Edge Computing Driven Low-Light Image Dynamic Enhancement for Object Detection
With fast increase in volume of mobile multimedia data, how to apply powerful deep learning methods to process data with real-time response becomes a major issue. Meanwhile, edge computing structure helps improve response time and user experience by bringing flexible computation and storage capabili...
Saved in:
Published in | IEEE transactions on network science and engineering Vol. 10; no. 5; pp. 3086 - 3098 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With fast increase in volume of mobile multimedia data, how to apply powerful deep learning methods to process data with real-time response becomes a major issue. Meanwhile, edge computing structure helps improve response time and user experience by bringing flexible computation and storage capabilities. Considering both technologies for successful AI-based applications, we propose an edge-computing driven and end-to-end framework to perform tasks of image enhancement and object detection under low-light conditions. The framework consists of a cloud-based enhancement and an edge-based detection stage. In the first stage, we establish connections between edge devices and cloud servers to input re-scaled illumination parts of low-light images, where enhancement subnetworks are dynamically and parallel coupled to compute enhanced illumination parts based on low-light context. During the edge-based detection stage, edge devices could accurately and rapidly detect objects based on cloud-computed informative feature map. Experimental results show the proposed method significantly improves detection performance in low-light conditions with low latency running on edge devices. |
---|---|
AbstractList | With fast increase in volume of mobile multimedia data, how to apply powerful deep learning methods to process data with real-time response becomes a major issue. Meanwhile, edge computing structure helps improve response time and user experience by bringing flexible computation and storage capabilities. Considering both technologies for successful AI-based applications, we propose an edge-computing driven and end-to-end framework to perform tasks of image enhancement and object detection under low-light conditions. The framework consists of a cloud-based enhancement and an edge-based detection stage. In the first stage, we establish connections between edge devices and cloud servers to input re-scaled illumination parts of low-light images, where enhancement subnetworks are dynamically and parallel coupled to compute enhanced illumination parts based on low-light context. During the edge-based detection stage, edge devices could accurately and rapidly detect objects based on cloud-computed informative feature map. Experimental results show the proposed method significantly improves detection performance in low-light conditions with low latency running on edge devices. |
Author | Guo, Haifeng Chakraborty, Chinmay Wu, Yirui Khosravi, Mohammad R. Berretti, Stefano Wan, Shaohua |
