Non-existence of Classical Solutions with Finite Energy to the Cauchy Problem of the Compressible Navier–Stokes Equations
The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for...
Saved in:
Published in | Archive for rational mechanics and analysis Vol. 232; no. 2; pp. 557 - 590 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
02.05.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0003-9527 1432-0673 |
DOI | 10.1007/s00205-018-1328-z |
Cover
Loading…
Abstract | The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for the CNS in either one-dimension for general smooth initial data or multi-dimension for smooth initial data near some equilibrium state (that is, small perturbation) (Antontsev et al. in Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland Publishing Co., Amsterdam,
1990
; Kazhikhov in Sibirsk Mat Zh 23:60–64,
1982
; Kazhikhov et al. in Prikl Mat Meh 41:282–291,
1977
; Matsumura and Nishida in Proc Jpn Acad Ser A Math Sci 55:337–342,
1979
, J Math Kyoto Univ 20:67–104,
1980
, Commun Math Phys 89:445–464,
1983
). In the case that the flow density may contain a vacuum (the density can be zero at some space-time point), it seems to be a rather subtle problem to deal with the well-posedness problem for CNS. The local well-posedness of classical solutions containing a vacuum was shown in homogeneous Sobolev space (without the information of velocity in
L
2
-norm) for general regular initial data with some compatibility conditions being satisfied initially (Cho et al. in J Math Pures Appl (9) 83:243–275,
2004
; Cho and Kim in J Differ Equ 228:377–411,
2006
, Manuscr Math 120:91–129,
2006
; Choe and Kim in J Differ Equ 190:504–523
2003
), and the global existence of a classical solution in the same space is established under the additional assumption of small total initial energy but possible large oscillations (Huang et al. in Commun Pure Appl Math 65:549–585,
2012
). However, it was shown that any classical solutions to the compressible Navier–Stokes equations in finite energy (inhomogeneous Sobolev) space cannot exist globally in time since it may blow up in finite time provided that the density is compactly supported (Xin in Commun Pure Appl Math 51:229–240,
1998
). In this paper, we investigate the well-posedess of classical solutions to the Cauchy problem of Navier–Stokes equations, and prove that the classical solution with finite energy does not exist in the inhomogeneous Sobolev space for any short time under some natural assumptions on initial data near the vacuum. This implies, in particular, that the homogeneous Sobolev space is as crucial as studying the well-posedness for the Cauchy problem of compressible Navier–Stokes equations in the presence of a vacuum at far fields even locally in time. |
---|---|
AbstractList | The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for the CNS in either one-dimension for general smooth initial data or multi-dimension for smooth initial data near some equilibrium state (that is, small perturbation) (Antontsev et al. in Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland Publishing Co., Amsterdam,
1990
; Kazhikhov in Sibirsk Mat Zh 23:60–64,
1982
; Kazhikhov et al. in Prikl Mat Meh 41:282–291,
1977
; Matsumura and Nishida in Proc Jpn Acad Ser A Math Sci 55:337–342,
1979
, J Math Kyoto Univ 20:67–104,
1980
, Commun Math Phys 89:445–464,
1983
). In the case that the flow density may contain a vacuum (the density can be zero at some space-time point), it seems to be a rather subtle problem to deal with the well-posedness problem for CNS. The local well-posedness of classical solutions containing a vacuum was shown in homogeneous Sobolev space (without the information of velocity in
L
2
-norm) for general regular initial data with some compatibility conditions being satisfied initially (Cho et al. in J Math Pures Appl (9) 83:243–275,
2004
; Cho and Kim in J Differ Equ 228:377–411,
2006
, Manuscr Math 120:91–129,
2006
; Choe and Kim in J Differ Equ 190:504–523
2003
), and the global existence of a classical solution in the same space is established under the additional assumption of small total initial energy but possible large oscillations (Huang et al. in Commun Pure Appl Math 65:549–585,
2012
