Non-existence of Classical Solutions with Finite Energy to the Cauchy Problem of the Compressible Navier–Stokes Equations

The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for...

Full description

Saved in:
Bibliographic Details
Published inArchive for rational mechanics and analysis Vol. 232; no. 2; pp. 557 - 590
Main Authors Li, Hai-Liang, Wang, Yuexun, Xin, Zhouping
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 02.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0003-9527
1432-0673
DOI10.1007/s00205-018-1328-z

Cover

Loading…
Abstract The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for the CNS in either one-dimension for general smooth initial data or multi-dimension for smooth initial data near some equilibrium state (that is, small perturbation) (Antontsev et al. in Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland Publishing Co., Amsterdam, 1990 ; Kazhikhov in Sibirsk Mat Zh 23:60–64, 1982 ; Kazhikhov et al. in Prikl Mat Meh 41:282–291, 1977 ; Matsumura and Nishida in Proc Jpn Acad Ser A Math Sci 55:337–342, 1979 , J Math Kyoto Univ 20:67–104, 1980 , Commun Math Phys 89:445–464, 1983 ). In the case that the flow density may contain a vacuum (the density can be zero at some space-time point), it seems to be a rather subtle problem to deal with the well-posedness problem for CNS. The local well-posedness of classical solutions containing a vacuum was shown in homogeneous Sobolev space (without the information of velocity in L 2 -norm) for general regular initial data with some compatibility conditions being satisfied initially (Cho et al. in J Math Pures Appl (9) 83:243–275, 2004 ; Cho and Kim in J Differ Equ 228:377–411, 2006 , Manuscr Math 120:91–129, 2006 ; Choe and Kim in J Differ Equ 190:504–523 2003 ), and the global existence of a classical solution in the same space is established under the additional assumption of small total initial energy but possible large oscillations (Huang et al. in Commun Pure Appl Math 65:549–585, 2012 ). However, it was shown that any classical solutions to the compressible Navier–Stokes equations in finite energy (inhomogeneous Sobolev) space cannot exist globally in time since it may blow up in finite time provided that the density is compactly supported (Xin in Commun Pure Appl Math 51:229–240, 1998 ). In this paper, we investigate the well-posedess of classical solutions to the Cauchy problem of Navier–Stokes equations, and prove that the classical solution with finite energy does not exist in the inhomogeneous Sobolev space for any short time under some natural assumptions on initial data near the vacuum. This implies, in particular, that the homogeneous Sobolev space is as crucial as studying the well-posedness for the Cauchy problem of compressible Navier–Stokes equations in the presence of a vacuum at far fields even locally in time.
AbstractList The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for the CNS in either one-dimension for general smooth initial data or multi-dimension for smooth initial data near some equilibrium state (that is, small perturbation) (Antontsev et al. in Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland Publishing Co., Amsterdam, 1990 ; Kazhikhov in Sibirsk Mat Zh 23:60–64, 1982 ; Kazhikhov et al. in Prikl Mat Meh 41:282–291, 1977 ; Matsumura and Nishida in Proc Jpn Acad Ser A Math Sci 55:337–342, 1979 , J Math Kyoto Univ 20:67–104, 1980 , Commun Math Phys 89:445–464, 1983 ). In the case that the flow density may contain a vacuum (the density can be zero at some space-time point), it seems to be a rather subtle problem to deal with the well-posedness problem for CNS. The local well-posedness of classical solutions containing a vacuum was shown in homogeneous Sobolev space (without the information of velocity in L 2 -norm) for general regular initial data with some compatibility conditions being satisfied initially (Cho et al. in J Math Pures Appl (9) 83:243–275, 2004 ; Cho and Kim in J Differ Equ 228:377–411, 2006 , Manuscr Math 120:91–129, 2006 ; Choe and Kim in J Differ Equ 190:504–523 2003 ), and the global existence of a classical solution in the same space is established under the additional assumption of small total initial energy but possible large oscillations (Huang et al. in Commun Pure Appl Math 65:549–585, 2012 ). However, it was shown that any classical solutions to the compressible Navier–Stokes equations in finite energy (inhomogeneous Sobolev) space cannot exist globally in time since it may blow up in finite time provided that the density is compactly supported (Xin in Commun Pure Appl Math 51:229–240, 1998 ). In this paper, we investigate the well-posedess of classical solutions to the Cauchy problem of Navier–Stokes equations, and prove that the classical solution with finite energy does not exist in the inhomogeneous Sobolev space for any short time under some natural assumptions on initial data near the vacuum. This implies, in particular, that the homogeneous Sobolev space is as crucial as studying the well-posedness for the Cauchy problem of compressible Navier–Stokes equations in the presence of a vacuum at far fields even locally in time.
The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for the CNS in either one-dimension for general smooth initial data or multi-dimension for smooth initial data near some equilibrium state (that is, small perturbation) (Antontsev et al. in Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland Publishing Co., Amsterdam, 1990; Kazhikhov in Sibirsk Mat Zh 23:60–64, 1982; Kazhikhov et al. in Prikl Mat Meh 41:282–291, 1977; Matsumura and Nishida in Proc Jpn Acad Ser A Math Sci 55:337–342, 1979, J Math Kyoto Univ 20:67–104, 1980, Commun Math Phys 89:445–464, 1983). In the case that the flow density may contain a vacuum (the density can be zero at some space-time point), it seems to be a rather subtle problem to deal with the well-posedness problem for CNS. The local well-posedness of classical solutions containing a vacuum was shown in homogeneous Sobolev space (without the information of velocity in L2-norm) for general regular initial data with some compatibility conditions being satisfied initially (Cho et al. in J Math Pures Appl (9) 83:243–275, 2004; Cho and Kim in J Differ Equ 228:377–411, 2006, Manuscr Math 120:91–129, 2006; Choe and Kim in J Differ Equ 190:504–523 2003), and the global existence of a classical solution in the same space is established under the additional assumption of small total initial energy but possible large oscillations (Huang et al. in Commun Pure Appl Math 65:549–585, 2012). However, it was shown that any classical solutions to the compressible Navier–Stokes equations in finite energy (inhomogeneous Sobolev) space cannot exist globally in time since it may blow up in finite time provided that the density is compactly supported (Xin in Commun Pure Appl Math 51:229–240, 1998). In this paper, we investigate the well-posedess of classical solutions to the Cauchy problem of Navier–Stokes equations, and prove that the classical solution with finite energy does not exist in the inhomogeneous Sobolev space for any short time under some natural assumptions on initial data near the vacuum. This implies, in particular, that the homogeneous Sobolev space is as crucial as studying the well-posedness for the Cauchy problem of compressible Navier–Stokes equations in the presence of a vacuum at far fields even locally in time.
Author Xin, Zhouping
Li, Hai-Liang
Wang, Yuexun
Author_xml – sequence: 1
  givenname: Hai-Liang
  surname: Li
  fullname: Li, Hai-Liang
  organization: School of Mathematics and CIT, Capital Normal University
– sequence: 2
  givenname: Yuexun
  orcidid: 0000-0001-8474-8232
  surname: Wang
  fullname: Wang, Yuexun
  email: yuexun.wang@ntnu.no
  organization: Department of Mathematical Sciences, Norwegian University of Science and Technology
– sequence: 3
  givenname: Zhouping
  surname: Xin
  fullname: Xin, Zhouping
  organization: The Institute of Mathematical Sciences, The Chinese University of Hong Kong
BookMark eNp9kN1OGzEQha0KpAboA_TOUq8N_tm1dy-rKPxICJCg15bXmSWmGzvY3kLoTd-hb9gnwUmQKiG1V6OZOd-Z0TlAez54QOgzo8eMUnWSKOW0JpQ1hAnekJcPaMIqwQmVSuyhCaVUkLbm6iM6SOlh03IhJ-jnVfAEnl3K4C3g0OPpYFJy1gz4NgxjdsEn_OTyAp867zLgmYd4v8Y54LwAPDWjXazxTQzdAMsNv52G5SpCsSlDfGV-OIh_fv2-zeE7JDx7HM3W9gjt92ZI8OmtHqJvp7O76Tm5vD67mH69JFbUbSYN8KaCmtZNL03N5lJCxeZccVBSVLSzc8N7C003V33Zt5WtVNdybkSjatlJcYi-7HxXMTyOkLJ-CGP05aTmRS4rIVRbVGqnsjGkFKHX1uXtozkaN2hG9SZpvUtal6T1Jmn9Ukj2jlxFtzRx_V-G75hUtP4e4t-f_g29AunolVo
CitedBy_id crossref_primary_10_1016_j_jde_2022_09_030
crossref_primary_10_1007_s00021_022_00744_w
crossref_primary_10_1016_j_matpur_2023_09_012
crossref_primary_10_1142_S0218202519500465
crossref_primary_10_1137_22M1493732
crossref_primary_10_1142_S0218202523500574
crossref_primary_10_1063_5_0067503
crossref_primary_10_1016_j_aim_2019_106923
crossref_primary_10_1063_5_0196542
crossref_primary_10_1016_j_cnsns_2022_106880
crossref_primary_10_1016_j_jde_2021_10_039
crossref_primary_10_1007_s11425_021_1937_9
crossref_primary_10_1137_18M1167905
crossref_primary_10_1137_23M1594352
crossref_primary_10_2139_ssrn_4142250
crossref_primary_10_1002_mma_8919
crossref_primary_10_1007_s00205_022_01840_x
crossref_primary_10_1016_j_aim_2021_108072
crossref_primary_10_1063_5_0083048
crossref_primary_10_3934_cam_2025007
crossref_primary_10_1088_1361_6544_ab6c7b
crossref_primary_10_1016_j_jde_2021_08_016
crossref_primary_10_1016_j_jde_2024_04_007
crossref_primary_10_1016_j_nonrwa_2023_103939
crossref_primary_10_1016_j_matpur_2021_05_004
crossref_primary_10_1007_s11425_022_2047_0
crossref_primary_10_1002_mma_8802
crossref_primary_10_1007_s10473_023_0315_0
crossref_primary_10_1155_2023_2986348
Cites_doi 10.1016/j.matpur.2003.11.004
10.1016/S0022-0396(03)00015-9
10.1215/kjm/1250522322
10.1090/gsm/120
10.1007/BF00971419
10.1016/j.jmaa.2005.08.005
10.1002/cpa.21517
10.1063/1.4767369
10.1007/BF00970025
10.1137/0151043
10.1142/S0219891606000847
10.1007/PL00000976
10.1002/cpa.21382
10.1007/BF00284180
10.1007/s002200000322
10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
10.1090/S0002-9947-1987-0896014-6
10.1007/PL00005543
10.1007/BF00390346
10.1137/110836663
10.1007/s00205-012-0536-1
10.1007/s002220000078
10.1007/BF01214738
10.1007/s00205-017-1188-y
10.24033/bsmf.1586
10.1115/1.1483363
10.1016/j.jde.2006.05.001
10.1007/s00220-012-1610-0
10.1007/s00229-006-0637-y
10.1007/s00220-010-1028-5
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s00205-018-1328-z
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1432-0673
EndPage 590
ExternalDocumentID 10_1007_s00205_018_1328_z
GrantInformation_xml – fundername: The National Natural Science Foundation of China;Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds
  grantid: 11461161007; 11671384; 11871047; 11225012; 007175304800; 025185305000/182
– fundername: The Zheng Ge Ru Foundation, Hong Kong RGC Earmarked Research grants; Joint Research Scheme;Focused Innovations Scheme from The Chinese University of Hong Kong
  grantid: CUHK-14305315; CUHK-4048/13P; NSFC/RGC; N-CUHK443/14
– fundername: The Research Council of Norway
  grantid: 231668; 250070
GroupedDBID --Z
-54
-5F
-5G
-BR
-EM
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
203
23M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6J9
6NX
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
L6V
LAS
LLZTM
M0N
M4Y
M7S
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9T
PF0
PQQKQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UPT
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z7Y
Z7Z
Z83
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
AAAVM
AADXB
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACMFV
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDYV
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AI.
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
GPTSA
H13
KOW
N2Q
NDZJH
PHGZM
PHGZT
PROAC
R4E
RIG
RNI
RZK
S1Z
S26
S28
SCLPG
SGB
T16
VH1
ZY4
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-8e284e5058f6a51d66e41d272e76340bcda2fce8bd7fa5194c47b922a38756b63
IEDL.DBID U2A
ISSN 0003-9527
IngestDate Fri Jul 25 10:55:28 EDT 2025
Tue Jul 01 03:54:06 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Fri Feb 21 02:37:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-8e284e5058f6a51d66e41d272e76340bcda2fce8bd7fa5194c47b922a38756b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8474-8232
OpenAccessLink http://hdl.handle.net/11250/2580766
PQID 2194643379
PQPubID 326363
PageCount 34
ParticipantIDs proquest_journals_2194643379
crossref_citationtrail_10_1007_s00205_018_1328_z
crossref_primary_10_1007_s00205_018_1328_z
springer_journals_10_1007_s00205_018_1328_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190502
PublicationDateYYYYMMDD 2019-05-02
PublicationDate_xml – month: 5
  year: 2019
  text: 20190502
  day: 2
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Archive for rational mechanics and analysis
PublicationTitleAbbrev Arch Rational Mech Anal
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References HoffDSerreDThe failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flowSIAM J. Appl. Math.1991518878981991SJAM...51..887H111742210.1137/01510430741.35057
JiangSZhangPOn spherically symmetric solutions of the compressible isentropic Navier-Stokes equationsCommun. Math. Phys.20012155595812001CMaPh.215..559J181094410.1007/PL000055430980.35126
Jang, J., Masmoudi, N.: Well and ill-posedness for compressible Euler equations with vacuum. J. Math. Phys.53, 115625, 11 (2012)
JangJMasmoudiNWell-posedness of compressible Euler equations in a physical vacuumCommun. Pure Appl. Math.20156861111328024910.1002/cpa.215171317.35185
DingSWenHYaoLZhuCGlobal spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuumSIAM J. Math. Anal.20124412571278291426610.1137/1108366631388.76326
FeireislENovotnýAPetzeltováHOn the existence of globally defined weak solutions to the Navier-Stokes equationsJ. Math. Fluid Mech.200133583922001JMFM....3..358F186788710.1007/PL000009760997.35043
Kanel, J.I.: The Cauchy problem for equations of gas dynamics with viscosity. Sibirsk. Mat. Zh.20, 293–306, 463 (1979)
DanchinRGlobal existence in critical spaces for compressible Navier-Stokes equationsInvent. Math.20001415796142000InMat.141..579D177962110.1007/s0022200000780958.35100
Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A Math. Sci.55, 337–342 (1979)
CoutandDShkollerSWell-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuumArch. Ration. Mech. Anal.2012206515616298052810.1007/s00205-012-0536-11257.35147
ChoYKimHExistence results for viscous polytropic fluids with vacuumJ. Differ. Equ.20062283774112006JDE...228..377C228953910.1016/j.jde.2006.05.0011139.35384
HuangXLiJXinZGlobal well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equationsCommun. Pure Appl. Math.201265549585287734410.1002/cpa.213821234.35181
Kazhikhov, A.V.: On the Cauchy problem for the equations of a viscous gas. Sibirsk. Mat. Zh.23, 60–64, 220 (1982)
CoutandDLindbladHShkollerSA priori estimates for the free-boundary 3D compressible Euler equations in physical vacuumCommun. Math. Phys.20102965595872010CMaPh.296..559C260812510.1007/s00220-010-1028-51193.35139
Salvi, R., Straskraba, I.: Global existence for viscous compressible fluids and their behavior as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}. J. Fac. Sci. Univ. Tokyo Sect. IA Math.40, 17–51 (1993)
Han, Q.: A basic course in partial differential equations, vol. 120 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011
FriedmanAPartial differential equations of parabolic type1964Englewood Cliffs, N.J.Prentice-Hall Inc0144.34903
Lions, P.-L.: Existence globale de solutions pour les équations de Navier–Stokes compressibles isentropiques. C. R. Acad. Sci. Paris Sér. I Math.316, 1335–1340 (1993)
Serre, D.: Solutions faibles globales des équations de Navier–Stokes pour un fluide compressible. C. R. Acad. Sci. Paris Sér. I Math.303, 639–642 (1986)
KazhikhovAVShelukhinVVUnique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gasPrikl. Mat. Meh.197741282291468593
Serre, D.: Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C. R. Acad. Sci. Paris Sér. I Math., 303, 703–706 1986
Lions, P.-L.: Limites incompressible et acoustique pour des fluides visqueux, compressibles et isentropiques. C. R. Acad. Sci. Paris Sér. I Math.317, 1197–1202 (1993)
XinZYuanHVacuum state for spherically symmetric solutions of the compressible Navier-Stokes equationsJ. Hyperbolic Differ. Equ.20063403442223873610.1142/S02198916060008471106.35054
HuangXLiJGlobal classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillationsArch. Ration. Mech. Anal.20182279951059374438110.1007/s00205-017-1188-y1384.35063
HoffDSmollerJNon-formation of vacuum states for compressible Navier-Stokes equationsCommun. Math. Phys.20012162552762001CMaPh.216..255H181484710.1007/s0022000003220988.76081
NashJLe problème de Cauchy pour les équations différentielles d'un fluide généralBull. Soc. Math. Fr.19629048749710.24033/bsmf.15860113.19405
SerrinJOn the uniqueness of compressible fluid motionsArch. Ration. Mech. Anal.1959327128810664610.1007/BF002841800089.19103
XinZYanWOn blowup of classical solutions to the compressible Navier-Stokes equationsCommun. Math. Phys.20133215295412013CMaPh.321..529X306391810.1007/s00220-012-1610-01287.35059
Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow, vol. 27 of Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002
ChoYKimHOn classical solutions of the compressible Navier-Stokes equations with nonnegative initial densitiesManuscr. Math.200612091129222348310.1007/s00229-006-0637-y1091.35056
HoffDGlobal existence for 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}D, compressible, isentropic Navier-Stokes equations with large initial dataTrans. Am. Math. Soc.19873031691810656.76064
XinZBlowup of smooth solutions to the compressible Navier-Stokes equation with compact densityCommun. Pure Appl. Math.199851229240148851310.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C0937.35134
ChoYChoeHJKimHUnique solvability of the initial boundary value problems for compressible viscous fluidsJ. Math. Pures Appl.2004983243275203812010.1016/j.matpur.2003.11.0041080.35066
ChoeHJKimHStrong solutions of the Navier-Stokes equations for isentropic compressible fluidsJ. Differ. Equ.20031905045232003JDE...190..504J197003910.1016/S0022-0396(03)00015-91022.35037
MatsumuraANishidaTInitial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluidsCommun. Math. Phys.1983894454641983CMaPh..89..445M71368010.1007/BF012147380543.76099
HoffDStrong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial dataArch. Ration. Mech. Anal.1995132114136007710.1007/BF003903460836.76082
Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, vol. 10 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Compressible models, Oxford Science Publications
Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, vol. 22 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1990 (Translated from the Russian).
MatsumuraANishidaTThe initial value problem for the equations of motion of viscous and heat-conductive gasesJ. Math. Kyoto Univ.1980206710456467010.1215/kjm/12505223220429.76040
ChoYJinBJBlow-up of viscous heat-conducting compressible flowsJ. Math. Anal. Appl.2006320819826222599710.1016/j.jmaa.2005.08.0051121.35110
1328_CR1
D Hoff (1328_CR16) 1991; 51
D Hoff (1328_CR17) 2001; 216
J Jang (1328_CR21) 2015; 68
X Huang (1328_CR18) 2018; 227
X Huang (1328_CR19) 2012; 65
Y Cho (1328_CR4) 2006; 228
AV Kazhikhov (1328_CR25) 1977; 41
D Coutand (1328_CR8) 2012; 206
D Coutand (1328_CR7) 2010; 296
1328_CR34
A Matsumura (1328_CR31) 1980; 20
1328_CR30
J Nash (1328_CR33) 1962; 90
Z Xin (1328_CR38) 1998; 51
Y Cho (1328_CR3) 2006; 320
Z Xin (1328_CR39) 2013; 321
1328_CR13
S Jiang (1328_CR22) 2001; 215
1328_CR35
1328_CR36
Y Cho (1328_CR2) 2004; 9
J Serrin (1328_CR37) 1959; 3
Z Xin (1328_CR40) 2006; 3
D Hoff (1328_CR14) 1987; 303
A Friedman (1328_CR12) 1964
1328_CR23
1328_CR20
R Danchin (1328_CR9) 2000; 141
1328_CR28
S Ding (1328_CR10) 2012; 44
1328_CR29
1328_CR26
Y Cho (1328_CR5) 2006; 120
HJ Choe (1328_CR6) 2003; 190
D Hoff (1328_CR15) 1995; 132
1328_CR27
1328_CR24
A Matsumura (1328_CR32) 1983; 89
E Feireisl (1328_CR11) 2001; 3
References_xml – reference: Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, vol. 10 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Compressible models, Oxford Science Publications
– reference: ChoYChoeHJKimHUnique solvability of the initial boundary value problems for compressible viscous fluidsJ. Math. Pures Appl.2004983243275203812010.1016/j.matpur.2003.11.0041080.35066
– reference: Lions, P.-L.: Existence globale de solutions pour les équations de Navier–Stokes compressibles isentropiques. C. R. Acad. Sci. Paris Sér. I Math.316, 1335–1340 (1993)
– reference: SerrinJOn the uniqueness of compressible fluid motionsArch. Ration. Mech. Anal.1959327128810664610.1007/BF002841800089.19103
– reference: NashJLe problème de Cauchy pour les équations différentielles d'un fluide généralBull. Soc. Math. Fr.19629048749710.24033/bsmf.15860113.19405
– reference: XinZYanWOn blowup of classical solutions to the compressible Navier-Stokes equationsCommun. Math. Phys.20133215295412013CMaPh.321..529X306391810.1007/s00220-012-1610-01287.35059
– reference: MatsumuraANishidaTThe initial value problem for the equations of motion of viscous and heat-conductive gasesJ. Math. Kyoto Univ.1980206710456467010.1215/kjm/12505223220429.76040
– reference: Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, vol. 22 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1990 (Translated from the Russian).