Author_xml | – sequence: 1 givenname: Yirui orcidid: 0000-0003-3022-3718 surname: Wu fullname: Wu, Yirui email: wuyirui@hhu.edu.cn organization: College of Computer and Information, Hohai University, Nanjing, China – sequence: 2 givenname: Haifeng surname: Guo fullname: Guo, Haifeng email: guo-haifeng@outlook.com organization: National Key Lab for Novel Software Technology, Nanjing University, Nanjing, China – sequence: 3 givenname: Chinmay orcidid: 0000-0002-4385-0975 surname: Chakraborty fullname: Chakraborty, Chinmay email: cchakrabarty@bitmesra.ac.in organization: Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India – sequence: 4 givenname: Mohammad R. orcidid: 0000-0002-2029-5067 surname: Khosravi fullname: Khosravi, Mohammad R. email: m.r.khosravi.taut@gmail.com organization: Shiraz University of Technology, Shiraz, Iran – sequence: 5 givenname: Stefano orcidid: 0000-0003-1219-4386 surname: Berretti fullname: Berretti, Stefano email: stefano.berretti@unifi.it organization: Department of Information Engineering (DINFO), University of Florence, Florence, Italy – sequence: 6 givenname: Shaohua orcidid: 0000-0001-7013-9081 surname: Wan fullname: Wan, Shaohua email: shaohua.wan@ieee.org organization: Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China |
BookMark | eNp9kEtPAjEUhRujiYj8AOOmievBvubRpQFUkgksxMRd03Y6UMK02Cka_r0zgbhw4ercxfnuPffcgEvnnQHgDqMxxog_rhZvszFBhIwpTnGKyAUYEEpZQgn_uOxnkics4_k1GLXtFiGESZFRSgdgMavWBk58sz9E69ZwGuyXcbD030lp15sI543sDNOjk43VcOY20mnTGBdh7QNcqq3REU5N7MR6dwuuarlrzeisQ_D-PFtNXpNy-TKfPJWJpimPSSErU2FV4FwphpmuWM1rrlDVJUupTjXBKGOsKJCSGckLQ1PGsTKK1gWniNEheDjt3Qf_eTBtFFt_CK47KbrPMsYRS0nnyk8uHXzbBlMLbaPsc8Yg7U5gJPr-RN-f6PsT5_46Ev8h98E2Mhz_Ze5PjDXG_Pp5jhnCjP4AJ8h7oA |
CODEN | ITNSD5 |
CitedBy_id | crossref_primary_10_1002_cpe_7664 crossref_primary_10_1049_ipr2_12772 crossref_primary_10_1109_JIOT_2022_3218150 crossref_primary_10_1109_TMM_2023_3318470 crossref_primary_10_3390_app13148509 crossref_primary_10_3390_app13126913 crossref_primary_10_1186_s13677_025_00726_z crossref_primary_10_1016_j_jvcir_2024_104116 crossref_primary_10_1002_cpe_8232 crossref_primary_10_3390_s24030772 crossref_primary_10_1002_cpe_7142 crossref_primary_10_1145_3597210 crossref_primary_10_1007_s11265_023_01839_x crossref_primary_10_1155_2023_8478457 crossref_primary_10_1007_s00530_023_01153_3 crossref_primary_10_1145_3561299 crossref_primary_10_1109_TII_2022_3173899 crossref_primary_10_1155_2023_4685563 crossref_primary_10_1007_s42979_024_02710_x crossref_primary_10_1016_j_jpi_2023_100341 crossref_primary_10_1007_s00521_023_08645_3 crossref_primary_10_1007_s12065_023_00847_x crossref_primary_10_3390_app13020852 crossref_primary_10_1109_TCE_2023_3318150 crossref_primary_10_3390_math10193679 crossref_primary_10_3390_app13084883 crossref_primary_10_1007_s42979_023_02145_w crossref_primary_10_1049_ipr2_12785 crossref_primary_10_1109_TIM_2024_3350120 crossref_primary_10_3390_electronics13173527 crossref_primary_10_1109_TITS_2022_3178848 crossref_primary_10_1007_s11263_024_01995_y crossref_primary_10_1109_TSC_2024_3377156 crossref_primary_10_3390_app122110939 crossref_primary_10_1109_TITS_2022_3157254 crossref_primary_10_1038_s41598_025_86860_9 crossref_primary_10_26599_TST_2023_9010008 