). However, it was shown that any classical solutions to the compressible Navier–Stokes equations in finite energy (inhomogeneous Sobolev) space cannot exist globally in time since it may blow up in finite time provided that the density is compactly supported (Xin in Commun Pure Appl Math 51:229–240,
1998
). In this paper, we investigate the well-posedess of classical solutions to the Cauchy problem of Navier–Stokes equations, and prove that the classical solution with finite energy does not exist in the inhomogeneous Sobolev space for any short time under some natural assumptions on initial data near the vacuum. This implies, in particular, that the homogeneous Sobolev space is as crucial as studying the well-posedness for the Cauchy problem of compressible Navier–Stokes equations in the presence of a vacuum at far fields even locally in time. The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial data is a challenging problem. In the case when the fluid density is away from vacuum (strictly positive), this problem was first solved for the CNS in either one-dimension for general smooth initial data or multi-dimension for smooth initial data near some equilibrium state (that is, small perturbation) (Antontsev et al. in Boundary value problems in mechanics of nonhomogeneous fluids, North-Holland Publishing Co., Amsterdam, 1990; Kazhikhov in Sibirsk Mat Zh 23:60–64, 1982; Kazhikhov et al. in Prikl Mat Meh 41:282–291, 1977; Matsumura and Nishida in Proc Jpn Acad Ser A Math Sci 55:337–342, 1979, J Math Kyoto Univ 20:67–104, 1980, Commun Math Phys 89:445–464, 1983). In the case that the flow density may contain a vacuum (the density can be zero at some space-time point), it seems to be a rather subtle problem to deal with the well-posedness problem for CNS. The local well-posedness of classical solutions containing a vacuum was shown in homogeneous Sobolev space (without the information of velocity in L2-norm) for general regular initial data with some compatibility conditions being satisfied initially (Cho et al. in J Math Pures Appl (9) 83:243–275, 2004; Cho and Kim in J Differ Equ 228:377–411, 2006, Manuscr Math 120:91–129, 2006; Choe and Kim in J Differ Equ 190:504–523 2003), and the global existence of a classical solution in the same space is established under the additional assumption of small total initial energy but possible large oscillations (Huang et al. in Commun Pure Appl Math 65:549–585, 2012). However, it was shown that any classical solutions to the compressible Navier–Stokes equations in finite energy (inhomogeneous Sobolev) space cannot exist globally in time since it may blow up in finite time provided that the density is compactly supported (Xin in Commun Pure Appl Math 51:229–240, 1998). In this paper, we investigate the well-posedess of classical solutions to the Cauchy problem of Navier–Stokes equations, and prove that the classical solution with finite energy does not exist in the inhomogeneous Sobolev space for any short time under some natural assumptions on initial data near the vacuum. This implies, in particular, that the homogeneous Sobolev space is as crucial as studying the well-posedness for the Cauchy problem of compressible Navier–Stokes equations in the presence of a vacuum at far fields even locally in time. |
Author | Xin, Zhouping Li, Hai-Liang Wang, Yuexun |
Author_xml | – sequence: 1 givenname: Hai-Liang surname: Li fullname: Li, Hai-Liang organization: School of Mathematics and CIT, Capital Normal University – sequence: 2 givenname: Yuexun orcidid: 0000-0001-8474-8232 surname: Wang fullname: Wang, Yuexun email: yuexun.wang@ntnu.no organization: Department of Mathematical Sciences, Norwegian University of Science and Technology – sequence: 3 givenname: Zhouping surname: Xin fullname: Xin, Zhouping organization: The Institute of Mathematical Sciences, The Chinese University of Hong Kong |
BookMark | eNp9kN1OGzEQha0KpAboA_TOUq8N_tm1dy-rKPxICJCg15bXmSWmGzvY3kLoTd-hb9gnwUmQKiG1V6OZOd-Z0TlAez54QOgzo8eMUnWSKOW0JpQ1hAnekJcPaMIqwQmVSuyhCaVUkLbm6iM6SOlh03IhJ-jnVfAEnl3K4C3g0OPpYFJy1gz4NgxjdsEn_OTyAp867zLgmYd4v8Y54LwAPDWjXazxTQzdAMsNv52G5SpCsSlDfGV-OIh_fv2-zeE7JDx7HM3W9gjt92ZI8OmtHqJvp7O76Tm5vD67mH69JFbUbSYN8KaCmtZNL03N5lJCxeZccVBSVLSzc8N7C003V33Zt5WtVNdybkSjatlJcYi-7HxXMTyOkLJ-CGP05aTmRS4rIVRbVGqnsjGkFKHX1uXtozkaN2hG9SZpvUtal6T1Jmn9Ukj2jlxFtzRx_V-G75hUtP4e4t-f_g29AunolVo |
CitedBy_id | crossref_primary_10_1016_j_jde_2022_09_030 crossref_primary_10_1007_s00021_022_00744_w crossref_primary_10_1016_j_matpur_2023_09_012 crossref_primary_10_1142_S0218202519500465 crossref_primary_10_1137_22M1493732 crossref_primary_10_1142_S0218202523500574 crossref_primary_10_1063_5_0067503 crossref_primary_10_1016_j_aim_2019_106923 crossref_primary_10_1063_5_0196542 crossref_primary_10_1016_j_cnsns_2022_106880 crossref_primary_10_1016_j_jde_2021_10_039 crossref_primary_10_1007_s11425_021_1937_9 crossref_primary_10_1137_18M1167905 crossref_primary_10_1137_23M1594352 crossref_primary_10_2139_ssrn_4142250 crossref_primary_10_1002_mma_8919 crossref_primary_10_1007_s00205_022_01840_x crossref_primary_10_1016_j_aim_2021_108072 crossref_primary_10_1063_5_0083048 crossref_primary_10_3934_cam_2025007 crossref_primary_10_1088_1361_6544_ab6c7b crossref_primary_10_1016_j_jde_2021_08_016 crossref_primary_10_1016_j_jde_2024_04_007 crossref_primary_10_1016_j_nonrwa_2023_103939 crossref_primary_10_1016_j_matpur_2021_05_004 crossref_primary_10_1007_s11425_022_2047_0 crossref_primary_10_1002_mma_8802 crossref_primary_10_1007_s10473_023_0315_0 crossref_primary_10_1155_2023_2986348 |
Cites_doi | 10.1016/j.matpur.2003.11.004 10.1016/S0022-0396(03)00015-9 10.1215/kjm/1250522322 10.1090/gsm/120 10.1007/BF00971419 10.1016/j.jmaa.2005.08.005 10.1002/cpa.21517 10.1063/1.4767369 10.1007/BF00970025 10.1137/0151043 10.1142/S0219891606000847 10.1007/PL00000976 10.1002/cpa.21382 10.1007/BF00284180 10.1007/s002200000322 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C 10.1090/S0002-9947-1987-0896014-6 10.1007/PL00005543 10.1007/BF00390346 10.1137/110836663 10.1007/s00205-012-0536-1 10.1007/s002220000078 10.1007/BF01214738 10.1007/s00205-017-1188-y 10.24033/bsmf.1586 10.1115/1.1483363 10.1016/j.jde.2006.05.001 10.1007/s00220-012-1610-0 10.1007/s00229-006-0637-y 10.1007/s00220-010-1028-5 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s00205-018-1328-z |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
EISSN | 1432-0673 |
EndPage | 590 |
ExternalDocumentID | 10_1007_s00205_018_1328_z |
GrantInformation_xml | – fundername: The National Natural Science Foundation of China;Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds grantid: 11461161007; 11671384; 11871047; 11225012; 007175304800; 025185305000/182 – fundername: The Zheng Ge Ru Foundation, Hong Kong RGC Earmarked Research grants; Joint Research Scheme;Focused Innovations Scheme from The Chinese University of Hong Kong grantid: CUHK-14305315; CUHK-4048/13P; NSFC/RGC; N-CUHK443/14 – fundername: The Research Council of Norway grantid: 231668; 250070 |
GroupedDBID | --Z -54 -5F -5G -BR -EM -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 203 23M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6J9 6NX 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV L6V LAS LLZTM M0N M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9T PF0 PQQKQ PT4 PT5 PTHSS Q2X QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z7Y Z7Z Z83 Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI 6TJ AAAVM AADXB AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACMFV ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDYV AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AI. AIXLP AJBLW AMVHM ATHPR AYFIA BBWZM CAG CITATION COF GPTSA H13 KOW N2Q NDZJH PHGZM PHGZT PROAC R4E RIG RNI RZK S1Z S26 S28 SCLPG SGB T16 VH1 ZY4 7SC 7TB 8FD ABRTQ FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-8e284e5058f6a51d66e41d272e76340bcda2fce8bd7fa5194c47b922a38756b63 |
IEDL.DBID | U2A |
ISSN | 0003-9527 |
IngestDate | Fri Jul 25 10:55:28 EDT 2025 Tue Jul 01 03:54:06 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Fri Feb 21 02:37:14 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-8e284e5058f6a51d66e41d272e76340bcda2fce8bd7fa5194c47b922a38756b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8474-8232 |
OpenAccessLink | http://hdl.handle.net/11250/2580766 |
PQID | 2194643379 |
PQPubID | 326363 |
PageCount | 34 |
ParticipantIDs | proquest_journals_2194643379 crossref_citationtrail_10_1007_s00205_018_1328_z crossref_primary_10_1007_s00205_018_1328_z springer_journals_10_1007_s00205_018_1328_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190502 |
PublicationDateYYYYMMDD | 2019-05-02 |
