Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm

Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis...

Full description

Saved in:
Bibliographic Details
Published inProgress in neuro-psychopharmacology & biological psychiatry Vol. 76; pp. 65 - 71
Main Authors Kim, Eun Young, Lee, Min Young, Kim, Se Hyun, Ha, Kyooseob, Kim, Kwang Pyo, Ahn, Yong Min
Format Journal Article
LanguageEnglish
Published England Elsevier Inc 02.06.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers. The study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination. A separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy. A high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis. •Biomarkers for depression were identified using machine learning.•A combined biomarker panel consisting of proteins and HRV indexes was developed.•Classification accuracy of 80.1% was achieved by combining HRV and proteomic data.•Biomarkers: apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, SampEn
AbstractList OBJECTIVEMajor depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers.METHODSThe study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination.RESULTSA separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy.CONCLUSIONSA high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis.
Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers. The study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination. A separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy. A high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis.
Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic nervous system. This study applied a machine-learning method to classify MDD and control groups by incorporating data from serum proteomic analysis and heart rate variability (HRV) analysis for the identification of novel peripheral biomarkers. The study subjects consisted of 25 drug-free female MDD patients and 25 age- and sex-matched healthy controls. First, quantitative serum proteome profiles were analyzed by liquid chromatography-tandem mass spectrometry using pooled serum samples from 10 patients and 10 controls. Next, candidate proteins were quantified with multiple reaction monitoring (MRM) in 50 subjects. We also analyzed 22 linear and nonlinear HRV parameters in 50 subjects. Finally, we identified a combined biomarker panel consisting of proteins and HRV indexes using a support vector machine with recursive feature elimination. A separation between MDD and control groups was achieved using five parameters (apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, and SampEn) at 80.1% classification accuracy. A combination of HRV and proteomic data achieved better classification accuracy. A high classification accuracy can be achieved by combining multimodal information from heart rate dynamics and serum proteomics in MDD. Our approach can be helpful for accurate clinical diagnosis of MDD. Further studies using larger, independent cohorts are needed to verify the role of these candidate biomarkers for MDD diagnosis. •Biomarkers for depression were identified using machine learning.•A combined biomarker panel consisting of proteins and HRV indexes was developed.•Classification accuracy of 80.1% was achieved by combining HRV and proteomic data.•Biomarkers: apolipoprotein B, group-specific component, ceruloplasmin, RMSSD, SampEn
Author Ha, Kyooseob
Ahn, Yong Min
Lee, Min Young
Kim, Kwang Pyo
Kim, Eun Young
Kim, Se Hyun
Author_xml – sequence: 1
  givenname: Eun Young
  surname: Kim
  fullname: Kim, Eun Young
  organization: Department of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
– sequence: 2
  givenname: Min Young
  surname: Lee
  fullname: Lee, Min Young
  organization: Institute for Systems Biology, Seattle, WA, United States
– sequence: 3
  givenname: Se Hyun
  surname: Kim
  fullname: Kim, Se Hyun
  organization: Department of Neuropsychiatry, Dongguk University Medical School, Dongguk University International Hospital, Goyang, Republic of Korea
– sequence: 4
  givenname: Kyooseob
  surname: Ha
  fullname: Ha, Kyooseob
  organization: Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
– sequence: 5
  givenname: Kwang Pyo
  surname: Kim
  fullname: Kim, Kwang Pyo
  organization: Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
– sequence: 6
  givenname: Yong Min
  surname: Ahn
  fullname: Ahn, Yong Min
  email: aym@snu.ac.kr
  organization: Institute of Human Behavioral Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28223106$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1u3DAQhInAQXx28gQBApZppJDUH1WkCJwfGzCQJqmJFbm640EkFZIycI-St42ss5sUrnaxmG-wmLkiFz54JOQ9ZyVnvP10LGc_D3MpGO9KJkrG61dkx2Uni1rw9oLsmFj3RtbtJblK6cgY4xWr3pBLIYWoOGt35O9XC3sfkk00jNTBMURqcI6Ykn1AamwK0WCkw4nq4Abrrd9Tt0zZumBgotaPITrINng6xuDoASFmGiGv8MmDszpR8IYmjIujcwwZw3Zc0mYF-mA9FtOKbd4w7UO0-eDektcjTAnfPc1r8vv7t183t8X9zx93N1_uC101fS7kOPY1kwJGAwB12w41H1mDoh_qhnNsuhqB6QGqoZacQ9UJ2Y6mx65rhamG6pp8PPuuv_1ZMGXlbNI4TeAxLEmtgbJetkzKVfrhSboMDo2ao3UQT-o5zlXQnwU6hpQijkrbvIWTI9hJcaYeq1NHtVWnHqtTTKi1upWt_mOf7V-mPp8pXCN6sBhV0ha9RmMj6qxMsC_y_wAPmLgc
CitedBy_id crossref_primary_10_1016_j_jpsychires_2021_07_041
crossref_primary_10_1007_s10586_019_02953_x
crossref_primary_10_1021_acs_jproteome_3c00580
crossref_primary_10_3389_fpsyt_2021_731220