crossref_primary_10_1038_s41598_022_20411_4 crossref_primary_10_1109_TNSM_2024_3436674 crossref_primary_10_1016_j_eswa_2024_124011 crossref_primary_10_1109_JSTARS_2024_3367713 crossref_primary_10_3390_s22155836 crossref_primary_10_3390_s22218416 crossref_primary_10_3390_app13169222 crossref_primary_10_1007_s40747_024_01681_z crossref_primary_10_3390_electronics12030767 crossref_primary_10_1080_21681163_2023_2193649 crossref_primary_10_1080_21681163_2023_2228914 crossref_primary_10_3390_agriculture15050510 crossref_primary_10_1007_s42979_023_02066_8 crossref_primary_10_1109_TCSS_2022_3165559 crossref_primary_10_1007_s00530_023_01110_0 crossref_primary_10_1088_1361_6501_ad5f50 crossref_primary_10_1109_ACCESS_2025_3550947 crossref_primary_10_3389_fpls_2023_1102855 crossref_primary_10_1016_j_patrec_2022_12_020 crossref_primary_10_1109_TCC_2024_3525076 crossref_primary_10_1007_s13389_023_00343_z crossref_primary_10_1109_ACCESS_2024_3450580 crossref_primary_10_3390_app13169211 crossref_primary_10_3390_s23020661 crossref_primary_10_3390_s24196330 crossref_primary_10_1080_17538947_2023_2239765 crossref_primary_10_1049_ipr2_13092 crossref_primary_10_1109_TMC_2024_3514214 crossref_primary_10_1186_s13677_022_00359_6 crossref_primary_10_1155_2022_4037053 crossref_primary_10_3389_fpsyg_2023_1155490 crossref_primary_10_1145_3591206 crossref_primary_10_1145_3587038 crossref_primary_10_1177_00405175241268771 crossref_primary_10_1007_s11042_024_19918_x crossref_primary_10_3390_electronics13173383 crossref_primary_10_1155_2023_8984451 |
Cites_doi | 10.1109/CVPR46437.2021.01042 10.1109/LGRS.2019.2919755 10.1023/B:VISI.0000013087.49260.fb 10.1007/978-3-319-10602-1_48 10.1109/tpami.2016.2577031 10.1109/TII.2020.2967768 10.1109/CVPR.2018.00347 10.1145/3072959.3073592 10.1155/2018/6235379 10.1109/ICCV.2017.324 10.1109/TPAMI.2018.2858826 10.1609/aaai.v34i07.7013 10.1109/CVPR.2016.91 10.1007/978-3-319-24574-4_28 10.1109/HPEC.2018.8547574 10.1109/ICCVW.2017.356 10.1109/ICCV.2017.244 10.1145/3318216.3363304 10.1016/j.cviu.2018.10.010 10.1109/CVPR.2018.00424 10.1109/TITS.2020.3025687 10.1109/jiot.2022.3143529 10.1007/978-3-642-15549-9_1 10.1109/tip.2021.3051462 10.1109/TII.2020.3001054 10.1145/3447993.3483274 10.1145/3430505 10.1109/TGRS.2020.3016820 10.1007/978-3-319-46448-0_2 10.1109/tits.2014.2345663 10.1109/TNET.2020.2983119 10.1109/TGRS.2020.3015157 10.1109/CVPR46437.2021.00493 10.1109/CVPR46437.2021.00871 10.1109/CVPRW.2019.00084 10.1109/CVPR46437.2021.00407 10.1109/SEC50012.2020.00016 10.1109/TGRS.2019.2897139 10.1016/j.patcog.2021.108146 10.1109/CVPRW.2017.151 10.1145/3447993.3448628 10.1007/s00521-019-04609-8 10.1145/3307334.3328589 10.1109/TII.2020.2987994 10.1109/CVPR42600.2020.01079 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TNSE.2022.3151502 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2334-329X |
EndPage | 3098 |
ExternalDocumentID | 10_1109_TNSE_2022_3151502 9714014 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62172438 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2021YFB3900601 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IEDLZ IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-8aded1b817bb414cd4f9f9b0d00153c5c210644880ba6278e35491beb3f893043 |