PublicationDate_xml | – month: 5 year: 2019 text: 20190502 day: 2 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Archive for rational mechanics and analysis |
PublicationTitleAbbrev | Arch Rational Mech Anal |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | HoffDSerreDThe failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flowSIAM J. Appl. Math.1991518878981991SJAM...51..887H111742210.1137/01510430741.35057 JiangSZhangPOn spherically symmetric solutions of the compressible isentropic Navier-Stokes equationsCommun. Math. Phys.20012155595812001CMaPh.215..559J181094410.1007/PL000055430980.35126 Jang, J., Masmoudi, N.: Well and ill-posedness for compressible Euler equations with vacuum. J. Math. Phys.53, 115625, 11 (2012) JangJMasmoudiNWell-posedness of compressible Euler equations in a physical vacuumCommun. Pure Appl. Math.20156861111328024910.1002/cpa.215171317.35185 DingSWenHYaoLZhuCGlobal spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuumSIAM J. Math. Anal.20124412571278291426610.1137/1108366631388.76326 FeireislENovotnýAPetzeltováHOn the existence of globally defined weak solutions to the Navier-Stokes equationsJ. Math. Fluid Mech.200133583922001JMFM....3..358F186788710.1007/PL000009760997.35043 Kanel, J.I.: The Cauchy problem for equations of gas dynamics with viscosity. Sibirsk. Mat. Zh.20, 293–306, 463 (1979) DanchinRGlobal existence in critical spaces for compressible Navier-Stokes equationsInvent. Math.20001415796142000InMat.141..579D177962110.1007/s0022200000780958.35100 Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A Math. Sci.55, 337–342 (1979) CoutandDShkollerSWell-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuumArch. Ration. Mech. Anal.2012206515616298052810.1007/s00205-012-0536-11257.35147 ChoYKimHExistence results for viscous polytropic fluids with vacuumJ. Differ. Equ.20062283774112006JDE...228..377C228953910.1016/j.jde.2006.05.0011139.35384 HuangXLiJXinZGlobal well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equationsCommun. Pure Appl. Math.201265549585287734410.1002/cpa.213821234.35181 Kazhikhov, A.V.: On the Cauchy problem for the equations of a viscous gas. Sibirsk. Mat. Zh.23, 60–64, 220 (1982) CoutandDLindbladHShkollerSA priori estimates for the free-boundary 3D compressible Euler equations in physical vacuumCommun. Math. Phys.20102965595872010CMaPh.296..559C260812510.1007/s00220-010-1028-51193.35139 Salvi, R., Straskraba, I.: Global existence for viscous compressible fluids and their behavior as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}. J. Fac. Sci. Univ. Tokyo Sect. IA Math.40, 17–51 (1993) Han, Q.: A basic course in partial differential equations, vol. 120 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011 FriedmanAPartial differential equations of parabolic type1964Englewood Cliffs, N.J.Prentice-Hall Inc0144.34903 Lions, P.-L.: Existence globale de solutions pour les équations de Navier–Stokes compressibles isentropiques. C. R. Acad. Sci. Paris Sér. I Math.316, 1335–1340 (1993) Serre, D.: Solutions faibles globales des équations de Navier–Stokes pour un fluide compressible. C. R. Acad. Sci. Paris Sér. I Math.303, 639–642 (1986) KazhikhovAVShelukhinVVUnique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gasPrikl. Mat. Meh.197741282291468593 Serre, D.: Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C. R. Acad. Sci. Paris Sér. I Math., 303, 703–706 1986 Lions, P.-L.: Limites incompressible et acoustique pour des fluides visqueux, compressibles et isentropiques. C. R. Acad. Sci. Paris Sér. I Math.317, 1197–1202 (1993) XinZYuanHVacuum state for spherically symmetric solutions of the compressible Navier-Stokes equationsJ. Hyperbolic Differ. Equ.20063403442223873610.1142/S02198916060008471106.35054 HuangXLiJGlobal classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillationsArch. Ration. Mech. Anal.20182279951059374438110.1007/s00205-017-1188-y1384.35063 HoffDSmollerJNon-formation of vacuum states for compressible Navier-Stokes equationsCommun. Math. Phys.20012162552762001CMaPh.216..255H181484710.1007/s0022000003220988.76081 NashJLe problème de Cauchy pour les équations différentielles d'un fluide généralBull. Soc. Math. Fr.19629048749710.24033/bsmf.15860113.19405 SerrinJOn the uniqueness of compressible fluid motionsArch. Ration. Mech. Anal.1959327128810664610.1007/BF002841800089.19103 XinZYanWOn blowup of classical solutions to the compressible Navier-Stokes equationsCommun. Math. Phys.20133215295412013CMaPh.321..529X306391810.1007/s00220-012-1610-01287.35059 Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow, vol. 27 of Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 ChoYKimHOn classical solutions of the compressible Navier-Stokes equations with nonnegative initial densitiesManuscr. Math.200612091129222348310.1007/s00229-006-0637-y1091.35056 HoffDGlobal existence for 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}D, compressible, isentropic Navier-Stokes equations with large initial dataTrans. Am. Math. Soc.19873031691810656.76064 XinZBlowup of smooth solutions to the compressible Navier-Stokes equation with compact densityCommun. Pure Appl. Math.199851229240148851310.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C0937.35134 ChoYChoeHJKimHUnique solvability of the initial boundary value problems for compressible viscous fluidsJ. Math. Pures Appl.2004983243275203812010.1016/j.matpur.2003.11.0041080.35066 ChoeHJKimHStrong solutions of the Navier-Stokes equations for isentropic compressible fluidsJ. Differ. Equ.20031905045232003JDE...190..504J197003910.1016/S0022-0396(03)00015-91022.35037 MatsumuraANishidaTInitial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluidsCommun. Math. Phys.1983894454641983CMaPh..89..445M71368010.1007/BF012147380543.76099 HoffDStrong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial dataArch. Ration. Mech. Anal.1995132114136007710.1007/BF003903460836.76082 Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, vol. 10 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Compressible models, Oxford Science Publications Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, vol. 22 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1990 (Translated from the Russian). MatsumuraANishidaTThe initial value problem for the equations of motion of viscous and heat-conductive gasesJ. Math. Kyoto Univ.1980206710456467010.1215/kjm/12505223220429.76040 ChoYJinBJBlow-up of viscous heat-conducting compressible flowsJ. Math. Anal. Appl.2006320819826222599710.1016/j.jmaa.2005.08.0051121.35110 1328_CR1 D Hoff (1328_CR16) 1991; 51 D Hoff (1328_CR17) 2001; 216 J Jang (1328_CR21) 2015; 68 X Huang (1328_CR18) 2018; 227 X Huang (1328_CR19) 2012; 65 Y Cho (1328_CR4) 2006; 228 AV Kazhikhov (1328_CR25) 1977; 41 D Coutand (1328_CR8) 2012; 206 D Coutand (1328_CR7) 2010; 296 1328_CR34 A Matsumura (1328_CR31) 1980; 20 1328_CR30 J Nash (1328_CR33) 1962; 90 Z Xin (1328_CR38) 1998; 51 Y Cho (1328_CR3) 2006; 320 Z Xin (1328_CR39) 2013; 321 1328_CR13 S Jiang (1328_CR22) 2001; 215 1328_CR35 1328_CR36 Y Cho (1328_CR2) 2004; 9 J Serrin (1328_CR37) 1959; 3 Z Xin (1328_CR40) 2006; 3 D Hoff (1328_CR14) 1987; 303 A Friedman (1328_CR12) 1964 1328_CR23 1328_CR20 R Danchin (1328_CR9) 2000; 141 1328_CR28 S Ding (1328_CR10) 2012; 44 1328_CR29 1328_CR26 Y Cho (1328_CR5) 2006; 120 HJ Choe (1328_CR6) 2003; 190 D Hoff (1328_CR15) 1995; 132 1328_CR27 1328_CR24 A Matsumura (1328_CR32) 1983; 89 E Feireisl (1328_CR11) 2001; 3 |
References_xml | – reference: Lions, P.-L.: Mathematical topics in fluid mechanics. Vol. 2, vol. 10 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. Compressible models, Oxford Science Publications – reference: ChoYChoeHJKimHUnique solvability of the initial boundary value problems for compressible viscous fluidsJ. Math. Pures Appl.2004983243275203812010.1016/j.matpur.2003.11.0041080.35066 – reference: Lions, P.-L.: Existence globale de solutions pour les équations de Navier–Stokes compressibles isentropiques. C. R. Acad. Sci. Paris Sér. I Math.316, 1335–1340 (1993) – reference: SerrinJOn the uniqueness of compressible fluid motionsArch. Ration. Mech. Anal.1959327128810664610.1007/BF002841800089.19103 – reference: NashJLe problème de Cauchy pour les équations différentielles d'un fluide généralBull. Soc. Math. Fr.19629048749710.24033/bsmf.15860113.19405 – reference: XinZYanWOn blowup of classical solutions to the compressible Navier-Stokes equationsCommun. Math. Phys.20133215295412013CMaPh.321..529X306391810.1007/s00220-012-1610-01287.35059 – reference: MatsumuraANishidaTThe initial value problem for the equations of motion of viscous and heat-conductive gasesJ. Math. Kyoto Univ.1980206710456467010.1215/kjm/12505223220429.76040 – reference: Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, vol. 22 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 1990 (Translated from the Russian). – reference: ChoYKimHExistence results for viscous polytropic fluids with vacuumJ. Differ. Equ.20062283774112006JDE...228..377C228953910.1016/j.jde.2006.05.0011139.35384 – reference: Serre, D.: Solutions faibles globales des équations de Navier–Stokes pour un fluide compressible. C. R. Acad. Sci. Paris Sér. I Math.303, 639–642 (1986) – reference: Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow, vol. 27 of Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002 – reference: HuangXLiJXinZGlobal well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equationsCommun. Pure Appl. Math.201265549585287734410.1002/cpa.213821234.35181 – reference: XinZBlowup of smooth solutions to the compressible Navier-Stokes equation with compact densityCommun. Pure Appl. Math.199851229240148851310.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C0937.35134 – reference: HuangXLiJGlobal classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillationsArch. Ration. Mech. Anal.20182279951059374438110.1007/s00205-017-1188-y1384.35063 – reference: Han, Q.: A basic course in partial differential equations, vol. 120 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2011 – reference: JiangSZhangPOn spherically symmetric solutions of the compressible isentropic Navier-Stokes equationsCommun. Math. Phys.20012155595812001CMaPh.215..559J181094410.1007/PL000055430980.35126 – reference: ChoeHJKimHStrong solutions of the Navier-Stokes equations for isentropic compressible fluidsJ. Differ. Equ.20031905045232003JDE...190..504J197003910.1016/S0022-0396(03)00015-91022.35037 – reference: CoutandDShkollerSWell-posedness in smooth function spaces for the moving-boundary three-dimensional compressible Euler equations in physical vacuumArch. Ration. Mech. Anal.2012206515616298052810.1007/s00205-012-0536-11257.35147 – reference: Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A Math. Sci.55, 337–342 (1979) – reference: HoffDGlobal existence for 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1$$\end{document}D, compressible, isentropic Navier-Stokes equations with large initial dataTrans. Am. Math. Soc.19873031691810656.76064 – reference: JangJMasmoudiNWell-posedness of compressible Euler equations in a physical vacuumCommun. Pure Appl. Math.20156861111328024910.1002/cpa.215171317.35185 – reference: Kanel, J.I.: The Cauchy problem for equations of gas dynamics with viscosity. Sibirsk. Mat. Zh.20, 293–306, 463 (1979) – reference: HoffDStrong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial dataArch. Ration. Mech. Anal.1995132114136007710.1007/BF003903460836.76082 – reference: Kazhikhov, A.V.: On the Cauchy problem for the equations of a viscous gas. Sibirsk. Mat. Zh.23, 60–64, 220 (1982) – reference: HoffDSerreDThe failure of continuous dependence on initial data for the Navier-Stokes equations of compressible flowSIAM J. Appl. Math.1991518878981991SJAM...51..887H111742210.1137/01510430741.35057 – reference: CoutandDLindbladHShkollerSA priori estimates for the free-boundary 3D compressible Euler equations in physical vacuumCommun. Math. Phys.20102965595872010CMaPh.296..559C260812510.1007/s00220-010-1028-51193.35139 – reference: DingSWenHYaoLZhuCGlobal spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuumSIAM J. Math. Anal.20124412571278291426610.1137/1108366631388.76326 – reference: DanchinRGlobal existence in critical spaces for compressible Navier-Stokes equationsInvent. Math.20001415796142000InMat.141..579D177962110.1007/s0022200000780958.35100 – reference: XinZYuanHVacuum state for spherically symmetric solutions of the compressible Navier-Stokes equationsJ. Hyperbolic Differ. Equ.20063403442223873610.1142/S02198916060008471106.35054 – reference: Serre, D.: Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur. C. R. Acad. Sci. Paris Sér. I Math., 303, 703–706 1986 – reference: Lions, P.