crossref_primary_10_1016_j_ijpsycho_2023_08_001
crossref_primary_10_1016_j_psychres_2022_114842
crossref_primary_10_3390_jcm8070963
crossref_primary_10_3390_jpm11100957
crossref_primary_10_1155_2020_5246350
crossref_primary_10_1080_03007995_2022_2038487
crossref_primary_10_1080_14789450_2018_1444483
crossref_primary_10_1007_s12559_022_10042_2
crossref_primary_10_1016_j_cca_2024_120093
crossref_primary_10_3390_s22239102
crossref_primary_10_1016_j_compbiomed_2024_109521
crossref_primary_10_47992_IJHSP_2581_6411_0061
crossref_primary_10_1155_2022_1739882
crossref_primary_10_1038_s41598_018_35147_3
crossref_primary_10_1177_0706743717748883
crossref_primary_10_1007_s00216_018_1543_3
crossref_primary_10_1016_j_compbiomed_2024_108959
crossref_primary_10_3389_fnmol_2017_00272
crossref_primary_10_1038_s41398_019_0623_2
crossref_primary_10_1007_s11831_022_09733_8
crossref_primary_10_1021_acs_jproteome_1c00058
crossref_primary_10_3389_fpsyt_2018_00735
crossref_primary_10_1177_0144598718822400
Cites_doi 10.1161/01.CIR.93.5.1043
10.1136/jnnp.23.1.56
10.1023/A:1012487302797
10.1017/S0033291700035558
10.1017/S1461145712000302
10.1017/S1461145714000819
10.1103/PhysRevE.64.061911
10.1016/j.biopsych.2009.12.012
10.1016/0002-9149(87)90795-8
10.1037/0022-006X.56.6.893
10.1038/nri1200
10.4088/JCP.15m10381
10.1176/appi.ajp.161.2.262
10.1016/S0031-9384(03)00156-2
10.1016/j.atherosclerosis.2009.01.004
10.1161/hc4201.097834
10.1210/jc.2012-3104
10.1111/j.1464-5491.2009.02686.x
10.1109/TBME.1985.325532
10.1038/tp.2016.73
10.1007/s12160-009-9101-z
10.1016/j.pnpbp.2016.04.009
10.3938/jkps.44.569
10.1016/j.ijpsycho.2013.06.018
10.1016/j.pnpbp.2009.05.004
10.1016/j.biopsycho.2013.02.013
10.15252/emmm.201404873
10.1016/j.schres.2017.01.018
10.1093/bioinformatics/btm344
10.1161/01.CIR.90.2.878
10.1063/1.166090
10.1097/00000542-199304000-00011
10.1016/j.ijcard.2009.09.543
10.1007/s10558-007-9049-1
10.3389/fncom.2015.00037
10.1155/2012/149516
10.1152/ajpheart.00856.2009
10.1007/s11517-006-0119-0
10.1097/PSY.0b013e31815c1b85
10.1155/JBB.2005.147
10.1161/01.CIR.102.11.1239
10.1007/s00406-009-0093-2
10.1038/tp.2015.88
10.3389/fphys.2013.00026
10.3389/fpsyt.2014.00080
10.1016/j.pnpbp.2006.04.012
10.1002/dmrr.2281
10.1109/51.620503
10.3389/fnhum.2010.00192
10.1097/TA.0b013e318142d2f0
10.1136/heart.88.4.378
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright © 2017 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright © 2017 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.pnpbp.2017.02.014
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1878-4216
EndPage 71
ExternalDocumentID 28223106
10_1016_j_pnpbp_2017_02_014
S0278584616302007
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATCM
AAXLA
AAXUO
ABCQJ
ABFRF
ABIVO
ABJNI
ABMAC
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
L7B
M2V
M34
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SSN
SSP
SSZ
T5K
TEORI
~G-
.GJ
29P
53G
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMQ
HMT
HVGLF
HZ~
R2-
SEW
SNS
SPT
SSH
WUQ
ZGI
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c359t-8ff94082afdaaa466b41f05e29b4511e574ea0cba3b4811a37286fd9e7762d3b3
IEDL.DBID .~1
ISSN 0278-5846
IngestDate Tue Aug 05 09:30:53 EDT 2025
Mon Jul 21 06:05:16 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Tue Jul 01 01:50:19 EDT 2025
Fri Feb 23 02:24:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biomarker
Heart rate variability
Machine-learning
Major depressive disorder
Proteomics
Language English
License Copyright © 2017 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-8ff94082afdaaa466b41f05e29b4511e574ea0cba3b4811a37286fd9e7762d3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28223106
PQID 1870986088
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1870986088
pubmed_primary_28223106
crossref_citationtrail_10_1016_j_pnpbp_2017_02_014
crossref_primary_10_1016_j_pnpbp_2017_02_014
elsevier_sciencedirect_doi_10_1016_j_pnpbp_2017_02_014
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-02
PublicationDateYYYYMMDD 2017-06-02
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-02
  day: 02
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Progress in neuro-psychopharmacology & biological psychiatry
PublicationTitleAlternate Prog Neuropsychopharmacol Biol Psychiatry
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hautala, Karjalainen, Kiviniemi, Kinnunen, Makikallio, Huikuri (bb0275) 2010; 298
Yang, Liu, Sui, Pearlson, Calhoun (bb0225) 2010; 4
Soares-Miranda, Sandercock, Vale, Santos, Abreu, Moreira (bb0055) 2012; 28
Pinto, Passos, Gomes, Reckziegel, Kapczinski, Mwangi (bb0210) 2017
Chalmers, Quintana, Abbott, Kemp (bb0080) 2014; 5
Thayer, Yamamoto, Brosschot (bb0070) 2010; 141
Kurths, Voss, Saparin, Witt, Kleiner, Wessel (bb0185) 1995; 5
Batchinsky, Cancio, Salinas, Kuusela, Cooke, Wang (bb0280) 2007; 63
Lippman, Stein, Lerman (bb0145) 1994; 267
Fleisher, Pincus, Rosenbaum (bb0285) 1993; 78
Dekker, Crow, Folsom, Hannan, Liao, Swenne (bb0035) 2000; 102
Guyon, Weston, Barnhill, Vapnik (bb0100) 2002; 46
Sarandol, Sarandol, Eker, Karaagac, Hizli, Dirican (bb0235) 2006; 30
Rajendra Acharya, Paul Joseph, Kannathal, Lim, Suri (bb0175) 2006; 44
Koskinen, Kahonen, Jula, Mattsson, Laitinen, Keltikangas-Jarvinen (bb0045) 2009; 26
Martins-de-Souza, Harris, Guest, Turck, Bahn (bb0015) 2010; 260
Tsuji, Venditti, Manders, Evans, Larson, Feldman (bb0065) 1994; 90
Billman (bb0170) 2013; 4
Kautzky, Baldinger-Melich, Kranz, Vanicek, Souery, Montgomery (bb0205) 2017
Hamilton (bb0105) 1960; 23
Licht, de Geus, Penninx (bb0050) 2013; 98
Benn (bb0240) 2009; 206
Rush, Gullion, Basco, Jarrett, Trivedi (bb0120) 1996; 26
Thase (bb0005) 2000
Calandra, Roger (bb0250) 2003; 3
Saeys, Inza, Larranaga (bb0200) 2007; 23
Pan, Tompkins (bb0135) 1985; 32
Zarogianni, Storkey, Johnstone, Owens, Lawrie (bb0230) 2016
Surinova, Choi, Tao, Schuffler, Chang, Clough (bb0215) 2015; 7
Carney, Blumenthal, Stein, Watkins, Catellier, Berkman (bb0155) 2001; 104
Lee, Kim, Kim, Cho, Ha, Kim (bb0030) 2016; 69
Steuer, Ebeling, Russell, Bahar, Neiman, Moss (bb0195) 2001; 64
Kemp, Quintana, Gray, Felmingham, Brown, Gatt (bb0085) 2010; 67
Stelzhammer, Haenisch, Chan, Cooper, Steiner, Steeb (bb0020) 2014; 17
Yuk, Kim (bb0130) 1997; 16
Chang, Yoo, Yi, Hong, Oh, Hwang (bb0270) 2009; 33
Quintana, Alvares, Heathers (bb0160) 2016; 6
Porges (bb0255) 2003; 79
Bornas, Llabres, Noguera, Pez (bb0180) 2006; 10
Bot, Chan, Jansen, Lamers, Vogelzangs, Steiner (bb0010) 2015; 5
Kleiger, Miller, Bigger, Moss (bb0075) 1987; 59
Windham, Fumagalli, Ble, Sollers, Thayer, Najjar (bb0060) 2012; 2012
Geisler, Kubiak, Siewert, Weber (bb0260) 2013; 93
Vaccarino, McClure, Johnson, Sheps, Bittner, Rutledge (bb0245) 2008; 70
Park, Yi (bb0190) 2004; 44
Mietus, Peng, Henry, Goldsmith, Goldberger (bb0165) 2002; 88
Ghosh, Chinnaiyan (bb0220) 2005; 2005
Xu, Zhang, Luo, Zhou, Wang, Fang (bb0025) 2012; 15
Kemp, Quintana (bb0040) 2013; 89
Task Force of the European Society of Cardiology, the North American Society of Pacing and Electrophysiology (bb0150) 1996; 93
Costa, Peng, Goldberger (bb0090) 2008; 8
Thayer, Hansen, Saus-Rose, Johnsen (bb0265) 2009; 37
Beck, Epstein, Brown, Steer (bb0125) 1988; 56
Nardelli, Valenza, Cristea, Gentili, Cotet, David (bb0095) 2015; 9
Vila, Palacios, Presedo, Fernandez-Delgado, Felix, Barro (bb0140) 1997; 16
Martinez-Aran, Vieta, Reinares, Colom, Torrent, Sanchez-Moreno (bb0115) 2004; 161
Yi, Bae, Ahn, Park, Noh, Shin (bb0110) 2004; 44
Kleiger (10.1016/j.pnpbp.2017.02.014_bb0075) 1987; 59
Zarogianni (10.1016/j.pnpbp.2017.02.014_bb0230) 2016
Benn (10.1016/j.pnpbp.2017.02.014_bb0240) 2009; 206
Guyon (10.1016/j.pnpbp.2017.02.014_bb0100) 2002; 46
Koskinen (10.1016/j.pnpbp.2017.02.014_bb0045) 2009; 26
Yuk (10.1016/j.pnpbp.2017.02.014_bb0130) 1997; 16
Kautzky (10.1016/j.pnpbp.2017.02.014_bb0205) 2017
Rajendra Acharya (10.1016/j.pnpbp.2017.02.014_bb0175) 2006; 44
Stelzhammer (10.1016/j.pnpbp.2017.02.014_bb0020) 2014; 17
Hamilton (10.1016/j.pnpbp.2017.02.014_bb0105) 1960; 23
Windham (10.1016/j.pnpbp.2017.02.014_bb0060) 2012; 2012
Sarandol (10.1016/j.pnpbp.2017.02.014_bb0235) 2006; 30
Tsuji (10.1016/j.pnpbp.2017.02.014_bb0065) 1994; 90
Beck (10.1016/j.pnpbp.2017.02.014_bb0125) 1988; 56
Hautala (10.1016/j.pnpbp.2017.02.014_bb0275) 2010; 298
Bot (10.1016/j.pnpbp.2017.02.014_bb0010) 2015; 5
Vila (10.1016/j.pnpbp.2017.02.014_bb0140) 1997; 16
Thayer (10.1016/j.pnpbp.2017.02.014_bb0265) 2009; 37
Lee (10.1016/j.pnpbp.2017.02.014_bb0030) 2016; 69
Nardelli (10.1016/j.pnpbp.2017.02.014_bb0095) 2015; 9
Dekker (10.1016/j.pnpbp.2017.02.014_bb0035) 2000; 102
Thase (10.1016/j.pnpbp.2017.02.014_bb0005) 2000
Ghosh (10.1016/j.pnpbp.2017.02.014_bb0220) 2005; 2005
Yi (10.1016/j.pnpbp.2017.02.014_bb0110) 2004; 44
Kurths (10.1016/j.pnpbp.2017.02.014_bb0185) 1995; 5
Geisler (10.1016/j.pnpbp.2017.02.014_bb0260) 2013; 93
Bornas (10.1016/j.pnpbp.2017.02.014_bb0180) 2006; 10
Pinto (10.1016/j.pnpbp.2017.02.014_bb0210) 2017
Chang (10.1016/j.pnpbp.2017.02.014_bb0270) 2009; 33
Fleisher (10.1016/j.pnpbp.2017.02.014_bb0285) 1993; 78
Carney (10.1016/j.pnpbp.2017.02.014_bb0155) 2001; 104
Porges (10.1016/j.pnpbp.2017.02.014_bb0255) 2003; 79
Pan (10.1016/j.pnpbp.2017.02.014_bb0135) 1985; 32
Thayer (10.1016/j.pnpbp.2017.02.014_bb0070) 2010; 141
Billman (10.1016/j.pnpbp.2017.02.014_bb0170) 2013; 4
Licht (10.1016/j.pnpbp.2017.02.014_bb0050) 2013; 98
Quintana (10.1016/j.pnpbp.2017.02.014_bb0160) 2016; 6
Task Force of the European Society of Cardiology (10.1016/j.pnpbp.2017.02.014_bb0150) 1996; 93
Batchinsky (10.1016/j.pnpbp.2017.02.014_bb0280) 2007; 63
Surinova (10.1016/j.pnpbp.2017.02.014_bb0215) 2015; 7
Rush (10.1016/j.pnpbp.2017.02.014_bb0120) 1996; 26
Soares-Miranda (10.1016/j.pnpbp.2017.02.014_bb0055) 2012; 28
Chalmers (10.1016/j.pnpbp.2017.02.014_bb0080) 2014; 5
Martinez-Aran (10.1016/j.pnpbp.2017.02.014_bb0115) 2004; 161
Yang (10.1016/j.pnpbp.2017.02.014_bb0225) 2010; 4
Steuer (10.1016/j.pnpbp.2017.02.014_bb0195) 2001; 64
Lippman (10.1016/j.pnpbp.2017.02.014_bb0145) 1994; 267
Martins-de-Souza (10.1016/j.pnpbp.2017.02.014_bb0015) 2010; 260
Mietus (10.1016/j.pnpbp.2017.02.014_bb0165) 2002; 88
Xu (10.1016/j.pnpbp.2017.02.014_bb0025) 2012; 15
Kemp (10.1016/j.pnpbp.2017.02.014_bb0085) 2010; 67
Park (10.1016/j.pnpbp.2017.02.014_bb0190) 2004; 44
Calandra (10.1016/j.pnpbp.2017.02.014_bb0250) 2003; 3
Kemp (10.1016/j.pnpbp.2017.02.014_bb0040) 2013; 89
Saeys (10.1016/j.pnpbp.2017.02.014_bb0200) 2007; 23
Costa (10.1016/j.pnpbp.2017.02.014_bb0090) 2008; 8
Vaccarino (10.1016/j.pnpbp.2017.02.014_bb0245) 2008; 70
References_xml – volume: 17
  start-page: 1599
  year: 2014
  end-page: 1608
  ident: bb0020