IEDL.DBID | RIE |
ISSN | 2327-4697 |
IngestDate | Mon Jun 30 08:39:02 EDT 2025 Tue Jul 01 03:10:44 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Wed Aug 27 02:24:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-8aded1b817bb414cd4f9f9b0d00153c5c210644880ba6278e35491beb3f893043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4385-0975 0000-0001-7013-9081 0000-0003-3022-3718 0000-0002-2029-5067 0000-0003-1219-4386 |
PQID | 2866490452 |
PQPubID | 2040409 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_TNSE_2022_3151502 proquest_journals_2866490452 crossref_primary_10_1109_TNSE_2022_3151502 ieee_primary_9714014 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on network science and engineering |
PublicationTitleAbbrev | TNSE |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 ref17 ref16 Wei (ref14) 2018 ref19 ref18 Tan (ref6) 2019; 97 Xu (ref3) 2021 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Bhardwaj (ref4) 2020 |
References_xml | – volume: 97 start-page: 6105 volume-title: Proc. Int. Conf. Mach. Learn. year: 2019 ident: ref6 article-title: EfficientNet: Rethinking model scaling for convolutional neural networks – start-page: 155 volume-title: Proc. Brit. Mach. Vis. Conf. year: 2018 ident: ref14 article-title: Deep retinex decomposition for low-light enhancement – ident: ref17 doi: 10.1109/CVPR46437.2021.01042 – ident: ref38 doi: 10.1109/LGRS.2019.2919755 – ident: ref33 doi: 10.1023/B:VISI.0000013087.49260.fb – ident: ref44 doi: 10.1007/978-3-319-10602-1_48 – ident: ref34 doi: 10.1109/tpami.2016.2577031 – ident: ref21 doi: 10.1109/TII.2020.2967768 – ident: ref15 doi: 10.1109/CVPR.2018.00347 – ident: ref13 doi: 10.1145/3072959.3073592 – ident: ref29 doi: 10.1155/2018/6235379 – ident: ref46 doi: 10.1109/ICCV.2017.324 – ident: ref41 doi: 10.1109/TPAMI.2018.2858826 – ident: ref16 doi: 10.1609/aaai.v34i07.7013 – ident: ref36 doi: 10.1109/CVPR.2016.91 – ident: ref42 doi: 10.1007/978-3-319-24574-4_28 – ident: ref9 doi: 10.1109/HPEC.2018.8547574 – ident: ref12 doi: 10.1109/ICCVW.2017.356 – ident: ref19 doi: 10.1109/ICCV.2017.244 – ident: ref31 doi: 10.1145/3318216.3363304 – ident: ref43 doi: 10.1016/j.cviu.2018.10.010 – ident: ref45 doi: 10.1109/CVPR.2018.00424 – ident: ref26 doi: 10.1109/TITS.2020.3025687 – ident: ref23 doi: 10.1109/jiot.2022.3143529 – ident: ref49 doi: 10.1007/978-3-642-15549-9_1 – ident: ref20 doi: 10.1109/tip.2021.3051462 – ident: ref25 doi: 10.1109/TII.2020.3001054 – ident: ref8 doi: 10.1145/3447993.3483274 – ident: ref28 doi: 10.1145/3430505 – ident: ref39 doi: 10.1109/TGRS.2020.3016820 – ident: ref35 doi: 10.1007/978-3-319-46448-0_2 – ident: ref22 doi: 10.1109/tits.2014.2345663 – ident: ref24 doi: 10.1109/TNET.2020.2983119 – ident: ref40 doi: 10.1109/TGRS.2020.3015157 – ident: ref18 doi: 10.1109/CVPR46437.2021.00493 – ident: ref2 doi: 10.1109/CVPR46437.2021.00871 – ident: ref10 doi: 10.1109/CVPRW.2019.00084 – ident: ref1 doi: 10.1109/CVPR46437.2021.00407 – ident: ref32 doi: 10.1109/SEC50012.2020.00016 – ident: ref37 doi: 10.1109/TGRS.2019.2897139 – ident: ref27 doi: 10.1016/j.patcog.2021.108146 – ident: ref47 doi: 10.1109/CVPRW.2017.151 – ident: ref11 doi: 10.1145/3447993.3448628 – start-page: 459 volume-title: Proc. USENIX Annu. Tech. Conf. year: 2021 ident: ref3 article-title: Video analytics with zero-streaming cameras – year: 2020 ident: ref4 article-title: Ekya: Continuous learning of video analytics models on edge compute servers – ident: ref48 doi: 10.1007/s00521-019-04609-8 – ident: ref5 doi: 10.1145/3307334.3328589 – ident: ref30 doi: 10.1109/TII.2020.2987994 – ident: ref7 doi: 10.1109/CVPR42600.2020.01079 |
SSID | ssj0001286333 |
Score | 2.5819845 |
Snippet | With fast increase in volume of mobile multimedia data, how to apply powerful deep learning methods to process data with real-time response becomes a major... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3086 |
SubjectTerms | Cloud computing Computer networks Edge computing edge-driven deep learning method Feature maps Illumination Image edge detection Image enhancement Light Low-light image enhancement Multimedia Object detection Object recognition Performance evaluation Response time (computers) Task analysis Time response User experience |
Title | Edge Computing Driven Low-Light Image Dynamic Enhancement for Object Detection |
URI | https://ieeexplore.ieee.org/document/9714014 https://www.proquest.com/docview/2866490452 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9zT_rg1xSnU_Lgk9itbdKvR3GTKdt8cIO9lSa5KqidzA7Bv967thtDRXwrJSEhd8nd73K5H2PnQvqORkNoge25ljSusFSA-zEACSZyUhAJhQaGI78_kXdTb1pjl6u3MABQJJ9Bmz6Lu3wz0wsKlXUiqi5HrNUbCNzKt1pr8ZTQF0JUF5eOHXXGo4ceAkDXRVyKVrsKnCxNT8Gl8uMALqzKzQ4bLudTJpM8txe5auvPb6Ua_zvhXbZduZf8qtSHPVaDbJ9trRUdbLBRzzwCL9kc8AfvzunA44PZhzUgpM5vX_GM4d2Sqp73sidSDBqIo4PL7xVFbngX8iKJKztgk5ve-LpvVawKlhZelFthYsA4KnQCpaQjtZFplEbKNuQ-Ce1pBIEE2kJbJb4bhCAQQjoKQXeKvo0txSGrZ7MMjhinJ-gGhPKS0Jd-ohSkElxAp0OjXQydJrOXCx7rquQ4MV-8xAX0sKOYZBSTjOJKRk12seryVtbb-Ktxg9Z81bBa7iZrLaUaVzvyPcap-jKiAvLHv_c6YZtEJV_mj7VYPZ8v4BQdjlydFZr2BX6P0Q0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHIADb8R45sAJ0dE2adceERsasI0DQ-JWNYkLEtAh6ITEr8duuwkBQtyqKlGi2In9OY4_gEOpQs-QIXTQDXxHWV86ukX7sYUKbexlKFMODfQHYfdWXd4FdzNwPH0Lg4hl8hk2-bO8y7cjM-ZQ2UnM1eWYtXqO7H7gV6-1vkRUolBKWV9dem58MhzcdAgC-j4hU7LbdehkYnxKNpUfR3BpV86XoT-ZUZVO8tgcF7ppPr4Va_zvlFdgqXYwxWmlEaswg_kaLH4pO7gOg469R1HxOdAP0X7lI0_0Ru9Oj7G6uHimU0a0K7J60ckfWDV4IEEurrjWHLsRbSzKNK58A27PO8OzrlPzKjhGBnHhRKlF6-nIa2mtPGWsyuIs1q5lB0qawBAMZNgWuToN_VaEkkCkpwl2Z-TduEpuwmw-ynELBD9Ctyh1kEahClOtMVPoI7kdhixj5DXAnSx4Yuqi48x98ZSU4MONE5ZRwjJKahk14Gja5aWquPFX43Ve82nDerkbsDuRalLvybeEphqqmEvIb__e6wDmu8N-L-ldDK52YIGJ5atssl2YLV7HuEfuR6H3S637BJQd1Fc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge+Computing+Driven+Low-Light+Image+Dynamic+Enhancement+for+Object+Detection&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Wu%2C+Yirui&rft.au=Guo%2C+Haifeng&rft.au=Chakraborty%2C+Chinmay&rft.au=Khosravi%2C+Mohammad+R.&rft.date=2023-09-01&rft.pub=IEEE&rft.eissn=2334-329X&rft.volume=10&rft.issue=5&rft.spage=3086&rft.epage=3098&rft_id=info:doi/10.1109%2FTNSE.2022.3151502&rft.externalDocID=9714014 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |