26 Martins-de-Souza, Harris, Guest, Turck, Bahn (bb0015) 2010; 260 Tsuji, Venditti, Manders, Evans, Larson, Feldman (bb0065) 1994; 90 Billman (bb0170) 2013; 4 Kautzky, Baldinger-Melich, Kranz, Vanicek, Souery, Montgomery (bb0205) 2017 Hamilton (bb0105) 1960; 23 Licht, de Geus, Penninx (bb0050) 2013; 98 Benn (bb0240) 2009; 206 Rush, Gullion, Basco, Jarrett, Trivedi (bb0120) 1996; 26 Thase (bb0005) 2000 Calandra, Roger (bb0250) 2003; 3 Saeys, Inza, Larranaga (bb0200) 2007; 23 Pan, Tompkins (bb0135) 1985; 32 Zarogianni, Storkey, Johnstone, Owens, Lawrie (bb0230) 2016 Surinova, Choi, Tao, Schuffler, Chang, Clough (bb0215) 2015; 7 Carney, Blumenthal, Stein, Watkins, Catellier, Berkman (bb0155) 2001; 104 Lee, Kim, Kim, Cho, Ha, Kim (bb0030) 2016; 69 Steuer, Ebeling, Russell, Bahar, Neiman, Moss (bb0195) 2001; 64 Kemp, Quintana, Gray, Felmingham, Brown, Gatt (bb0085) 2010; 67 Stelzhammer, Haenisch, Chan, Cooper, Steiner, Steeb (bb0020) 2014; 17 Yuk, Kim (bb0130) 1997; 16 Chang, Yoo, Yi, Hong, Oh, Hwang (bb0270) 2009; 33 Quintana, Alvares, Heathers (bb0160) 2016; 6 Porges (bb0255) 2003; 79 Bornas, Llabres, Noguera, Pez (bb0180) 2006; 10 Bot, Chan, Jansen, Lamers, Vogelzangs, Steiner (bb0010) 2015; 5 Kleiger, Miller, Bigger, Moss (bb0075) 1987; 59 Windham, Fumagalli, Ble, Sollers, Thayer, Najjar (bb0060) 2012; 2012 Geisler, Kubiak, Siewert, Weber (bb0260) 2013; 93 Vaccarino, McClure, Johnson, Sheps, Bittner, Rutledge (bb0245) 2008; 70 Park, Yi (bb0190) 2004; 44 Mietus, Peng, Henry, Goldsmith, Goldberger (bb0165) 2002; 88 Ghosh, Chinnaiyan (bb0220) 2005; 2005 Xu, Zhang, Luo, Zhou, Wang, Fang (bb0025) 2012; 15 Kemp, Quintana (bb0040) 2013; 89 Task Force of the European Society of Cardiology, the North American Society of Pacing and Electrophysiology (bb0150) 1996; 93 Costa, Peng, Goldberger (bb0090) 2008; 8 Thayer, Hansen, Saus-Rose, Johnsen (bb0265) 2009; 37 Beck, Epstein, Brown, Steer (bb0125) 1988; 56 Nardelli, Valenza, Cristea, Gentili, Cotet, David (bb0095) 2015; 9 Vila, Palacios, Presedo, Fernandez-Delgado, Felix, Barro (bb0140) 1997; 16 Martinez-Aran, Vieta, Reinares, Colom, Torrent, Sanchez-Moreno (bb0115) 2004; 161 Yi, Bae, Ahn, Park, Noh, Shin (bb0110) 2004; 44 Kleiger (10.1016/j.pnpbp.2017.02.014_bb0075) 1987; 59 Zarogianni (10.1016/j.pnpbp.2017.02.014_bb0230) 2016 Benn (10.1016/j.pnpbp.2017.02.014_bb0240) 2009; 206 Guyon (10.1016/j.pnpbp.2017.02.014_bb0100) 2002; 46 Koskinen (10.1016/j.pnpbp.2017.02.014_bb0045) 2009; 26 Yuk (10.1016/j.pnpbp.2017.02.014_bb0130) 1997; 16 Kautzky (10.1016/j.pnpbp.2017.02.014_bb0205) 2017 Rajendra Acharya (10.1016/j.pnpbp.2017.02.014_bb0175) 2006; 44 Stelzhammer (10.1016/j.pnpbp.2017.02.014_bb0020) 2014; 17 Hamilton (10.1016/j.pnpbp.2017.02.014_bb0105) 1960; 23 Windham (10.1016/j.pnpbp.2017.02.014_bb0060) 2012; 2012 Sarandol (10.1016/j.pnpbp.2017.02.014_bb0235) 2006; 30 Tsuji (10.1016/j.pnpbp.2017.02.014_bb0065) 1994; 90 Beck (10.1016/j.pnpbp.2017.02.014_bb0125) 1988; 56 Hautala (10.1016/j.pnpbp.2017.02.014_bb0275) 2010; 298 Bot (10.1016/j.pnpbp.2017.02.014_bb0010) 2015; 5 Vila (10.1016/j.pnpbp.2017.02.014_bb0140) 1997; 16 Thayer (10.1016/j.pnpbp.2017.02.014_bb0265) 2009; 37 Lee (10.1016/j.pnpbp.2017.02.014_bb0030) 2016; 69 Nardelli (10.1016/j.pnpbp.2017.02.014_bb0095) 2015; 9 Dekker (10.1016/j.pnpbp.2017.02.014_bb0035) 2000; 102 Thase (10.1016/j.pnpbp.2017.02.014_bb0005) 2000 Ghosh (10.1016/j.pnpbp.2017.02.014_bb0220) 2005; 2005 Yi (10.1016/j.pnpbp.2017.02.014_bb0110) 2004; 44 Kurths (10.1016/j.pnpbp.2017.02.014_bb0185) 1995; 5 Geisler (10.1016/j.pnpbp.2017.02.014_bb0260) 2013; 93 Bornas (10.1016/j.pnpbp.2017.02.014_bb0180) 2006; 10 Pinto (10.1016/j.pnpbp.2017.02.014_bb0210) 2017 Chang (10.1016/j.pnpbp.2017.02.014_bb0270) 2009; 33 Fleisher (10.1016/j.pnpbp.2017.02.014_bb0285) 1993; 78 Carney (10.1016/j.pnpbp.2017.02.014_bb0155) 2001; 104 Porges (10.1016/j.pnpbp.2017.02.014_bb0255) 2003; 79 Pan (10.1016/j.pnpbp.2017.02.014_bb0135) 1985; 32 Thayer (10.1016/j.pnpbp.2017.02.014_bb0070) 2010; 141 Billman (10.1016/j.pnpbp.2017.02.014_bb0170) 2013; 4 Licht (10.1016/j.pnpbp.2017.02.014_bb0050) 2013; 98 Quintana (10.1016/j.pnpbp.2017.02.014_bb0160) 2016; 6 Task Force of the European Society of Cardiology (10.1016/j.pnpbp.2017.02.014_bb0150) 1996; 93 Batchinsky (10.1016/j.pnpbp.2017.02.014_bb0280) 2007; 63 Surinova (10.1016/j.pnpbp.2017.02.014_bb0215) 2015; 7 Rush (10.1016/j.pnpbp.2017.02.014_bb0120) 1996; 26 Soares-Miranda (10.1016/j.pnpbp.2017.02.014_bb0055) 2012; 28 Chalmers (10.1016/j.pnpbp.2017.02.014_bb0080) 2014; 5 Martinez-Aran (10.1016/j.pnpbp.2017.02.014_bb0115) 2004; 161 Yang (10.1016/j.pnpbp.2017.02.014_bb0225) 2010; 4 Steuer (10.1016/j.pnpbp.2017.02.014_bb0195) 2001; 64 Lippman (10.1016/j.pnpbp.2017.02.014_bb0145) 1994; 267 Martins-de-Souza (10.1016/j.pnpbp.2017.02.014_bb0015) 2010; 260 Mietus (10.1016/j.pnpbp.2017.02.014_bb0165) 2002; 88 Xu (10.1016/j.pnpbp.2017.02.014_bb0025) 2012; 15 Kemp (10.1016/j.pnpbp.2017.02.014_bb0085) 2010; 67 Park (10.1016/j.pnpbp.2017.02.014_bb0190) 2004; 44 Calandra (10.1016/j.pnpbp.2017.02.014_bb0250) 2003; 3 Kemp (10.1016/j.pnpbp.2017.02.014_bb0040) 2013; 89 Saeys (10.1016/j.pnpbp.2017.02.014_bb0200) 2007; 23 Costa (10.1016/j.pnpbp.2017.02.014_bb0090) 2008; 8 Vaccarino (10.1016/j.pnpbp.2017.02.014_bb0245) 2008; 70 |
References_xml | – volume: 17 start-page: 1599 year: 2014 end-page: 1608 ident: bb0020 article-title: Proteomic changes in serum of first onset, antidepressant drug-naive major depression patients publication-title: Int. J. Neuropsychopharmacol. – volume: 88 start-page: 378 year: 2002 end-page: 380 ident: bb0165 article-title: The pNNx files: re-examining a widely used heart rate variability measure publication-title: Heart – volume: 90 start-page: 878 year: 1994 end-page: 883 ident: bb0065 article-title: Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study publication-title: Circulation – volume: 161 start-page: 262 year: 2004 end-page: 270 ident: bb0115 article-title: Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder publication-title: Am. J. Psychiatry – volume: 102 start-page: 1239 year: 2000 end-page: 1244 ident: bb0035 article-title: Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities publication-title: Circulation – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bb0100 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: 26 start-page: 354 year: 2009 end-page: 361 ident: bb0045 article-title: Metabolic syndrome and short-term heart rate variability in young adults. The cardiovascular risk in young Finns study publication-title: Diabet. Med. – volume: 298 start-page: H874 year: 2010 end-page: H880 ident: bb0275 article-title: Physical activity and heart rate variability measured simultaneously during waking hours publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 69 start-page: 60 year: 2016 end-page: 68 ident: bb0030 article-title: Discovery of serum protein biomarkers in drug-free patients with major depressive disorder publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry – volume: 64 start-page: 061911 year: 2001 ident: bb0195 article-title: Entropy and local uncertainty of data from sensory neurons publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. – volume: 10 start-page: 301 year: 2006 end-page: 318 ident: bb0180 article-title: Sample entropy of ECG time series of fearful flyers: preliminary results publication-title: Nonlinear Dynamics Psychol. Life Sci. – volume: 44 start-page: 1031 year: 2006 end-page: 1051 ident: bb0175 article-title: Heart rate variability: a review publication-title: Med. Biol. Eng. Comput. – volume: 2012 start-page: 149516 year: 2012 ident: bb0060 article-title: The relationship between heart rate variability and adiposity differs for central and overall adiposity publication-title: J. Obes. – volume: 78 start-page: 683 year: 1993 end-page: 692 ident: bb0285 article-title: Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction publication-title: Anesthesiology – volume: 16 start-page: 185 year: 1997 end-page: 197 ident: bb0130 article-title: The clinical study of Korean version of Beck Anxiety Inventory: comparison of the patients and normal publication-title: Korean J. Clin. Psychol. – volume: 5 start-page: 80 year: 2014 ident: bb0080 article-title: Anxiety disorders are associated with reduced heart rate variability: a meta-analysis publication-title: Front. Psychiatry – volume: 79 start-page: 503 year: 2003 end-page: 513 ident: bb0255 article-title: The Polyvagal Theory: phylogenetic contributions to social behavior publication-title: Physiol. Behav. – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: bb0200 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 5 start-page: 88 year: 1995 end-page: 94 ident: bb0185 article-title: Quantitative analysis of heart rate variability publication-title: Chaos – volume: 93 start-page: 1043 year: 1996 end-page: 1065 ident: bb0150 article-title: Heart rate variability: standards of measurement, physiological interpretation and clinical use publication-title: Circulation – volume: 141 start-page: 122 year: 2010 end-page: 131 ident: bb0070 article-title: The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors publication-title: Int. J. Cardiol. – volume: 3 start-page: 791 year: 2003 end-page: 800 ident: bb0250 article-title: Macrophage migration inhibitory factor: a regulator of innate immunity publication-title: Nat. Rev. Immunol. – year: 2017 ident: bb0210 article-title: Peripheral biomarker signatures of bipolar disorder and schizophrenia: a machine learning approach publication-title: Schizophr. Res. – volume: 23 start-page: 56 year: 1960 end-page: 62 ident: bb0105 article-title: A rating scale for depression publication-title: J. Neurol. Neurosurg. Psychiatry – volume: 70 start-page: 40 year: 2008 end-page: 48 ident: bb0245 article-title: Depression, the metabolic syndrome and cardiovascular risk publication-title: Psychosom. Med. – volume: 206 start-page: 17 year: 2009 end-page: 30 ident: bb0240 article-title: Apolipoprotein B levels, APOB alleles, and risk of ischemic cardiovascular disease in the general population, a review publication-title: Atherosclerosis – volume: 4 start-page: 192 year: 2010 ident: bb0225 article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia publication-title: Front. Hum. Neurosci. – volume: 8 start-page: 88 year: 2008 end-page: 93 ident: bb0090 article-title: Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures publication-title: Cardiovasc. Eng. – year: 2016 ident: bb0230 article-title: Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features publication-title: Schizophr. Res. – volume: 5 start-page: e599 year: 2015 ident: bb0010 article-title: Serum proteomic profiling of major depressive disorder publication-title: Transl. Psychiatry – volume: 6 start-page: e803 year: 2016 ident: bb0160 article-title: Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH): recommendations to advance research communication publication-title: Transl. Psychiatry – volume: 16 start-page: 119 year: 1997 end-page: 126 ident: bb0140 article-title: Time-frequency analysis of heart-rate variability publication-title: IEEE Eng. Med. Biol. Mag. – volume: 56 start-page: 893 year: 1988 end-page: 897 ident: bb0125 article-title: An inventory for measuring clinical anxiety: psychometric properties publication-title: J. Consult. Clin. Psychol. – volume: 63 start-page: 512 year: 2007 end-page: 518 ident: bb0280 article-title: Prehospital loss of R-to-R interval complexity is associated with mortality in trauma patients publication-title: J. Trauma – volume: 15 start-page: 1413 year: 2012 end-page: 1425 ident: bb0025 article-title: Comparative proteomic analysis of plasma from major depressive patients: identification of proteins associated with lipid metabolism and immunoregulation publication-title: Int. J. Neuropsychopharmacol. – volume: 93 start-page: 279 year: 2013 end-page: 286 ident: bb0260 article-title: Cardiac vagal tone is associated with social engagement and self-regulation publication-title: Biol. Psychol. – year: 2017 ident: bb0205 article-title: A new prediction model for evaluating treatment-resistant