– reference: ChoYKimHExistence results for viscous polytropic fluids with vacuumJ. Differ. Equ.20062283774112006JDE...228..377C228953910.1016/j.jde.2006.05.0011139.35384
– reference: Serre, D.: Solutions faibles globales des équations de Navier–Stokes pour un fluide compressible. C. R. Acad. Sci. Paris Sér. I Math.303, 639–642 (1986)
– reference: Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow, vol. 27 of Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002
– reference: HuangXLiJXinZGlobal well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equationsCommun. Pure Appl. Math.201265549585287734410.1002/cpa.213821234.35181
– reference: XinZBlowup of smooth solutions to the compressible Navier-Stokes equation with compact densityCommun. Pure Appl. Math.199851229240148851310.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C0937.35134
– reference: HuangXLiJGlobal classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillationsArch. Ration. Mech. Anal.20182279951059374438110.1007/s00205-017-1188-y1384.35063
– reference: Han, Q.: A basic course in partial differential equations, vol. 120 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011
– reference: JiangSZhangPOn spherically symmetric solutions of the compressible isentropic Navier-Stokes equationsCommun. Math. Phys.20012155595812001CMaPh.215..559J181094410.1007/PL000055430980.35126
– reference: ChoeHJKimHStrong solutions of the Navier-Stokes equations for isentropic compressible fluidsJ. Differ. Equ.20031905045232003JDE...190..504J197003910.1016/S0022-0396(03)00015-91022.35037
– reference: CoutandDShkollerSWell-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuumArch. Ration. Mech. Anal.2012206515616298052810.1007/s00205-012-0536-11257.35147
– reference: Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A Math. Sci.55, 337–342 (1979)
– reference: HoffDGlobal existence for 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}D, compressible, isentropic Navier-Stokes equations with large initial dataTrans. Am. Math. Soc.19873031691810656.76064
– reference: JangJMasmoudiNWell-posedness of compressible Euler equations in a physical vacuumCommun. Pure Appl. Math.20156861111328024910.1002/cpa.215171317.35185
– reference: Kanel, J.I.: The Cauchy problem for equations of gas dynamics with viscosity. Sibirsk. Mat. Zh.20, 293–306, 463 (1979)
– reference: HoffDStrong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial dataArch. Ration. Mech. Anal.1995132114136007710.1007/BF003903460836.76082
– reference: Kazhikhov, A.V.: On the Cauchy problem for the equations of a viscous gas. Sibirsk. Mat. Zh.23, 60–64, 220 (1982)
– reference: HoffDSerreDThe failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flowSIAM J. Appl. Math.1991518878981991SJAM...51..887H111742210.1137/01510430741.35057
– reference: CoutandDLindbladHShkollerSA priori estimates for the free-boundary 3D compressible Euler equations in physical vacuumCommun. Math. Phys.20102965595872010CMaPh.296..559C260812510.1007/s00220-010-1028-51193.35139
– reference: DingSWenHYaoLZhuCGlobal spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuumSIAM J. Math. Anal.20124412571278291426610.1137/1108366631388.76326
– reference: DanchinRGlobal existence in critical spaces for compressible Navier-Stokes equationsInvent. Math.20001415796142000InMat.141..579D177962110.1007/s0022200000780958.35100
– reference: XinZYuanHVacuum state for spherically symmetric solutions of the compressible Navier-Stokes equationsJ. Hyperbolic Differ. Equ.20063403442223873610.1142/S02198916060008471106.35054
– reference: Serre, D.: Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C. R. Acad. Sci. Paris Sér. I Math., 303, 703–706 1986
– reference: Lions, P.-L.: Limites incompressible et acoustique pour des fluides visqueux, compressibles et isentropiques. C. R. Acad. Sci. Paris Sér. I Math.317, 1197–1202 (1993)
– reference: Salvi, R., Straskraba, I.: Global existence for viscous compressible fluids and their behavior as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}. J. Fac. Sci. Univ. Tokyo Sect. IA Math.40, 17–51 (1993)
– reference: HoffDSmollerJNon-formation of vacuum states for compressible Navier-Stokes equationsCommun. Math. Phys.20012162552762001CMaPh.216..255H181484710.1007/s0022000003220988.76081
– reference: ChoYKimHOn classical solutions of the compressible Navier-Stokes equations with nonnegative initial densitiesManuscr. Math.200612091129222348310.1007/s00229-006-0637-y1091.35056
– reference: KazhikhovAVShelukhinVVUnique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gasPrikl. Mat. Meh.197741282291468593
– reference: FriedmanAPartial differential equations of parabolic type1964Englewood Cliffs, N.J.Prentice-Hall Inc0144.34903
– reference: ChoYJinBJBlow-up of viscous heat-conducting compressible flowsJ. Math. Anal. Appl.2006320819826222599710.1016/j.jmaa.2005.08.0051121.35110
– reference: Jang, J., Masmoudi, N.: Well and ill-posedness for compressible Euler equations with vacuum. J. Math. Phys.53, 115625, 11 (2012)
– reference: MatsumuraANishidaTInitial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluidsCommun. Math. Phys.1983894454641983CMaPh..89..445M71368010.1007/BF012147380543.76099
– reference: FeireislENovotnýAPetzeltováHOn the existence of globally defined weak solutions to the Navier-Stokes equationsJ. Math. Fluid Mech.200133583922001JMFM....3..358F186788710.1007/PL000009760997.35043
– ident: 1328_CR36
– ident: 1328_CR34
– volume: 9
  start-page: 243
  issue: 83
  year: 2004
  ident: 1328_CR2
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2003.11.004
– volume: 190
  start-page: 504
  year: 2003
  ident: 1328_CR6
  publication-title: J. Differ. Equ.
  doi: 10.1016/S0022-0396(03)00015-9
– volume: 41
  start-page: 282
  year: 1977
  ident: 1328_CR25
  publication-title: Prikl. Mat. Meh.
– volume: 20
  start-page: 67
  year: 1980
  ident: 1328_CR31
  publication-title: J. Math. Kyoto Univ.
  doi: 10.1215/kjm/1250522322
– ident: 1328_CR13
  doi: 10.1090/gsm/120
– ident: 1328_CR24
  doi: 10.1007/BF00971419
– volume: 320
  start-page: 819
  year: 2006
  ident: 1328_CR3
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.08.005
– volume: 68
  start-page: 61
  year: 2015
  ident: 1328_CR21
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21517
– ident: 1328_CR20
  doi: 10.1063/1.4767369
– ident: 1328_CR27
– volume-title: Partial differential equations of parabolic type
  year: 1964
  ident: 1328_CR12
– ident: 1328_CR23
  doi: 10.1007/BF00970025
– volume: 51
  start-page: 887
  year: 1991
  ident: 1328_CR16
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/0151043
– ident: 1328_CR30
– volume: 3
  start-page: 403
  year: 2006
  ident: 1328_CR40
  publication-title: J. Hyperbolic Differ. Equ.
  doi: 10.1142/S0219891606000847
– volume: 3
  start-page: 358
  year: 2001
  ident: 1328_CR11
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/PL00000976
– volume: 65
  start-page: 549
  year: 2012
  ident: 1328_CR19
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21382
– volume: 3
  start-page: 271
  year: 1959
  ident: 1328_CR37
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00284180
– volume: 216
  start-page: 255
  year: 2001
  ident: 1328_CR17
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200000322
– ident: 1328_CR35
– volume: 51
  start-page: 229
  year: 1998
  ident: 1328_CR38
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
– volume: 303
  start-page: 169
  year: 1987
  ident: 1328_CR14
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1987-0896014-6
– volume: 215
  start-page: 559
  year: 2001
  ident: 1328_CR22
  publication-title: Commun. Math. Phys.
  doi: 10.1007/PL00005543
– volume: 132
  start-page: 1
  year: 1995
  ident: 1328_CR15
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/BF00390346
– volume: 44
  start-page: 1257
  year: 2012
  ident: 1328_CR10
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/110836663
– ident: 1328_CR1
– volume: 206
  start-page: 515
  year: 2012
  ident: 1328_CR8
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-012-0536-1
– volume: 141
  start-page: 579
  year: 2000
  ident: 1328_CR9
  publication-title: Invent. Math.
  doi: 10.1007/s002220000078
– ident: 1328_CR26
– volume: 89
  start-page: 445
  year: 1983
  ident: 1328_CR32
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01214738
– volume: 227
  start-page: 995
  year: 2018
  ident: 1328_CR18
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-017-1188-y
– ident: 1328_CR28
– volume: 90
  start-page: 487
  year: 1962
  ident: 1328_CR33
  publication-title: Bull. Soc. Math. Fr.
  doi: 10.24033/bsmf.1586
– ident: 1328_CR29
  doi: 10.1115/1.1483363
– volume: 228
  start-page: 377
  year: 2006
  ident: 1328_CR4
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2006.05.001
– volume: 321
  start-page: 529
  year: 2013
  ident: 1328_CR39
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-012-1610-0
– volume: 120
  start-page: 91
  year: 2006
  ident: 1328_CR5
  publication-title: Manuscr. Math.
  doi: 10.1007/s00229-006-0637-y
– volume: 296
  start-page: 559
  year: 2010
  ident: 1328_CR7
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-010-1028-5
SSID ssj0003236
Score 2.4735334
Snippet The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 557
SubjectTerms Boundary value problems
Cauchy problems
Classical Mechanics
Complex Systems
Compressibility
Density
Fluid dynamics
Fluid flow
Fluid- and Aerodynamics
Mathematical analysis
Mathematical and Computational Physics
Navier-Stokes equations
Perturbation
Physics
Physics and Astronomy
Sobolev space
Theoretical
Well posed problems
Title Non-existence of Classical Solutions with Finite Energy to the Cauchy Problem of the Compressible Navier–Stokes Equations
URI https://link.springer.com/article/10.1007/s00205-018-1328-z
https://www.proquest.com/docview/2194643379
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VUCU4lPJRsYWufOAEsrRx7Dg-rtAuqIhVJVgJTpHtOGpFtQESDsCF_9B_2F_C2JsEgQpSb0n8ccizZ57t8RuAXWYSg26soAMT55RzmVAd5TnNOWOFksKJkGPpZJIcTfn3c3He3OOu2mj39kgyWOrusptnNj7QDFc9MUvp_QIsCVy6-2E9ZcPO_MYs5AX0T1QJJtujzH918dIZPTPMV4eiwdeMP8OnhiSS4RzVNfjgZuuw2hBG0kzHah1WTjrRVXz7GKI5bbUBD5NyRr3GZSDEpCxIyH3p8SDdPhjxW7Bk_MuTTjIKVwBJXRLskBzoW_vzjvyYJ5vx7cNXNB0hahY_kon2DvXv45_Turx0FRldzzXDq02YjkdnB0e0ybJAbSxUTVOHHsohEUqLRIsoTxLHo5xJ5tD08IGxuWaFdanJZYHlilsujWJMx7jUSUwSf4HFWTlzW0CEGWgZaaecinghUs059xLvTipnmRU9GLS_O7ONBLnPhPE768STA0IZIpR5hLL7Hux1Ta7m-hvvVd5pMcyaqVhlaJI50q5Yqh7st7g-F7_Z2df_qr0Ny0ilVAiFZDuwWN_cum9IV2rTh4V0fNiHpeHhxfGoHwbrE90u5V8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVoj2QKGAWCjgAyeQq41jx_GxqnZZaHeFxFYqp8h2HBUVbQrJHthe-h_6D_kljJ1HRQVIvSV-KfFj5ht7_A3AG2YSg2qsoCMT55RzmVAd5TnNOWOFksKJEGNpNk-mx_zjiThp73FXnbd7dyQZJHV_2c0jG-9ohlZPzFK6vgsbHE1wMYCN_fdfDse9AI5ZiAzon6gSTHaHmX9r5E91dI0xbxyLBm0z2YZF952Nk8nZ3qo2e3Z9g8Lxlj_yEB606JPsN9PlEdxxyx3YbpEoadd5tQNbs57NFd_uBTdRWz2Gi3m5pJ48MyBtUhYkBNX0A036DTbi93bJ5KtHs2Qc7haSuiTYIDnQK3v6k3xqotj4-iEVZVJwx8VEMtdeU_-6vPpcl2euIuPvDRl59QSOJ-PFwZS24RuojYWqaepQ9TlEWGmRaBHlSeJ4lDPJHMo0PjI216ywLjW5LDBfcculUYzpGG2oxCTxUxgsy6V7BkSYkZaRdsqpiBci1Zxzzx3vpHKWWTGEUTeKmW25zX2IjW9Zz8ocOj3DTs98p2frIbztq5w3xB7_K7zbTY2sXeNVhrKeI56LpRrCu26kr7P_2djzW5V-Dfeni9lRdvRhfvgCNhGvqeBvyXZhUP9YuZeIiWrzql0DvwEdVwLm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0qrUB0QUspYqBQL1iBrE4cO46XVZlRC3RUCUbqLvIrAhUlhaSLlg3_0D_sl3DtPCoQILFL_FrkxPce29fnArxkJjPoxko6NamjnMuM6sQ56jhjpZLCi5hj6XiRHS7521Nx2uc5bYZo9-FIsrvTEFSaqnbv3JV748W3wHJC0BmugFKW06s7sIbWOAkxXUu2P5rilMUcgeGJKsHkcKz5pyF-dUy3bPO3A9Lod-ab8KAnjGS_Q_ghrPhqCzZ68kj6qdlswfrxKMCKb3djZKdtHsH3RV3RoHcZyTGpSxLzYAZsyLgnRsJ2LJl_DgSUzOJ1QNLWBAckB_rCfrokJ13imdA_lqIZiRG0WEgWOjjXmx_XH9r6zDdk9rXTD2-2YTmffTw4pH3GBWpToVqae_RWHklRXmZaJC7LPE8ck8yjGeJTY51mpfW5cbLEesUtl0YxplNc9mQmSx_DalVX_gkQYaZaJtorrxJeilxzzoPcu5fKW2bFBKbD5y5sL0cesmJ8KUYh5YhQgQgVAaHiagKvxi7nnRbHvxrvDBgW_bRsCjTPHClYKtUEXg-43lb_dbCn_9V6F-6dvJkX748W757BfWRYKkZIsh1Ybb9d-OfIYlrzIv6pPwFx6eoU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-existence+of+Classical+Solutions+with+Finite+Energy+to+the+Cauchy+Problem+of+the+Compressible+Navier%E2%80%93Stokes+Equations&rft.jtitle=Archive+for+rational+mechanics+and+analysis&rft.au=Li%2C+Hai-Liang&rft.au=Wang%2C+Yuexun&rft.au=Xin%2C+Zhouping&rft.date=2019-05-02&rft.issn=0003-9527&rft.eissn=1432-0673&rft.volume=232&rft.issue=2&rft.spage=557&rft.epage=590&rft_id=info:doi/10.1007%2Fs00205-018-1328-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00205_018_1328_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9527&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9527&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9527&client=summon