DroidCat: Effective Android Malware Detection and Categorization via App-Level Profiling
Most existing Android malware detection and categorization techniques are static approaches, which suffer from evasion attacks, such as obfuscation. By analyzing program behaviors, dynamic approaches are potentially more resilient against these attacks. Yet existing dynamic approaches mostly rely on...
Saved in:
Published in | IEEE transactions on information forensics and security Vol. 14; no. 6; pp. 1455 - 1470 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Most existing Android malware detection and categorization techniques are static approaches, which suffer from evasion attacks, such as obfuscation. By analyzing program behaviors, dynamic approaches are potentially more resilient against these attacks. Yet existing dynamic approaches mostly rely on characterizing system calls which are subject to system-call obfuscation. This paper presents DroidCat, a novel dynamic app classification technique, to complement existing approaches. By using a diverse set of dynamic features based on method calls and inter-component communication (ICC) Intents without involving permission, app resources, or system calls while fully handling reflection, DroidCat achieves superior robustness than static approaches as well as dynamic approaches relying on system calls. The features were distilled from a behavioral characterization study of benign versus malicious apps. Through three complementary evaluation studies with 34 343 apps from various sources and spanning the past nine years, we demonstrated the stability of DroidCat in achieving high classification performance and superior accuracy compared with the two state-of-the-art peer techniques that represent both static and dynamic approaches. Overall, DroidCat achieved 97% F1-measure accuracy consistently for classifying apps evolving over the nine years, detecting or categorizing malware, 16%-27% higher than any of the two baselines compared. Furthermore, our experiments with obfuscated benchmarks confirmed higher robustness of DroidCat over these baseline techniques. We also investigated the effects of various design decisions on DroidCat's effectiveness and the most important features for our dynamic classification. We found that features capturing app execution structure such as the distribution of method calls over user code and libraries are much more important than typical security features such as sensitive flows. |
---|---|
AbstractList | Most existing Android malware detection and categorization techniques are static approaches, which suffer from evasion attacks, such as obfuscation. By analyzing program behaviors, dynamic approaches are potentially more resilient against these attacks. Yet existing dynamic approaches mostly rely on characterizing system calls which are subject to system-call obfuscation. This paper presents DroidCat, a novel dynamic app classification technique, to complement existing approaches. By using a diverse set of dynamic features based on method calls and inter-component communication (ICC) Intents without involving permission, app resources, or system calls while fully handling reflection, DroidCat achieves superior robustness than static approaches as well as dynamic approaches relying on system calls. The features were distilled from a behavioral characterization study of benign versus malicious apps. Through three complementary evaluation studies with 34 343 apps from various sources and spanning the past nine years, we demonstrated the stability of DroidCat in achieving high classification performance and superior accuracy compared with the two state-of-the-art peer techniques that represent both static and dynamic approaches. Overall, DroidCat achieved 97% F1-measure accuracy consistently for classifying apps evolving over the nine years, detecting or categorizing malware, 16%–27% higher than any of the two baselines compared. Furthermore, our experiments with obfuscated benchmarks confirmed higher robustness of DroidCat over these baseline techniques. We also investigated the effects of various design decisions on DroidCat’s effectiveness and the most important features for our dynamic classification. We found that features capturing app execution structure such as the distribution of method calls over user code and libraries are much more important than typical security features such as sensitive flows. |
Author | Haipeng Cai Ryder, Barbara Yao, Daphne Na Meng |
Author_xml | – sequence: 1 surname: Haipeng Cai fullname: Haipeng Cai email: haipeng.cai@wsu.edu organization: Sch. of Electr. Eng. & Comput. Sci., Washington State Univ., Pullman, WA, USA – sequence: 2 surname: Na Meng fullname: Na Meng organization: Dept. of Comput. Sci., Virginia Tech, Blacksburg, VA, USA – sequence: 3 givenname: Barbara surname: Ryder fullname: Ryder, Barbara organization: Dept. of Comput. Sci., Virginia Tech, Blacksburg, VA, USA – sequence: 4 givenname: Daphne surname: Yao fullname: Yao, Daphne organization: Dept. of Comput. Sci., Virginia Tech, Blacksburg, VA, USA |
BookMark | eNp9UE1Lw0AQXaSCbfUHiJcFz6m7m2yy6630QwsVBSt4WzabSdkSs3GTVvTXm7SlBw8ehhnevDfzeAPUK10JCF1TMqKUyLvVYv46YoSKEROJDAk7Q33KeRzEhNHeaabhBRrU9YaQKKKx6KP3qXc2m-jmHs_yHExjd4DHZdah-EkXX9oDnkLTbVyJdZnhlgxr5-2P3kM7q_G4qoIl7KDAL97ltrDl-hKd57qo4erYh-htPltNHoPl88NiMl4GJuSyCURCOaSCxpFmeUg504lJtIhMapIQNCMC0jySGWecZ8REaWuS65iJVIZSSBkO0e3hbuXd5xbqRm3c1pftS8WoIIS01bGSA8t4V9cecmVss_ffeG0LRYnqYlRdjKqLUR1jbJX0j7Ly9kP77381NweNBYATX3Aqk4iFv2X5f3I |
CODEN | ITIFA6 |
CitedBy_id | crossref_primary_10_1016_j_compeleceng_2020_106886 crossref_primary_10_1109_ACCESS_2020_3006143 crossref_primary_10_1109_ACCESS_2023_3244656 crossref_primary_10_1145_3371924 crossref_primary_10_1145_3725810 crossref_primary_10_1016_j_jnca_2019_102420 crossref_primary_10_1080_1206212X_2023_2270804 crossref_primary_10_1016_j_jisa_2024_103880 crossref_primary_10_1016_j_eswa_2023_119593 crossref_primary_10_1145_3417978 crossref_primary_10_56294_piii2025378 crossref_primary_10_1155_2022_1830201 crossref_primary_10_1093_comjnl_bxae114 crossref_primary_10_1016_j_jer_2024_04_008 crossref_primary_10_1109_TIFS_2021_3124725 crossref_primary_10_1109_JIOT_2024_3394555 crossref_primary_10_1109_ACCESS_2021_3123187 crossref_primary_10_1109_TKDE_2024_3436891 crossref_primary_10_3390_app112110244 crossref_primary_10_1109_ACCESS_2022_3189645 crossref_primary_10_1007_s10515_023_00378_w crossref_primary_10_3233_JCS_220044 crossref_primary_10_1155_2021_5538841 crossref_primary_10_3934_era_2024192 crossref_primary_10_1016_j_jisa_2020_102718 crossref_primary_10_1007_s10207_022_00626_2 crossref_primary_10_1109_TIFS_2020_2976556 crossref_primary_10_1016_j_cose_2022_102785 crossref_primary_10_1016_j_eswa_2022_117200 crossref_primary_10_1007_s11416_023_00505_x crossref_primary_10_3390_e24070919 crossref_primary_10_1109_ACCESS_2024_3390612 crossref_primary_10_1016_j_future_2019_03_007 crossref_primary_10_1109_TPDS_2020_3046092 crossref_primary_10_1016_j_infsof_2020_106291 crossref_primary_10_1109_ACCESS_2021_3113711 crossref_primary_10_23919_cje_2021_00_451 crossref_primary_10_3390_s20247013 crossref_primary_10_1186_s42400_022_00119_8 crossref_primary_10_1016_j_eswa_2023_122255 crossref_primary_10_1016_j_jisa_2021_103063 crossref_primary_10_1109_ACCESS_2021_3082173 crossref_primary_10_1007_s00521_023_08303_8 crossref_primary_10_1007_s10489_024_05911_2 crossref_primary_10_1109_JIOT_2024_3477442 crossref_primary_10_1016_j_cose_2022_102757 crossref_primary_10_1111_exsy_12468 crossref_primary_10_1109_TIFS_2024_3414339 crossref_primary_10_1155_2022_7775917 crossref_primary_10_1109_TIFS_2022_3180184 crossref_primary_10_4018_IJISP_319018 crossref_primary_10_1109_JSYST_2023_3238678 crossref_primary_10_3233_JIFS_231969 crossref_primary_10_4018_IJSI_309719 crossref_primary_10_1016_j_eswa_2022_118404 crossref_primary_10_1007_s42979_023_02000_y crossref_primary_10_4018_IJSSCI_312554 crossref_primary_10_1109_JIOT_2023_3262594 crossref_primary_10_1007_s42044_023_00136_x crossref_primary_10_1109_ACCESS_2020_3033026 crossref_primary_10_32604_cmc_2023_028316 crossref_primary_10_1109_TIFS_2023_3328431 crossref_primary_10_1109_JIOT_2021_3109785 crossref_primary_10_1109_ACCESS_2022_3149053 crossref_primary_10_1088_1742_6596_1911_1_012031 crossref_primary_10_1109_TNSM_2021_3112056 crossref_primary_10_3390_s23104729 crossref_primary_10_1109_TSC_2024_3496333 crossref_primary_10_1016_j_procs_2022_12_095 crossref_primary_10_3390_electronics10222881 crossref_primary_10_1016_j_cose_2020_101750 crossref_primary_10_1016_j_jisa_2023_103556 crossref_primary_10_1016_j_cose_2025_104364 crossref_primary_10_1109_ACCESS_2021_3107903 crossref_primary_10_32604_cmc_2023_038639 crossref_primary_10_1109_TMC_2021_3079433 crossref_primary_10_3233_JIFS_230186 crossref_primary_10_7717_peerj_cs_2616 crossref_primary_10_3390_app122110755 crossref_primary_10_1049_cmu2_12754 crossref_primary_10_1051_e3sconf_202339904056 crossref_primary_10_1016_j_cose_2024_103807 crossref_primary_10_1109_ACCESS_2019_2927552 crossref_primary_10_1007_s11042_024_19390_7 crossref_primary_10_1007_s10664_021_09955_7 crossref_primary_10_1007_s13042_021_01393_7 crossref_primary_10_1016_j_comnet_2021_108595 crossref_primary_10_32604_cmc_2022_024540 crossref_primary_10_3390_e22070792 crossref_primary_10_1109_ACCESS_2021_3139334 crossref_primary_10_1142_S2196888824500039 crossref_primary_10_1109_TC_2022_3143439 crossref_primary_10_1016_j_iot_2024_101300 crossref_primary_10_1109_ACCESS_2021_3049819 crossref_primary_10_32604_cmc_2024_058168 crossref_primary_10_1016_j_comnet_2022_109320 crossref_primary_10_1007_s11042_024_20455_w crossref_primary_10_2197_ipsjjip_29_801 crossref_primary_10_1016_j_cose_2019_101573 crossref_primary_10_1109_ACCESS_2019_2946392 crossref_primary_10_1016_j_jisa_2023_103617 crossref_primary_10_1016_j_comnet_2021_107932 crossref_primary_10_1016_j_cose_2023_103654 crossref_primary_10_1038_s41598_022_23766_w crossref_primary_10_1109_TETCI_2023_3281833 crossref_primary_10_3390_info14070374 crossref_primary_10_1016_j_future_2019_11_034 crossref_primary_10_1109_TC_2023_3292001 crossref_primary_10_1016_j_eswa_2023_120952 crossref_primary_10_1109_TIFS_2019_2947861 crossref_primary_10_1016_j_asoc_2020_107069 crossref_primary_10_1016_j_engappai_2023_107390 crossref_primary_10_1007_s11042_020_10367_w crossref_primary_10_1007_s11227_025_07055_7 crossref_primary_10_1016_j_cose_2020_102072 crossref_primary_10_1007_s42979_024_02637_3 crossref_primary_10_1080_08839514_2021_2007327 crossref_primary_10_1109_ACCESS_2019_2918139 crossref_primary_10_1016_j_cose_2022_102833 crossref_primary_10_1016_j_cose_2021_102399 