depression publication-title: J. Clin. Psychiatry – volume: 89 start-page: 288 year: 2013 end-page: 296 ident: bb0040 article-title: The relationship between mental and physical health: insights from the study of heart rate variability publication-title: Int. J. Psychophysiol. – start-page: 1318 year: 2000 end-page: 1328 ident: bb0005 article-title: Mood disorders: neurobiology publication-title: Comprehensive Textbook of Psychaitry – volume: 104 start-page: 2024 year: 2001 end-page: 2028 ident: bb0155 article-title: Depression, heart rate variability, and acute myocardial infarction publication-title: Circulation – volume: 33 start-page: 991 year: 2009 end-page: 995 ident: bb0270 article-title: Differential pattern of heart rate variability in patients with schizophrenia publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry – volume: 4 start-page: 26 year: 2013 ident: bb0170 article-title: The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance publication-title: Front. Physiol. – volume: 44 start-page: 156 year: 2004 end-page: 465 ident: bb0110 article-title: Validity and reliability of the Korean version of the Hamilton Depression Rating Scale (K-HDRS) publication-title: J. Korean Neuropsychiatr. Assoc. – volume: 98 start-page: 2484 year: 2013 end-page: 2493 ident: bb0050 article-title: Dysregulation of the autonomic nervous system predicts the development of the metabolic syndrome publication-title: J. Clin. Endocrinol. Metab. – volume: 28 start-page: 363 year: 2012 end-page: 369 ident: bb0055 article-title: Metabolic syndrome, physical activity and cardiac autonomic function publication-title: Diabetes Metab. Res. Rev. – volume: 67 start-page: 1067 year: 2010 end-page: 1074 ident: bb0085 article-title: Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis publication-title: Biol. Psychiatry – volume: 7 start-page: 1166 year: 2015 end-page: 1178 ident: bb0215 article-title: Prediction of colorectal cancer diagnosis based on circulating plasma proteins publication-title: EMBO Mol. Med. – volume: 59 start-page: 256 year: 1987 end-page: 262 ident: bb0075 article-title: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction publication-title: Am. J. Cardiol. – volume: 44 start-page: 569 year: 2004 end-page: 576 ident: bb0190 article-title: Accessing physiological complexity of HRV by using threshold-dependent symbolic entropy publication-title: J. Korean Phys. Soc. – volume: 26 start-page: 477 year: 1996 end-page: 486 ident: bb0120 article-title: The Inventory of Depressive Symptomatology (IDS): psychometric properties publication-title: Psychol. Med. – volume: 30 start-page: 1103 year: 2006 end-page: 1108 ident: bb0235 article-title: Oxidation of apolipoprotein B-containing lipoproteins and serum paraoxonase/arylesterase activities in major depressive disorder publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry – volume: 37 start-page: 141 year: 2009 end-page: 153 ident: bb0265 article-title: Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health publication-title: Ann. Behav. Med. – volume: 267 start-page: H411 year: 1994 end-page: H418 ident: bb0145 article-title: Comparison of methods for removal of ectopy in measurement of heart rate variability publication-title: Am. J. Phys. – volume: 260 start-page: 499 year: 2010 end-page: 506 ident: bb0015 article-title: The role of proteomics in depression research publication-title: Eur. Arch. Psychiatry Clin. Neurosci. – volume: 9 start-page: 37 year: 2015 ident: bb0095 article-title: Characterizing psychological dimensions in non-pathological subjects through autonomic nervous system dynamics publication-title: Front. Comput. Neurosci. – volume: 2005 start-page: 147 year: 2005 end-page: 154 ident: bb0220 article-title: Classification and selection of biomarkers in genomic data using LASSO publication-title: J. Biomed. Biotechnol. – volume: 32 start-page: 230 year: 1985 end-page: 236 ident: bb0135 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. – volume: 93 start-page: 1043 issue: 5 year: 1996 ident: 10.1016/j.pnpbp.2017.02.014_bb0150 article-title: Heart rate variability: standards of measurement, physiological interpretation and clinical use publication-title: Circulation doi: 10.1161/01.CIR.93.5.1043 – volume: 23 start-page: 56 year: 1960 ident: 10.1016/j.pnpbp.2017.02.014_bb0105 article-title: A rating scale for depression publication-title: J. Neurol. Neurosurg. Psychiatry doi: 10.1136/jnnp.23.1.56 – volume: 46 start-page: 389 issue: 4 year: 2002 ident: 10.1016/j.pnpbp.2017.02.014_bb0100 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 26 start-page: 477 issue: 3 year: 1996 ident: 10.1016/j.pnpbp.2017.02.014_bb0120 article-title: The Inventory of Depressive Symptomatology (IDS): psychometric properties publication-title: Psychol. Med. doi: 10.1017/S0033291700035558 – volume: 10 start-page: 301 issue: 3 year: 2006 ident: 10.1016/j.pnpbp.2017.02.014_bb0180 article-title: Sample entropy of ECG time series of fearful flyers: preliminary results publication-title: Nonlinear Dynamics Psychol. Life Sci. – volume: 15 start-page: 1413 issue: 10 year: 2012 ident: 10.1016/j.pnpbp.2017.02.014_bb0025 article-title: Comparative proteomic analysis of plasma from major depressive patients: identification of proteins associated with lipid metabolism and immunoregulation publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145712000302 – volume: 17 start-page: 1599 issue: 10 year: 2014 ident: 10.1016/j.pnpbp.2017.02.014_bb0020 article-title: Proteomic changes in serum of first onset, antidepressant drug-naive major depression patients publication-title: Int. J. Neuropsychopharmacol. doi: 10.1017/S1461145714000819 – volume: 64 start-page: 061911 issue: 6 Pt 1 year: 2001 ident: 10.1016/j.pnpbp.2017.02.014_bb0195 article-title: Entropy and local uncertainty of data from sensory neurons publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys. doi: 10.1103/PhysRevE.64.061911 – volume: 67 start-page: 1067 issue: 11 year: 2010 ident: 10.1016/j.pnpbp.2017.02.014_bb0085 article-title: Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2009.12.012 – volume: 59 start-page: 256 issue: 4 year: 1987 ident: 10.1016/j.pnpbp.2017.02.014_bb0075 article-title: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction publication-title: Am. J. Cardiol. doi: 10.1016/0002-9149(87)90795-8 – volume: 56 start-page: 893 issue: 6 year: 1988 ident: 10.1016/j.pnpbp.2017.02.014_bb0125 article-title: An inventory for measuring clinical anxiety: psychometric properties publication-title: J. Consult. Clin. Psychol. doi: 10.1037/0022-006X.56.6.893 – volume: 267 start-page: H411 issue: 1 Pt 2 year: 1994 ident: 10.1016/j.pnpbp.2017.02.014_bb0145 article-title: Comparison of methods for removal of ectopy in measurement of heart rate variability publication-title: Am. J. Phys. – volume: 3 start-page: 791 issue: 10 year: 2003 ident: 10.1016/j.pnpbp.2017.02.014_bb0250 article-title: Macrophage migration inhibitory factor: a regulator of innate immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1200 – year: 2017 ident: 10.1016/j.pnpbp.2017.02.014_bb0205 article-title: A new prediction model for evaluating treatment-resistant depression publication-title: J. Clin. Psychiatry doi: 10.4088/JCP.15m10381 – volume: 161 start-page: 262 issue: 2 year: 2004 ident: 10.1016/j.pnpbp.2017.02.014_bb0115 article-title: Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder publication-title: Am. J. Psychiatry doi: 10.1176/appi.ajp.161.2.262 – volume: 79 start-page: 503 issue: 3 year: 2003 ident: 10.1016/j.pnpbp.2017.02.014_bb0255 article-title: The Polyvagal Theory: phylogenetic contributions to social behavior publication-title: Physiol. Behav. doi: 10.1016/S0031-9384(03)00156-2 – volume: 16 start-page: 185 issue: 1 year: 1997 ident: 10.1016/j.pnpbp.2017.02.014_bb0130 article-title: The clinical study of Korean version of Beck Anxiety Inventory: comparison of the patients and normal publication-title: Korean J. Clin. Psychol. – volume: 206 start-page: 17 issue: 1 year: 2009 ident: 10.1016/j.pnpbp.2017.02.014_bb0240 article-title: Apolipoprotein B levels, APOB alleles, and risk of ischemic cardiovascular disease in the general population, a review publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2009.01.004 – volume: 104 start-page: 2024 issue: 17 year: 2001 ident: 10.1016/j.pnpbp.2017.02.014_bb0155 article-title: Depression, heart rate variability, and acute myocardial infarction publication-title: Circulation doi: 10.1161/hc4201.097834 – volume: 98 start-page: 2484 issue: 6 year: 2013 ident: 10.1016/j.pnpbp.2017.02.014_bb0050 article-title: Dysregulation of the autonomic nervous system predicts the development of the metabolic syndrome publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2012-3104 – volume: 26 start-page: 354 issue: 4 year: 2009 ident: 10.1016/j.pnpbp.2017.02.014_bb0045 article-title: Metabolic syndrome and short-term heart rate variability in young adults. The cardiovascular risk in young Finns study publication-title: Diabet. Med. doi: 10.1111/j.1464-5491.2009.02686.x – volume: 32 start-page: 230 issue: 3 year: 1985 ident: 10.1016/j.pnpbp.2017.02.014_bb0135 article-title: A real-time QRS detection algorithm publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.1985.325532 – volume: 6 start-page: e803 year: 2016 ident: 10.1016/j.pnpbp.2017.02.014_bb0160 article-title: Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH): recommendations to advance research communication publication-title: Transl. Psychiatry doi: 10.1038/tp.2016.73 – volume: 37 start-page: 141 issue: 2 year: 2009 ident: 10.1016/j.pnpbp.2017.02.014_bb0265 article-title: Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health publication-title: Ann. Behav. Med. doi: 10.1007/s12160-009-9101-z – volume: 69 start-page: 60 year: 2016 ident: 10.1016/j.pnpbp.2017.02.014_bb0030 article-title: Discovery of serum protein biomarkers in drug-free patients with major depressive disorder publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2016.04.009 – volume: 44 start-page: 569 year: 2004 ident: 10.1016/j.pnpbp.2017.02.014_bb0190 article-title: Accessing physiological complexity of HRV by using threshold-dependent symbolic entropy publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.44.569 – volume: 89 start-page: 288 issue: 3 year: 2013 ident: 10.1016/j.pnpbp.2017.02.014_bb0040 article-title: The relationship between mental and physical health: insights from the study of heart rate variability publication-title: Int. J. Psychophysiol. doi: 10.1016/j.ijpsycho.2013.06.018 – volume: 33 start-page: 991 issue: 6 year: 2009 ident: 10.1016/j.pnpbp.2017.02.014_bb0270 article-title: Differential pattern of heart rate variability in patients with schizophrenia publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2009.05.004 – start-page: 1318 year: 2000 ident: 10.1016/j.pnpbp.2017.02.014_bb0005 article-title: Mood disorders: neurobiology – volume: 93 start-page: 279 issue: 2 year: 2013 ident: 10.1016/j.pnpbp.2017.02.014_bb0260 article-title: Cardiac vagal tone is associated with social engagement and self-regulation publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2013.02.013 – volume: 7 start-page: 1166 issue: 9 year: 2015 ident: 10.1016/j.pnpbp.2017.02.014_bb0215 article-title: Prediction of colorectal cancer diagnosis based on circulating plasma proteins publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201404873 – year: 2017 ident: 10.1016/j.pnpbp.2017.02.014_bb0210 article-title: Peripheral biomarker signatures of bipolar disorder and schizophrenia: a machine learning approach publication-title: Schizophr. Res. doi: 10.1016/j.schres.2017.01.018 – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 10.1016/j.pnpbp.2017.02.014_bb0200 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 90 start-page: 878 issue: 2 year: 1994 ident: 10.1016/j.pnpbp.2017.02.014_bb0065 article-title: Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study publication-title: Circulation doi: 10.1161/01.CIR.90.2.878 – volume: 5 start-page: 88 issue: 1 year: 1995 ident: 10.1016/j.pnpbp.2017.02.014_bb0185 