  article-title: Proteomic changes in serum of first onset, antidepressant drug-naive major depression patients
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 88
  start-page: 378
  year: 2002
  end-page: 380
  ident: bb0165
  article-title: The pNNx files: re-examining a widely used heart rate variability measure
  publication-title: Heart
– volume: 90
  start-page: 878
  year: 1994
  end-page: 883
  ident: bb0065
  article-title: Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study
  publication-title: Circulation
– volume: 161
  start-page: 262
  year: 2004
  end-page: 270
  ident: bb0115
  article-title: Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder
  publication-title: Am. J. Psychiatry
– volume: 102
  start-page: 1239
  year: 2000
  end-page: 1244
  ident: bb0035
  article-title: Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities
  publication-title: Circulation
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bb0100
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: 26
  start-page: 354
  year: 2009
  end-page: 361
  ident: bb0045
  article-title: Metabolic syndrome and short-term heart rate variability in young adults. The cardiovascular risk in young Finns study
  publication-title: Diabet. Med.
– volume: 298
  start-page: H874
  year: 2010
  end-page: H880
  ident: bb0275
  article-title: Physical activity and heart rate variability measured simultaneously during waking hours
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
– volume: 69
  start-page: 60
  year: 2016
  end-page: 68
  ident: bb0030
  article-title: Discovery of serum protein biomarkers in drug-free patients with major depressive disorder
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
– volume: 64
  start-page: 061911
  year: 2001
  ident: bb0195
  article-title: Entropy and local uncertainty of data from sensory neurons
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
– volume: 10
  start-page: 301
  year: 2006
  end-page: 318
  ident: bb0180
  article-title: Sample entropy of ECG time series of fearful flyers: preliminary results
  publication-title: Nonlinear Dynamics Psychol. Life Sci.
– volume: 44
  start-page: 1031
  year: 2006
  end-page: 1051
  ident: bb0175
  article-title: Heart rate variability: a review
  publication-title: Med. Biol. Eng. Comput.
– volume: 2012
  start-page: 149516
  year: 2012
  ident: bb0060
  article-title: The relationship between heart rate variability and adiposity differs for central and overall adiposity
  publication-title: J. Obes.
– volume: 78
  start-page: 683
  year: 1993
  end-page: 692
  ident: bb0285
  article-title: Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction
  publication-title: Anesthesiology
– volume: 16
  start-page: 185
  year: 1997
  end-page: 197
  ident: bb0130
  article-title: The clinical study of Korean version of Beck Anxiety Inventory: comparison of the patients and normal
  publication-title: Korean J. Clin. Psychol.
– volume: 5
  start-page: 80
  year: 2014
  ident: bb0080
  article-title: Anxiety disorders are associated with reduced heart rate variability: a meta-analysis
  publication-title: Front. Psychiatry
– volume: 79
  start-page: 503
  year: 2003
  end-page: 513
  ident: bb0255
  article-title: The Polyvagal Theory: phylogenetic contributions to social behavior
  publication-title: Physiol. Behav.
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: bb0200
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 5
  start-page: 88
  year: 1995
  end-page: 94
  ident: bb0185
  article-title: Quantitative analysis of heart rate variability
  publication-title: Chaos
– volume: 93
  start-page: 1043
  year: 1996
  end-page: 1065
  ident: bb0150
  article-title: Heart rate variability: standards of measurement, physiological interpretation and clinical use
  publication-title: Circulation
– volume: 141
  start-page: 122
  year: 2010
  end-page: 131
  ident: bb0070
  article-title: The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors
  publication-title: Int. J. Cardiol.
– volume: 3
  start-page: 791
  year: 2003
  end-page: 800
  ident: bb0250
  article-title: Macrophage migration inhibitory factor: a regulator of innate immunity
  publication-title: Nat. Rev. Immunol.
– year: 2017
  ident: bb0210
  article-title: Peripheral biomarker signatures of bipolar disorder and schizophrenia: a machine learning approach
  publication-title: Schizophr. Res.
– volume: 23
  start-page: 56
  year: 1960
  end-page: 62
  ident: bb0105
  article-title: A rating scale for depression
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 70
  start-page: 40
  year: 2008
  end-page: 48
  ident: bb0245
  article-title: Depression, the metabolic syndrome and cardiovascular risk
  publication-title: Psychosom. Med.
– volume: 206
  start-page: 17
  year: 2009
  end-page: 30
  ident: bb0240
  article-title: Apolipoprotein B levels, APOB alleles, and risk of ischemic cardiovascular disease in the general population, a review
  publication-title: Atherosclerosis
– volume: 4
  start-page: 192
  year: 2010
  ident: bb0225
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front. Hum. Neurosci.
– volume: 8
  start-page: 88
  year: 2008
  end-page: 93
  ident: bb0090
  article-title: Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures
  publication-title: Cardiovasc. Eng.
– year: 2016
  ident: bb0230
  article-title: Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features
  publication-title: Schizophr. Res.
– volume: 5
  start-page: e599
  year: 2015
  ident: bb0010
  article-title: Serum proteomic profiling of major depressive disorder
  publication-title: Transl. Psychiatry
– volume: 6
  start-page: e803
  year: 2016
  ident: bb0160
  article-title: Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH): recommendations to advance research communication
  publication-title: Transl. Psychiatry
– volume: 16
  start-page: 119
  year: 1997
  end-page: 126
  ident: bb0140
  article-title: Time-frequency analysis of heart-rate variability
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 56
  start-page: 893
  year: 1988
  end-page: 897
  ident: bb0125
  article-title: An inventory for measuring clinical anxiety: psychometric properties
  publication-title: J. Consult. Clin. Psychol.
– volume: 63
  start-page: 512
  year: 2007
  end-page: 518
  ident: bb0280
  article-title: Prehospital loss of R-to-R interval complexity is associated with mortality in trauma patients
  publication-title: J. Trauma
– volume: 15
  start-page: 1413
  year: 2012
  end-page: 1425
  ident: bb0025
  article-title: Comparative proteomic analysis of plasma from major depressive patients: identification of proteins associated with lipid metabolism and immunoregulation
  publication-title: Int. J. Neuropsychopharmacol.
– volume: 93
  start-page: 279
  year: 2013
  end-page: 286
  ident: bb0260
  article-title: Cardiac vagal tone is associated with social engagement and self-regulation
  publication-title: Biol. Psychol.
– year: 2017
  ident: bb0205
  article-title: A new prediction model for evaluating treatment-resistant depression
  publication-title: J. Clin. Psychiatry
– volume: 89
  start-page: 288
  year: 2013
  end-page: 296
  ident: bb0040
  article-title: The relationship between mental and physical health: insights from the study of heart rate variability
  publication-title: Int. J. Psychophysiol.
– start-page: 1318
  year: 2000
  end-page: 1328
  ident: bb0005
  article-title: Mood disorders: neurobiology
  publication-title: Comprehensive Textbook of Psychaitry
– volume: 104
  start-page: 2024
  year: 2001
  end-page: 2028
  ident: bb0155
  article-title: Depression, heart rate variability, and acute myocardial infarction
  publication-title: Circulation
– volume: 33
  start-page: 991
  year: 2009
  end-page: 995
  ident: bb0270
  article-title: Differential pattern of heart rate variability in patients with schizophrenia
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
– volume: 4
  start-page: 26
  year: 2013
  ident: bb0170
  article-title: The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance
  publication-title: Front. Physiol.
– volume: 44
  start-page: 156
  year: 2004
  end-page: 465
  ident: bb0110
  article-title: Validity and reliability of the Korean version of the Hamilton Depression Rating Scale (K-HDRS)
  publication-title: J. Korean Neuropsychiatr. Assoc.
– volume: 98
  start-page: 2484
  year: 2013
  end-page: 2493
  ident: bb0050
  article-title: Dysregulation of the autonomic nervous system predicts the development of the metabolic syndrome
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 28
  start-page: 363
  year: 2012
  end-page: 369
  ident: bb0055
  article-title: Metabolic syndrome, physical activity and cardiac autonomic function
  publication-title: Diabetes Metab. Res. Rev.
– volume: 67
  start-page: 1067
  year: 2010
  end-page: 1074
  ident: bb0085
  article-title: Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis
  publication-title: Biol. Psychiatry
– volume: 7
  start-page: 1166
  year: 2015
  end-page: 1178
  ident: bb0215
  article-title: Prediction of colorectal cancer diagnosis based on circulating plasma proteins
  publication-title: EMBO Mol. Med.
– volume: 59
  start-page: 256
  year: 1987
  end-page: 262
  ident: bb0075
  article-title: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction
  publication-title: Am. J. Cardiol.
– volume: 44
  start-page: 569
  year: 2004
  end-page: 576
  ident: bb0190
  article-title: Accessing physiological complexity of HRV by using threshold-dependent symbolic entropy
  publication-title: J. Korean Phys. Soc.
– volume: 26
  start-page: 477
  year: 1996
  end-page: 486
  ident: bb0120
  article-title: The Inventory of Depressive Symptomatology (IDS): psychometric properties
  publication-title: Psychol. Med.
– volume: 30
  start-page: 1103
  year: 2006
  end-page: 1108
  ident: bb0235
  article-title: Oxidation of apolipoprotein B-containing lipoproteins and serum paraoxonase/arylesterase activities in major depressive disorder
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
– volume: 37
  start-page: 141
  year: 2009
  end-page: 153
  ident: bb0265
  article-title: Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health
  publication-title: Ann. Behav. Med.
– volume: 267
  start-page: H411
  year: 1994
  end-page: H418
  ident: bb0145
  article-title: Comparison of methods for removal of ectopy in measurement of heart rate variability
  publication-title: Am. J. Phys.
– volume: 260
  start-page: 499
  year: 2010
  end-page: 506
  ident: bb0015
  article-title: The role of proteomics in depression research
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
– volume: 9
  start-page: 37
  year: 2015
  ident: bb0095
  article-title: Characterizing psychological dimensions in non-pathological subjects through autonomic nervous system dynamics
  publication-title: Front. Comput. Neurosci.
– volume: 2005
  start-page: 147
  year: 2005
  end-page: 154
  ident: bb0220
  article-title: Classification and selection of biomarkers in genomic data using LASSO
  publication-title: J. Biomed. Biotechnol.
– volume: 32
  start-page: 230
  year: 1985
  end-page: 236
  ident: bb0135
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 93
  start-page: 1043
  issue: 5
  year: 1996
  ident: 10.1016/j.pnpbp.2017.02.014_bb0150
  article-title: Heart rate variability: standards of measurement, physiological interpretation and clinical use
  publication-title: Circulation
  doi: 10.1161/01.CIR.93.5.1043
– volume: 23
  start-page: 56
  year: 1960
  ident: 10.1016/j.pnpbp.2017.02.014_bb0105
  article-title: A rating scale for depression
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp.23.1.56
– volume: 46
  start-page: 389
  issue: 4
  year: 2002
  ident: 10.1016/j.pnpbp.2017.02.014_bb0100
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 26
  start-page: 477
  issue: 3
  year: 1996
  ident: 10.1016/j.pnpbp.2017.02.014_bb0120
  article-title: The Inventory of Depressive Symptomatology (IDS): psychometric properties
  publication-title: Psychol. Med.
  doi: 10.1017/S0033291700035558
– volume: 10
  start-page: 301
  issue: 3
  year: 2006
  ident: 10.1016/j.pnpbp.2017.02.014_bb0180
  article-title: Sample entropy of ECG time series of fearful flyers: preliminary results
  publication-title: Nonlinear Dynamics Psychol. Life Sci.
– volume: 15
  start-page: 1413
  issue: 10
  year: 2012
  ident: 10.1016/j.pnpbp.2017.02.014_bb0025
  article-title: Comparative proteomic analysis of plasma from major depressive patients: identification of proteins associated with lipid metabolism and immunoregulation
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145712000302
– volume: 17
  start-page: 1599
  issue: 10
  year: 2014
  ident: 10.1016/j.pnpbp.2017.02.014_bb0020
  article-title: Proteomic changes in serum of first onset, antidepressant drug-naive major depression patients
  publication-title: Int. J. Neuropsychopharmacol.
  doi: 10.1017/S1461145714000819
– volume: 64
  start-page: 061911
  issue: 6 Pt 1
  year: 2001
  ident: 10.1016/j.pnpbp.2017.02.014_bb0195
  article-title: Entropy and local uncertainty of data from sensory neurons
  publication-title: Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
  doi: 10.1103/PhysRevE.64.061911
– volume: 67
  start-page: 1067
  issue: 11
  year: 2010
  ident: 10.1016/j.pnpbp.2017.02.014_bb0085
  article-title: Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2009.12.012
– volume: 59
  start-page: 256
  issue: 4
  year: 1987
  ident: 10.1016/j.pnpbp.2017.02.014_bb0075
  article-title: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction
  publication-title: Am. J. Cardiol.
  doi: 10.1016/0002-9149(87)90795-8
– volume: 56
  start-page: 893
  issue: 6
  year: 1988
  ident: 10.1016/j.pnpbp.2017.02.014_bb0125
  article-title: An inventory for measuring clinical anxiety: psychometric properties
  publication-title: J. Consult. Clin. Psychol.
  doi: 10.1037/0022-006X.56.6.893
– volume: 267
  start-page: H411
  issue: 1 Pt 2
  year: 1994
  ident: 10.1016/j.pnpbp.2017.02.014_bb0145
  article-title: Comparison of methods for removal of ectopy in measurement of heart rate variability
  publication-title: Am. J. Phys.
– volume: 3
  start-page: 791
  issue: 10
  year: 2003
  ident: 10.1016/j.pnpbp.2017.02.014_bb0250
  article-title: Macrophage migration inhibitory factor: a regulator of innate immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1200
– year: 2017
  ident: 10.1016/j.pnpbp.2017.02.014_bb0205
  article-title: A new prediction model for evaluating treatment-resistant depression
  publication-title: J. Clin. Psychiatry
  doi: 10.4088/JCP.15m10381
– volume: 161
  start-page: 262
  issue: 2
  year: 2004
  ident: 10.1016/j.pnpbp.2017.02.014_bb0115
  article-title: Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder
  publication-title: Am. J. Psychiatry
  doi: 10.1176/appi.ajp.161.2.262
– volume: 79
  start-page: 503
  issue: 3
  year: 2003
  ident: 10.1016/j.pnpbp.2017.02.014_bb0255
  article-title: The Polyvagal Theory: phylogenetic contributions to social behavior
  publication-title: Physiol. Behav.
  doi: 10.1016/S0031-9384(03)00156-2
– volume: 16
  start-page: 185
  issue: 1
  year: 1997
  ident: 10.1016/j.pnpbp.2017.02.014_bb0130
  article-title: The clinical study of Korean version of Beck Anxiety Inventory: comparison of the patients and normal
  publication-title: Korean J. Clin. Psychol.
– volume: 206
  start-page: 17
  issue: 1
  year: 2009
  ident: 10.1016/j.pnpbp.2017.02.014_bb0240
  article-title: Apolipoprotein B levels, APOB alleles, and risk of ischemic cardiovascular disease in the general population, a review
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2009.01.004
– volume: 104
  start-page: 2024
  issue: 17
  year: 2001
  ident: 10.1016/j.pnpbp.2017.02.014_bb0155
  article-title: Depression, heart rate variability, and acute myocardial infarction
  publication-title: Circulation
  doi: 10.1161/hc4201.097834
– volume: 98
  start-page: 2484
  issue: 6
  year: 2013
  ident: 10.1016/j.pnpbp.2017.02.014_bb0050
  article-title: Dysregulation of the autonomic nervous system predicts the development of the metabolic syndrome
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2012-3104
– volume: 26
  start-page: 354
  issue: 4
  year: 2009
  ident: 10.1016/j.pnpbp.2017.02.014_bb0045
  article-title: Metabolic syndrome and short-term heart rate variability in young adults. The cardiovascular risk in young Finns study
  publication-title: Diabet. Med.
  doi: 10.1111/j.1464-5491.2009.02686.x
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  ident: 10.1016/j.pnpbp.2017.02.014_bb0135
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 6
  start-page: e803
  year: 2016
  ident: 10.1016/j.pnpbp.2017.02.014_bb0160
  article-title: Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH): recommendations to advance research communication
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2016.73
– volume: 37
  start-page: 141
  issue: 2
  year: 2009
  ident: 10.1016/j.pnpbp.2017.02.014_bb0265
  article-title: Heart rate variability, prefrontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health
  publication-title: Ann. Behav. Med.
  doi: 10.1007/s12160-009-9101-z
– volume: 69
  start-page: 60
  year: 2016
  ident: 10.1016/j.pnpbp.2017.02.014_bb0030
  article-title: Discovery of serum protein biomarkers in drug-free patients with major depressive disorder
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2016.04.009
– volume: 44
  start-page: 569
  year: 2004
  ident: 10.1016/j.pnpbp.2017.02.014_bb0190
  article-title: Accessing physiological complexity of HRV by using threshold-dependent symbolic entropy
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.44.569
– volume: 89
  start-page: 288
  issue: 3
  year: 2013
  ident: 10.1016/j.pnpbp.2017.02.014_bb0040
  article-title: The relationship between mental and physical health: insights from the study of heart rate variability
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/j.ijpsycho.2013.06.018
– volume: 33
  start-page: 991
  issue: 6
  year: 2009
  ident: 10.1016/j.pnpbp.2017.02.014_bb0270
  article-title: Differential pattern of heart rate variability in patients with schizophrenia
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2009.05.004
– start-page: 1318
  year: 2000
  ident: 10.1016/j.pnpbp.2017.02.014_bb0005
  article-title: Mood disorders: neurobiology
– volume: 93
  start-page: 279
  issue: 2
  year: 2013
  ident: 10.1016/j.pnpbp.2017.02.014_bb0260
  article-title: Cardiac vagal tone is associated with social engagement and self-regulation
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2013.02.013
– volume: 7
  start-page: 1166
  issue: 9
  year: 2015
  ident: 10.1016/j.pnpbp.2017.02.014_bb0215
  article-title: Prediction of colorectal cancer diagnosis based on circulating plasma proteins
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201404873
– year: 2017
  ident: 10.1016/j.pnpbp.2017.02.014_bb0210
  article-title: Peripheral biomarker signatures of bipolar disorder and schizophrenia: a machine learning approach
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2017.01.018
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 10.1016/j.pnpbp.2017.02.014_bb0200
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 90
  start-page: 878
  issue: 2
  year: 1994
  ident: 10.1016/j.pnpbp.2017.02.014_bb0065
  article-title: Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study
  publication-title: Circulation
  doi: 10.1161/01.CIR.90.2.878
– volume: 5
  start-page: 88
  issue: 1
  year: 1995
  ident: 10.1016/j.pnpbp.2017.02.014_bb0185
  article-title: Quantitative analysis of heart rate variability
  publication-title: Chaos
  doi: 10.1063/1.166090
– volume: 78
  start-page: 683
  issue: 4
  year: 1993
  ident: 10.1016/j.pnpbp.2017.02.014_bb0285
  article-title: Approximate entropy of heart rate as a correlate of postoperative ventricular dysfunction
  publication-title: Anesthesiology
  doi: 10.1097/00000542-199304000-00011
– volume: 141
  start-page: 122
  issue: 2
  year: 2010
  ident: 10.1016/j.pnpbp.2017.02.014_bb0070
  article-title: The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2009.09.543
– volume: 8
  start-page: 88
  issue: 2
  year: 2008
  ident: 10.1016/j.pnpbp.2017.02.014_bb0090
  article-title: Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures
  publication-title: Cardiovasc. Eng.
  doi: 10.1007/s10558-007-9049-1
– volume: 9
  start-page: 37
  year: 2015
  ident: 10.1016/j.pnpbp.2017.02.014_bb0095
  article-title: Characterizing psychological dimensions in non-pathological subjects through autonomic nervous system dynamics
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2015.00037
– volume: 2012
  start-page: 149516
  year: 2012
  ident: 10.1016/j.pnpbp.2017.02.014_bb0060
  article-title: The relationship between heart rate variability and adiposity differs for central and overall adiposity
  publication-title: J. Obes.
  doi: 10.1155/2012/149516
– volume: 298
  start-page: H874
  issue: 3
  year: 2010
  ident: 10.1016/j.pnpbp.2017.02.014_bb0275
  article-title: Physical activity and heart rate variability measured simultaneously during waking hours
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00856.2009
– volume: 44
  start-page: 1031
  issue: 12
  year: 2006
  ident: 10.1016/j.pnpbp.2017.02.014_bb0175
  article-title: Heart rate variability: a review
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0119-0
– year: 2016
  ident: 10.1016/j.pnpbp.2017.02.014_bb0230
  article-title: Improved individualized prediction of schizophrenia in subjects at familial high risk, based on neuroanatomical data, schizotypal and neurocognitive features
  publication-title: Schizophr. Res.
– volume: 70
  start-page: 40
  issue: 1
  year: 2008
  ident: 10.1016/j.pnpbp.2017.02.014_bb0245
  article-title: Depression, the metabolic syndrome and cardiovascular risk
  publication-title: Psychosom. Med.
  doi: 10.1097/PSY.0b013e31815c1b85
– volume: 2005
  start-page: 147
  issue: 2
  year: 2005
  ident: 10.1016/j.pnpbp.2017.02.014_bb0220
  article-title: Classification and selection of biomarkers in genomic data using LASSO
  publication-title: J. Biomed. Biotechnol.
  doi: 10.1155/JBB.2005.147
– volume: 102
  start-page: 1239
  issue: 11
  year: 2000
  ident: 10.1016/j.pnpbp.2017.02.014_bb0035
  article-title: Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities
  publication-title: Circulation
  doi: 10.1161/01.CIR.102.11.1239
– volume: 260
  start-page: 499
  issue: 6
  year: 2010
  ident: 10.1016/j.pnpbp.2017.02.014_bb0015
  article-title: The role of proteomics in depression research
  publication-title: Eur. Arch. Psychiatry Clin. Neurosci.
  doi: 10.1007/s00406-009-0093-2
– volume: 5
  start-page: e599
  year: 2015
  ident: 10.1016/j.pnpbp.2017.02.014_bb0010
  article-title: Serum proteomic profiling of major depressive disorder
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2015.88
– volume: 4
  start-page: 26
  year: 2013
  ident: 10.1016/j.pnpbp.2017.02.014_bb0170
  article-title: The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2013.00026
– volume: 5
  start-page: 80
  year: 2014
  ident: 10.1016/j.pnpbp.2017.02.014_bb0080
  article-title: Anxiety disorders are associated with reduced heart rate variability: a meta-analysis
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2014.00080
– volume: 30
  start-page: 1103
  issue: 6
  year: 2006
  ident: 10.1016/j.pnpbp.2017.02.014_bb0235
  article-title: Oxidation of apolipoprotein B-containing lipoproteins and serum paraoxonase/arylesterase activities in major depressive disorder
  publication-title: Prog. Neuro-Psychopharmacol. Biol. Psychiatry
  doi: 10.1016/j.pnpbp.2006.04.012
– volume: 28
  start-page: 363
  issue: 4
  year: 2012
  ident: 10.1016/j.pnpbp.2017.02.014_bb0055
  article-title: Metabolic syndrome, physical activity and cardiac autonomic function
  publication-title: Diabetes Metab. Res. Rev.
  doi: 10.1002/dmrr.2281
– volume: 16
  start-page: 119
  issue: 5
  year: 1997
  ident: 10.1016/j.pnpbp.2017.02.014_bb0140
  article-title: Time-frequency analysis of heart-rate variability
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.620503
– volume: 4
  start-page: 192
  year: 2010
  ident: 10.1016/j.pnpbp.2017.02.014_bb0225
  article-title: A hybrid machine learning method for fusing fMRI and genetic data: combining both improves classification of schizophrenia
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2010.00192
– volume: 44
  start-page: 156
  year: 2004
  ident: 10.1016/j.pnpbp.2017.02.014_bb0110
  article-title: Validity and reliability of the Korean version of the Hamilton Depression Rating Scale (K-HDRS)
  publication-title: J. Korean Neuropsychiatr. Assoc.
– volume: 63
  start-page: 512
  issue: 3
  year: 2007
  ident: 10.1016/j.pnpbp.2017.02.014_bb0280
  article-title: Prehospital loss of R-to-R interval complexity is associated with mortality in trauma patients
  publication-title: J. Trauma
  doi: 10.1097/TA.0b013e318142d2f0
– volume: 88
  start-page: 378
  issue: 4
  year: 2002
  ident: 10.1016/j.pnpbp.2017.02.014_bb0165
  article-title: The pNNx files: re-examining a widely used heart rate variability measure
  publication-title: Heart
  doi: 10.1136/heart.88.4.378
SSID ssj0001303
Score 2.363505
Snippet Major depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the autonomic...
OBJECTIVEMajor depressive disorder (MDD) is a systemic and multifactorial disorder that involves abnormalities in multiple biochemical pathways and the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms Adult
Biomarker
Biomarkers
Depressive Disorder, Major - blood
Depressive Disorder, Major - diagnosis
Depressive Disorder, Major - physiopathology
Female
Heart Rate - physiology
Heart rate variability
Humans
Machine Learning
Major depressive disorder
Middle Aged
Proteome - metabolism
Proteomics
Title Diagnosis of major depressive disorder by combining multimodal information from heart rate dynamics and serum proteomics using machine-learning algorithm
URI https://dx.doi.org/10.1016/j.pnpbp.2017.02.014
https://www.ncbi.nlm.nih.gov/pubmed/28223106
https://www.proquest.com/docview/1870986088
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvfRSmj63jzCFktO664csW8eQNmxbGgJNIDchWXK6IWsvu97AXvo_8m8zI8tZekgOPVpYltCMZsbSN98w9jmzWVLFlkfO1Tri2qSRjjODG88Zy_FvO_YH-r9OxPSc_7jIL3bY0ZALQ7DKYPt7m-6tdWiZhNWcLGazyW-6MyP3iRFFHDLKOS9Iy7_83cI8yEb7c5aCMoy4GJiHPMZr0SwMkVYmhSfuTPhD3umh6NN7oePn7FkIH-Gwn-Ee23HNC3Zw2vNPb8Zwtk2nWo3hAE63zNSbl-z2aw-sm62grWGur9olDFDYGwc2MHGC2QCuh_G1I8BDDuetxWEDyyrJEigvBagcdgfENgG2L22_At1YQL1ez8FzQLS-keD1-CmP3HRRKFVxCfr6sl3Ouj_zV-z8-NvZ0TQKtRmiKstlF5V1LalWta6t1poLYXhSx7lLpSHGM5cX3Om4MjozvEwSnRVpKWorXYHW12Yme812m7ZxbxnUHI2cLLJKaIvBW1JWUmOgkkuJ6mWEHLF0kImqAnE51c-4VgNC7Up5QSoSpIpThYIcsfF9p0XP2_H462IQtvpH_RR6lsc7fhpUQ-HGpNsW3bh2vVIJWkJZCrTiI_am15n7mRB2F-Nq8e5_h33PntKTx6ylH9hut1y7jxgddWbfq_8-e3L4_ef05A4a7hNU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECUC59Beiu511ylQ5GTBkkhR4jFIGzhNYgSoA-RGkCKVOIglw5YL-FP6tx1SlIMekkOv1EZohm9G1Js3hHyjhiZlbFhkbaUipnQaqZhqXHhWG4Zf27Hf0D-f8skl-3mVXe2Ro74WxtEqA_Z3mO7ROoyMw9scL-fz8S_3z8yFT8wo4q6ifN-pU2UDsn94cjqZ7gDZwbTfasldkRHjvfiQp3kt66V2upVJ7rU7E_ZQgHooAfWB6Pg5eRYySDjsJvmC7Nn6JTm46CSotyOY3VdUrUdwABf34tTbV-TP945bN19DU8FC3TYr6Nmwvy2YIMYJegv4SrRvHwGedbhoDD42CK06c4IrTQHXEbsFJzgBputuvwZVG0DX3izAy0A0ftAx7PFWnrxpo9Ct4hrU3XWzmrc3i9fk8vjH7GgShfYMUUkz0UZFVQnXrlpVRinFONcsqeLMpkI70TOb5cyquNSKalYkiaJ5WvDKCJsjABuq6RsyqJvaviNQMcQ5kdOSK4P5W1KUQmGukgmBHqa5GJK0t4ksg3a5a6FxJ3uS2q30hpTOkDJOJRpySEa7i5addMfjp_Pe2PIfD5QYXB6_8GvvGhLXpvvhomrbbNYyQTAUBUcgH5K3nc_sZuLou5ha8_f_-9gv5Mlkdn4mz06mpx_IU3fEU9jSj2TQrjb2EyZLrf4cFsNfcegWBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnosis+of+major+depressive+disorder+by+combining+multimodal+information+from+heart+rate+dynamics+and+serum+proteomics+using+machine-learning+algorithm&rft.jtitle=Progress+in+neuro-psychopharmacology+%26+biological+psychiatry&rft.au=Kim%2C+Eun+Young&rft.au=Lee%2C+Min+Young&rft.au=Kim%2C+Se+Hyun&rft.au=Ha%2C+Kyooseob&rft.date=2017-06-02&rft.eissn=1878-4216&rft.volume=76&rft.spage=65&rft.epage=71&rft_id=info:doi/10.1016%2Fj.pnpbp.2017.02.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-5846&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-5846&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-5846&client=summon