-L.: Limites incompressible et acoustique pour des fluides visqueux, compressibles et isentropiques. C. R. Acad. Sci. Paris Sér. I Math.317, 1197–1202 (1993) – reference: Salvi, R., Straskraba, I.: Global existence for viscous compressible fluids and their behavior as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}. J. Fac. Sci. Univ. Tokyo Sect. IA Math.40, 17–51 (1993) – reference: HoffDSmollerJNon-formation of vacuum states for compressible Navier-Stokes equationsCommun. Math. Phys.20012162552762001CMaPh.216..255H181484710.1007/s0022000003220988.76081 – reference: ChoYKimHOn classical solutions of the compressible Navier-Stokes equations with nonnegative initial densitiesManuscr. Math.200612091129222348310.1007/s00229-006-0637-y1091.35056 – reference: KazhikhovAVShelukhinVVUnique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gasPrikl. Mat. Meh.197741282291468593 – reference: FriedmanAPartial differential equations of parabolic type1964Englewood Cliffs, N.J.Prentice-Hall Inc0144.34903 – reference: ChoYJinBJBlow-up of viscous heat-conducting compressible flowsJ. Math. Anal. Appl.2006320819826222599710.1016/j.jmaa.2005.08.0051121.35110 – reference: Jang, J., Masmoudi, N.: Well and ill-posedness for compressible Euler equations with vacuum. J. Math. Phys.53, 115625, 11 (2012) – reference: MatsumuraANishidaTInitial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluidsCommun. Math. Phys.1983894454641983CMaPh..89..445M71368010.1007/BF012147380543.76099 – reference: FeireislENovotnýAPetzeltováHOn the existence of globally defined weak solutions to the Navier-Stokes equationsJ. Math. Fluid Mech.200133583922001JMFM....3..358F186788710.1007/PL000009760997.35043 – ident: 1328_CR36 – ident: 1328_CR34 – volume: 9 start-page: 243 issue: 83 year: 2004 ident: 1328_CR2 publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2003.11.004 – volume: 190 start-page: 504 year: 2003 ident: 1328_CR6 publication-title: J. Differ. Equ. doi: 10.1016/S0022-0396(03)00015-9 – volume: 41 start-page: 282 year: 1977 ident: 1328_CR25 publication-title: Prikl. Mat. Meh. – volume: 20 start-page: 67 year: 1980 ident: 1328_CR31 publication-title: J. Math. Kyoto Univ. doi: 10.1215/kjm/1250522322 – ident: 1328_CR13 doi: 10.1090/gsm/120 – ident: 1328_CR24 doi: 10.1007/BF00971419 – volume: 320 start-page: 819 year: 2006 ident: 1328_CR3 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2005.08.005 – volume: 68 start-page: 61 year: 2015 ident: 1328_CR21 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21517 – ident: 1328_CR20 doi: 10.1063/1.4767369 – ident: 1328_CR27 – volume-title: Partial differential equations of parabolic type year: 1964 ident: 1328_CR12 – ident: 1328_CR23 doi: 10.1007/BF00970025 – volume: 51 start-page: 887 year: 1991 ident: 1328_CR16 publication-title: SIAM J. Appl. Math. doi: 10.1137/0151043 – ident: 1328_CR30 – volume: 3 start-page: 403 year: 2006 ident: 1328_CR40 publication-title: J. Hyperbolic Differ. Equ. doi: 10.1142/S0219891606000847 – volume: 3 start-page: 358 year: 2001 ident: 1328_CR11 publication-title: J. Math. Fluid Mech. doi: 10.1007/PL00000976 – volume: 65 start-page: 549 year: 2012 ident: 1328_CR19 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21382 – volume: 3 start-page: 271 year: 1959 ident: 1328_CR37 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00284180 – volume: 216 start-page: 255 year: 2001 ident: 1328_CR17 publication-title: Commun. Math. Phys. doi: 10.1007/s002200000322 – ident: 1328_CR35 – volume: 51 start-page: 229 year: 1998 ident: 1328_CR38 publication-title: Commun. Pure Appl. Math. doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C – volume: 303 start-page: 169 year: 1987 ident: 1328_CR14 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1987-0896014-6 – volume: 215 start-page: 559 year: 2001 ident: 1328_CR22 publication-title: Commun. Math. Phys. doi: 10.1007/PL00005543 – volume: 132 start-page: 1 year: 1995 ident: 1328_CR15 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/BF00390346 – volume: 44 start-page: 1257 year: 2012 ident: 1328_CR10 publication-title: SIAM J. Math. Anal. doi: 10.1137/110836663 – ident: 1328_CR1 – volume: 206 start-page: 515 year: 2012 ident: 1328_CR8 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-012-0536-1 – volume: 141 start-page: 579 year: 2000 ident: 1328_CR9 publication-title: Invent. Math. doi: 10.1007/s002220000078 – ident: 1328_CR26 – volume: 89 start-page: 445 year: 1983 ident: 1328_CR32 publication-title: Commun. Math. Phys. doi: 10.1007/BF01214738 – volume: 227 start-page: 995 year: 2018 ident: 1328_CR18 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-017-1188-y – ident: 1328_CR28 – volume: 90 start-page: 487 year: 1962 ident: 1328_CR33 publication-title: Bull. Soc. Math. Fr. doi: 10.24033/bsmf.1586 – ident: 1328_CR29 doi: 10.1115/1.1483363 – volume: 228 start-page: 377 year: 2006 ident: 1328_CR4 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2006.05.001 – volume: 321 start-page: 529 year: 2013 ident: 1328_CR39 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-012-1610-0 – volume: 120 start-page: 91 year: 2006 ident: 1328_CR5 publication-title: Manuscr. Math. doi: 10.1007/s00229-006-0637-y – volume: 296 start-page: 559 year: 2010 ident: 1328_CR7 publication-title: Commun. Math. Phys. doi: 10.1007/s00220-010-1028-5 |
SSID | ssj0003236 |
Score | 2.4735334 |
Snippet | The well-posedness of classical solutions with finite energy to the compressible Navier–Stokes equations (CNS) subject to arbitrarily large and smooth initial... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 557 |
SubjectTerms | Boundary value problems Cauchy problems Classical Mechanics Complex Systems Compressibility Density Fluid dynamics Fluid flow Fluid- and Aerodynamics Mathematical analysis Mathematical and Computational Physics Navier-Stokes equations Perturbation Physics Physics and Astronomy Sobolev space Theoretical Well posed problems |
Title | Non-existence of Classical Solutions with Finite Energy to the Cauchy Problem of the Compressible Navier–Stokes Equations |
URI | https://link.springer.com/article/10.1007/s00205-018-1328-z https://www.proquest.com/docview/2194643379 |
Volume | 232 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VUCU4lPJRsYWufOAEsrRx7Dg-rtAuqIhVJVgJTpHtOGpFtQESDsCF_9B_2F_C2JsEgQpSb0n8ccizZ57t8RuAXWYSg26soAMT55RzmVAd5TnNOWOFksKJkGPpZJIcTfn3c3He3OOu2mj39kgyWOrusptnNj7QDFc9MUvp_QIsCVy6-2E9ZcPO_MYs5AX0T1QJJtujzH918dIZPTPMV4eiwdeMP8OnhiSS4RzVNfjgZuuw2hBG0kzHah1WTjrRVXz7GKI5bbUBD5NyRr3GZSDEpCxIyH3p8SDdPhjxW7Bk_MuTTjIKVwBJXRLskBzoW_vzjvyYJ5vx7cNXNB0hahY_kon2DvXv45_Turx0FRldzzXDq02YjkdnB0e0ybJAbSxUTVOHHsohEUqLRIsoTxLHo5xJ5tD08IGxuWaFdanJZYHlilsujWJMx7jUSUwSf4HFWTlzW0CEGWgZaaecinghUs059xLvTipnmRU9GLS_O7ONBLnPhPE768STA0IZIpR5hLL7Hux1Ta7m-hvvVd5pMcyaqVhlaJI50q5Yqh7st7g-F7_Z2df_qr0Ny0ilVAiFZDuwWN_cum9IV2rTh4V0fNiHpeHhxfGoHwbrE90u5V8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7BVoj2QKGAWCjgAyeQq41jx_GxqnZZaHeFxFYqp8h2HBUVbQrJHthe-h_6D_kljJ1HRQVIvSV-KfFj5ht7_A3AG2YSg2qsoCMT55RzmVAd5TnNOWOFksKJEGNpNk-mx_zjiThp73FXnbd7dyQZJHV_2c0jG-9ohlZPzFK6vgsbHE1wMYCN_fdfDse9AI5ZiAzon6gSTHaHmX9r5E91dI0xbxyLBm0z2YZF952Nk8nZ3qo2e3Z9g8Lxlj_yEB606JPsN9PlEdxxyx3YbpEoadd5tQNbs57NFd_uBTdRWz2Gi3m5pJ48MyBtUhYkBNX0A036DTbi93bJ5KtHs2Qc7haSuiTYIDnQK3v6k3xqotj4-iEVZVJwx8VEMtdeU_-6vPpcl2euIuPvDRl59QSOJ-PFwZS24RuojYWqaepQ9TlEWGmRaBHlSeJ4lDPJHMo0PjI216ywLjW5LDBfcculUYzpGG2oxCTxUxgsy6V7BkSYkZaRdsqpiBci1Zxzzx3vpHKWWTGEUTeKmW25zX2IjW9Zz8ocOj3DTs98p2frIbztq5w3xB7_K7zbTY2sXeNVhrKeI56LpRrCu26kr7P_2djzW5V-Dfeni9lRdvRhfvgCNhGvqeBvyXZhUP9YuZeIiWrzql0DvwEdVwLm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFL0qrUB0QUspYqBQL1iBrE4cO46XVZlRC3RUCUbqLvIrAhUlhaSLlg3_0D_sl3DtPCoQILFL_FrkxPce29fnArxkJjPoxko6NamjnMuM6sQ56jhjpZLCi5hj6XiRHS7521Nx2uc5bYZo9-FIsrvTEFSaqnbv3JV748W3wHJC0BmugFKW06s7sIbWOAkxXUu2P5rilMUcgeGJKsHkcKz5pyF-dUy3bPO3A9Lod-ab8KAnjGS_Q_ghrPhqCzZ68kj6qdlswfrxKMCKb3djZKdtHsH3RV3RoHcZyTGpSxLzYAZsyLgnRsJ2LJl_DgSUzOJ1QNLWBAckB_rCfrokJ13imdA_lqIZiRG0WEgWOjjXmx_XH9r6zDdk9rXTD2-2YTmffTw4pH3GBWpToVqae_RWHklRXmZaJC7LPE8ck8yjGeJTY51mpfW5cbLEesUtl0YxplNc9mQmSx_DalVX_gkQYaZaJtorrxJeilxzzoPcu5fKW2bFBKbD5y5sL0cesmJ8KUYh5YhQgQgVAaHiagKvxi7nnRbHvxrvDBgW_bRsCjTPHClYKtUEXg-43lb_dbCn_9V6F-6dvJkX748W757BfWRYKkZIsh1Ybb9d-OfIYlrzIv6pPwFx6eoU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-existence+of+Classical+Solutions+with+Finite+Energy+to+the+Cauchy+Problem+of+the+Compressible+Navier%E2%80%93Stokes+Equations&rft.jtitle=Archive+for+rational+mechanics+and+analysis&rft.au=Li%2C+Hai-Liang&rft.au=Wang%2C+Yuexun&rft.au=Xin%2C+Zhouping&rft.date=2019-05-02&rft.issn=0003-9527&rft.eissn=1432-0673&rft.volume=232&rft.issue=2&rft.spage=557&rft.epage=590&rft_id=info:doi/10.1007%2Fs00205-018-1328-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00205_018_1328_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-9527&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-9527&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-9527&client=summon |