article-title: Quantitative analysis of heart rate variability publication-title: Chaos doi: 10.1063/1.166090 – volume: 78 start-page: 683 issue: 4 year: 1993 ident: 10.1016/j.pnpbp.2017.02.014_bb0285 article-title: Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction publication-title: Anesthesiology doi: 10.1097/00000542-199304000-00011 – volume: 141 start-page: 122 issue: 2 year: 2010 ident: 10.1016/j.pnpbp.2017.02.014_bb0070 article-title: The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2009.09.543 – volume: 8 start-page: 88 issue: 2 year: 2008 ident: 10.1016/j.pnpbp.2017.02.014_bb0090 article-title: Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures publication-title: Cardiovasc. Eng. doi: 10.1007/s10558-007-9049-1 – volume: 9 start-page: 37 year: 2015 ident: 10.1016/j.pnpbp.2017.02.014_bb0095 article-title: Characterizing psychological dimensions in non-pathological subjects through autonomic nervous system dynamics publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2015.00037 – volume: 2012 start-page: 149516 year: 2012 ident: 10.1016/j.pnpbp.2017.02.014_bb0060 article-title: The relationship between heart rate variability and adiposity differs for central and overall adiposity publication-title: J. Obes. doi: 10.1155/2012/149516 – volume: 298 start-page: H874 issue: 3 year: 2010 ident: 10.1016/j.pnpbp.2017.02.014_bb0275 article-title: Physical activity and heart rate variability measured simultaneously during waking hours publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00856.2009 – volume: 44 start-page: 1031 issue: 12 year: 2006 ident: 10.1016/j.pnpbp.2017.02.014_bb0175 article-title: Heart rate variability: a review publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-006-0119-0 – year: 2016 ident: 10.1016/j.pnpbp.2017.02.014_bb0230 article-title: Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features publication-title: Schizophr. Res. – volume: 70 start-page: 40 issue: 1 year: 2008 ident: 10.1016/j.pnpbp.2017.02.014_bb0245 article-title: Depression, the metabolic syndrome and cardiovascular risk publication-title: Psychosom. Med. doi: 10.1097/PSY.0b013e31815c1b85 – volume: 2005 start-page: 147 issue: 2 year: 2005 ident: 10.1016/j.pnpbp.2017.02.014_bb0220 article-title: Classification and selection of biomarkers in genomic data using LASSO publication-title: J. Biomed. Biotechnol. doi: 10.1155/JBB.2005.147 – volume: 102 start-page: 1239 issue: 11 year: 2000 ident: 10.1016/j.pnpbp.2017.02.014_bb0035 article-title: Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities publication-title: Circulation doi: 10.1161/01.CIR.102.11.1239 – volume: 260 start-page: 499 issue: 6 year: 2010 ident: 10.1016/j.pnpbp.2017.02.014_bb0015 article-title: The role of proteomics in depression research publication-title: Eur. Arch. Psychiatry Clin. Neurosci. doi: 10.1007/s00406-009-0093-2 – volume: 5 start-page: e599 year: 2015 ident: 10.1016/j.pnpbp.2017.02.014_bb0010 article-title: Serum proteomic profiling of major depressive disorder publication-title: Transl. Psychiatry doi: 10.1038/tp.2015.88 – volume: 4 start-page: 26 year: 2013 ident: 10.1016/j.pnpbp.2017.02.014_bb0170 article-title: The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance publication-title: Front. Physiol. doi: 10.3389/fphys.2013.00026 – volume: 5 start-page: 80 year: 2014 ident: 10.1016/j.pnpbp.2017.02.014_bb0080 article-title: Anxiety disorders are associated with reduced heart rate variability: a meta-analysis publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2014.00080 – volume: 30 start-page: 1103 issue: 6 year: 2006 ident: 10.1016/j.pnpbp.2017.02.014_bb0235 article-title: Oxidation of apolipoprotein B-containing lipoproteins and serum paraoxonase/arylesterase activities in major depressive disorder publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry doi: 10.1016/j.pnpbp.2006.04.012 – volume: 28 start-page: 363 issue: 4 year: 2012 ident: 10.1016/j.pnpbp.2017.02.014_bb0055 article-title: Metabolic syndrome, physical activity and cardiac autonomic