crossref_primary_10_1016_j_iot_2024_101320 crossref_primary_10_1007_s10922_021_09634_4 crossref_primary_10_3390_make7010023 crossref_primary_10_1109_TDSC_2021_3094824 crossref_primary_10_1016_j_cose_2023_103277 crossref_primary_10_1109_ACCESS_2020_2965954 crossref_primary_10_1016_j_inffus_2024_102662 crossref_primary_10_1016_j_jocs_2022_101839 crossref_primary_10_1016_j_cose_2021_102264 crossref_primary_10_1007_s13042_020_01238_9 crossref_primary_10_1051_sands_2022010 crossref_primary_10_1109_TNSE_2023_3292855 crossref_primary_10_1111_exsy_13488 crossref_primary_10_1016_j_cose_2020_101792 crossref_primary_10_1109_TIFS_2023_3267666 crossref_primary_10_1111_exsy_13482 crossref_primary_10_1016_j_future_2021_11_030 crossref_primary_10_1016_j_cose_2022_102835 crossref_primary_10_1002_ett_4840 |
Cites_doi | 10.1109/BADGERS.2014.7 10.14722/ndss.2014.23247 10.1145/1774088.1774505 10.1109/ICSE.2015.50 10.1145/2517312.2517315 10.1007/s11416-014-0226-7 10.1145/2295136.2295141 10.1145/3017427 10.1007/s11416-015-0244-0 10.1137/1.9781611972788.54 10.1109/SP.2005.20 10.1109/ACSAC.2008.54 10.1109/ICSE.2017.35 10.1109/AsiaJCIS.2012.18 10.1109/CSCloud.2016.27 10.1109/ICSE.2015.30 10.1145/3029806.3029825 10.1007/3-540-49538-X_5 10.1109/TIFS.2016.2523912 10.1145/2875475.2875481 10.14722/ndss.2015.23287 10.1109/COMPSAC.2015.103 10.14722/ndss.2017.23353 10.1145/2307636.2307663 10.1145/2642937.2642950 10.1145/2818000.2818038 10.1145/2660267.2660359 10.1155/2015/479174 10.1109/ICMLA.2014.10 10.1109/ACSAC.2007.21 10.1007/BF00116251 10.1145/2635868.2635869 10.1109/TDSC.2016.2536605 10.1007/s10844-010-0148-x 10.14722/ndss.2015.23145 10.1016/j.cose.2015.02.007 10.1145/212094.212114 10.1145/2382196.2382224 10.2307/2685209 10.1109/PST.2018.8514191 10.1109/SP.2012.16 10.1007/s11416-011-0157-5 10.1007/978-3-642-22424-9_13 10.1145/1653662.1653691 10.1109/SPW.2016.25 10.1007/s11416-016-0281-3 10.1007/s10664-014-9352-6 10.1145/2046614.2046619 10.1007/BF00994018 10.1145/2976749.2978422 10.1007/978-3-319-11203-9_10 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1109/TIFS.2018.2879302 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1556-6021 |
EndPage | 1470 |
ExternalDocumentID | 10_1109_TIFS_2018_2879302 8519742 |
Genre | orig-research |
GrantInformation_xml | – fundername: Washington State University grantid: NFSG-131074-002 funderid: 10.13039/100007588 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-8715eb8164a2f3152a7c7a84cbc73ea208ebf49d5255d0c4bffe5a628b9398993 |
IEDL.DBID | RIE |
ISSN | 1556-6013 |
IngestDate | Sun Jun 29 15:23:19 EDT 2025 Tue Jul 01 02:34:14 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Wed Aug 27 06:00:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-8715eb8164a2f3152a7c7a84cbc73ea208ebf49d5255d0c4bffe5a628b9398993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5224-9970 0000-0002-4755-6941 |
PQID | 2180008009 |
PQPubID | 85506 |
PageCount | 16 |
ParticipantIDs | ieee_primary_8519742 crossref_citationtrail_10_1109_TIFS_2018_2879302 crossref_primary_10_1109_TIFS_2018_2879302 proquest_journals_2180008009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on information forensics and security |