function publication-title: Diabetes Metab. Res. Rev. doi: 10.1002/dmrr.2281 – volume: 16 start-page: 119 issue: 5 year: 1997 ident: 10.1016/j.pnpbp.2017.02.014_bb0140 article-title: Time-frequency analysis of heart-rate variability publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/51.620503 – volume: 4 start-page: 192 year: 2010 ident: 10.1016/j.pnpbp.2017.02.014_bb0225 article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2010.00192 – volume: 44 start-page: 156 year: 2004 ident: 10.1016/j.pnpbp.2017.02.014_bb0110 article-title: Validity and reliability of the Korean version of the Hamilton Depression Rating Scale (K-HDRS) publication-title: J. Korean Neuropsychiatr. Assoc. – volume: 63 start-page: 512 issue: 3 year: 2007 ident: 10.1016/j.pnpbp.2017.02.014_bb0280 article-title: Prehospital loss of R-to-R interval complexity is associated with mortality in trauma patients publication-title: J. Trauma doi: 10.1097/TA.0b013e318142d2f0 – volume: 88 start-page: 378 issue: 4 year: 2002 ident: 10.1016/j.pnpbp.2017.02.014_bb0165 article-title: The pNNx files: re-examining a widely used heart rate variability measure publication-title: Heart doi: 10.1136/heart.88.4.378 |
SSID | ssj0001303 |
Score | 2.363505 |
Snippet | Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic... OBJECTIVEMajor depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 65 |
SubjectTerms | Adult Biomarker Biomarkers Depressive Disorder, Major - blood Depressive Disorder, Major - diagnosis Depressive Disorder, Major - physiopathology Female Heart Rate - physiology Heart rate variability Humans Machine Learning Major depressive disorder Middle Aged Proteome - metabolism Proteomics |
Title | Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm |
URI | https://dx.doi.org/10.1016/j.pnpbp.2017.02.014 https://www.ncbi.nlm.nih.gov/pubmed/28223106 https://www.proquest.com/docview/1870986088 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvfRSmj63jzCFktO664csW8eQNmxbGgJNIDchWXK6IWsvu97AXvo_8m8zI8tZekgOPVpYltCMZsbSN98w9jmzWVLFlkfO1Tri2qSRjjODG88Zy_FvO_YH-r9OxPSc_7jIL3bY0ZALQ7DKYPt7m-6tdWiZhNWcLGazyW-6MyP3iRFFHDLKOS9Iy7_83cI8yEb7c5aCMoy4GJiHPMZr0SwMkVYmhSfuTPhD3umh6NN7oePn7FkIH-Gwn-Ee23HNC3Zw2vNPb8Zwtk2nWo3hAE63zNSbl-z2aw-sm62grWGur9olDFDYGwc2MHGC2QCuh_G1I8BDDuetxWEDyyrJEigvBagcdgfENgG2L22_At1YQL1ez8FzQLS-keD1-CmP3HRRKFVxCfr6sl3Ouj_zV-z8-NvZ0TQKtRmiKstlF5V1LalWta6t1poLYXhSx7lLpSHGM5cX3Om4MjozvEwSnRVpKWorXYHW12Yme812m7ZxbxnUHI2cLLJKaIvBW1JWUmOgkkuJ6mWEHLF0kImqAnE51c-4VgNC7Up5QSoSpIpThYIcsfF9p0XP2_H462IQtvpH_RR6lsc7fhpUQ-HGpNsW3bh2vVIJWkJZCrTiI_am15n7mRB2F-Nq8e5_h33PntKTx6ylH9hut1y7jxgddWbfq_8-e3L4_ef05A4a7hNU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECUC59Beiu511ylQ5GTBkkhR4jFIGzhNYgSoA-RGkCKVOIglw5YL-FP6tx1SlIMekkOv1EZohm9G1Js3hHyjhiZlbFhkbaUipnQaqZhqXHhWG4Zf27Hf0D-f8skl-3mVXe2Ro74WxtEqA_Z3mO7ROoyMw9scL-fz8S_3z8yFT8wo4q6ifN-pU2UDsn94cjqZ7gDZwbTfasldkRHjvfiQp3kt66V2upVJ7rU7E_ZQgHooAfWB6Pg5eRYySDjsJvmC7Nn6JTm46CSotyOY3VdUrUdwABf34tTbV-TP945bN19DU8FC3TYr6Nmwvy2YIMYJegv4SrRvHwGedbhoDD42CK06c4IrTQHXEbsFJzgBputuvwZVG0DX3izAy0A0ftAx7PFWnrxpo9Ct4hrU3XWzmrc3i9fk8vjH7GgShfYMUUkz0UZFVQnXrlpVRinFONcsqeLMpkI70TOb5cyquNSKalYkiaJ5WvDKCJsjABuq6RsyqJvaviNQMcQ5kdOSK4P5W1KUQmGukgmBHqa5GJK0t4ksg3a5a6FxJ3uS2q30hpTOkDJOJRpySEa7i5addMfjp_Pe2PIfD5QYXB6_8GvvGhLXpvvhomrbbNYyQTAUBUcgH5K3nc_sZuLou5ha8_f_-9gv5Mlkdn4mz06mpx_IU3fEU9jSj2TQrjb2EyZLrf4cFsNfcegWBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+major+depressive+disorder+by+combining+multimodal+information+from+heart+rate+dynamics+and+serum+proteomics+using+machine-learning+algorithm&rft.jtitle=Progress+in+neuro-psychopharmacology+%26+biological+psychiatry&rft.au=Kim%2C+Eun+Young&rft.au=Lee%2C+Min+Young&rft.au=Kim%2C+Se+Hyun&rft.au=Ha%2C+Kyooseob&rft.date=2017-06-02&rft.eissn=1878-4216&rft.volume=76&rft.spage=65&rft.epage=71&rft_id=info:doi/10.1016%2Fj.pnpbp.2017.02.014&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-5846&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-5846&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-5846&client=summon |