PublicationTitleAbbrev | TIFS |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 (ref42) 2012 ref14 ref52 ho (ref40) 1995 ref55 ref11 (ref19) 2015 ref17 allix (ref60) 2016 ref18 bayer (ref31) 2009 (ref2) 2018 (ref46) 2015 (ref1) 2015 ref51 aafer (ref16) 2013 cai (ref47) 2017 ref41 (ref53) 2015 ref44 russell (ref69) 2016 (ref45) 2018 ref43 lam (ref50) 2011 ref49 jenkins (ref56) 2017 avdiienko (ref79) 2015 ref7 ref9 (ref65) 2018 cai (ref81) 2017 ref4 ref3 venkataraman (ref76) 2008 square (ref25) 2017 pedregosa (ref59) 2011; 12 ref6 (ref85) 2016 ref5 ref82 ref83 (ref48) 0 (ref62) 2018 cournapeau (ref67) 2016 ref80 cai (ref8) 2018 ref35 ref78 ref34 ref37 ref36 ref75 ref74 ref30 ref77 ref33 ref32 cai (ref66) 2017 ref39 ref38 dilhara (ref84) 2018 ref71 ref70 ref73 ref72 (ref61) 2018 griffin (ref10) 2009 chen (ref26) 2016 ref68 ref24 ref23 kotsiantis (ref58) 2007 ref64 ref20 ref63 ref22 ref21 ref28 ref27 ref29 octeau (ref54) 2013 jenkins (ref57) 2018 |
References_xml | – year: 2017 ident: ref25 publication-title: DexGuard – ident: ref75 doi: 10.1109/BADGERS.2014.7 – ident: ref15 doi: 10.14722/ndss.2014.23247 – ident: ref22 doi: 10.1145/1774088.1774505 – ident: ref4 doi: 10.1109/ICSE.2015.50 – year: 0 ident: ref48 publication-title: VirusTotal – start-page: 543 year: 2013 ident: ref54 article-title: Effective inter-component communication mapping in Android with Epicc: An essential step towards holistic security analysis publication-title: Proc Usenix Secur Symp – ident: ref6 doi: 10.1145/2517312.2517315 – start-page: 468 year: 2016 ident: ref60 article-title: AndroZoo: Collecting Millions of Android Apps for the Research Community publication-title: 2016 IEEE/ACM 13th Conference on Mining Software Repositories (MSR) – year: 2015 ident: ref19 publication-title: Requesting permissions at run time – ident: ref27 doi: 10.1007/s11416-014-0226-7 – start-page: 519 year: 2017 ident: ref56 article-title: Dissecting Android inter-component communications via interactive visual explorations publication-title: Proc ICS – year: 2015 ident: ref53 publication-title: Android Emulator – ident: ref13 doi: 10.1145/2295136.2295141 – ident: ref41 doi: 10.1145/3017427 – ident: ref33 doi: 10.1007/s11416-015-0244-0 – ident: ref64 doi: 10.1137/1.9781611972788.54 – ident: ref21 doi: 10.1109/SP.2005.20 – start-page: 265 year: 2018 ident: ref8 article-title: Leveraging historical versions of Android apps for efficient and precise taint analysis publication-title: Proc MSR – ident: ref37 doi: 10.1109/ACSAC.2008.54 – start-page: 67 year: 2018 ident: ref84 article-title: Automated detection and repair of incompatible uses of runtime permissions in Android apps publication-title: Proc MOBILE – ident: ref74 doi: 10.1109/ICSE.2017.35 – year: 2018 ident: ref62 publication-title: VirusShare – ident: ref17 doi: 10.1109/AsiaJCIS.2012.18 – year: 2018 ident: ref2 publication-title: The Ultimate Android Malware Guide What It Does Where It Came From and How to Protect Your Phone or Tablet – ident: ref39 doi: 10.1109/CSCloud.2016.27 – ident: ref43 doi: 10.1109/ICSE.2015.30 – year: 2016 ident: ref67 publication-title: Machine Learning in Python – start-page: 364 year: 2017 ident: ref81 article-title: Understanding Android application programming and security: A dynamic study publication-title: Proc ICS – ident: ref23 doi: 10.1145/3029806.3029825 – ident: ref51 doi: 10.1007/3-540-49538-X_5 – ident: ref55 doi: 10.1109/TIFS.2016.2523912 – year: 2016 ident: ref69 publication-title: Artificial Intelligence A Modern Approach – start-page: 1 year: 2008 ident: ref76 article-title: Limits of learning-based signature generation with adversaries publication-title: Proc NDSS – year: 2012 ident: ref42 publication-title: Over 60 Percent of Android Malware Comes from One Malware Family Fakeinstaller – year: 2016 ident: ref85 publication-title: Android Developers Dashboards – year: 2018 ident: ref65 publication-title: Contagio Dataset – year: 2018 ident: ref45 publication-title: Android app components – start-page: 426 year: 2015 ident: ref79 article-title: Mining apps for abnormal usage of sensitive data publication-title: Proceedings of the International Conference on Software Engineering ICSE'94 – start-page: 101 year: 2009 ident: ref10 article-title: Automatic generation of string signatures for malware detection publication-title: Proc RAID – ident: ref82 doi: 10.1145/2875475.2875481 – start-page: 278 year: 1995 ident: ref40 article-title: Random decision forests publication-title: Proc 3rd Int Conf Document Anal Recognition – ident: ref3 doi: 10.14722/ndss.2015.23287 – start-page: 86 year: 2013 ident: ref16 article-title: DroidAPIMiner: Mining API-level features for robust malware detection in Android publication-title: Proc Securecomm – ident: ref18 doi: 10.1109/COMPSAC.2015.103 – ident: ref80 doi: 10.14722/ndss.2017.23353 – year: 2017 ident: ref66 article-title: DroidCat: Unified dynamic detection of Android malware – ident: ref7 doi: 10.1145/2307636.2307663 – ident: ref52 doi: 10.1145/2642937.2642950 – start-page: 377 year: 2016 ident: ref26 article-title: StormDroid: A streaminglized machine learning-based system for detecting Android malware publication-title: Proc Asia CCS – ident: ref72 doi: 10.1145/2818000.2818038 – ident: ref78 doi: 10.1145/2660267.2660359 – year: 2018 ident: ref61 publication-title: Google Play Store – ident: ref11 doi: 10.1155/2015/479174 – ident: ref9 doi: 10.1109/ICMLA.2014.10 – ident: ref20 doi: 10.1109/ACSAC.2007.21 – ident: ref70 doi: 10.1007/BF00116251 – ident: ref5 doi: 10.1145/2635868.2635869 – ident: ref35 doi: 10.1109/TDSC.2016.2536605 – ident: ref28 doi: 10.1007/s10844-010-0148-x – ident: ref32 doi: 10.14722/ndss.2015.23145 – ident: ref24 doi: 10.1016/j.cose.2015.02.007 – start-page: 8 year: 2009 ident: ref31 article-title: Scalable, behavior-based malware clustering publication-title: Proc NDSS – ident: ref63 doi: 10.1145/212094.212114 – start-page: 3 year: 2007 ident: ref58 article-title: Supervised machine learning: A review of classification techniques publication-title: Emerg Artif Intell Appl Comput Eng – ident: ref12 doi: 10.1145/2382196.2382224 – ident: ref71 doi: 10.2307/2685209 – ident: ref83 doi: 10.1109/PST.2018.8514191 – year: 2015 ident: ref1 publication-title: Android Malware Accounts for 97% of Malicious Mobile Apps – ident: ref49 doi: 10.1109/SP.2012.16 – start-page: 80 year: 2018 ident: ref57 article-title: ICC-inspect: Supporting runtime inspection of Android inter-component communications publication-title: Proc MOBILE – ident: ref36 doi: 10.1007/s11416-011-0157-5 – ident: ref38 doi: 10.1007/978-3-642-22424-9_13 – ident: ref14 doi: 10.1145/1653662.1653691 – year: 2015 ident: ref46 publication-title: Android Monkey – start-page: 1 year: 2011 ident: ref50 article-title: Soot-A Java bytecode optimization framework publication-title: Proc Cetus Users and Compiler Infrastructure Workshop – ident: ref34 doi: 10.1109/SPW.2016.25 – ident: ref30 doi: 10.1007/s11416-016-0281-3 – ident: ref73 doi: 10.1007/s10664-014-9352-6 – ident: ref29 doi: 10.1145/2046614.2046619 – start-page: 643 year: 2017 ident: ref47 article-title: DroidFax: A toolkit for systematic characterization of Android applications publication-title: Proc ICS – ident: ref68 doi: 10.1007/BF00994018 – ident: ref44 doi: 10.1145/2976749.2978422 – volume: 12 start-page: 2825 year: 2011 ident: ref59 article-title: Scikit-learn: Machine learning in Python publication-title: J Mach Learn Res – ident: ref77 doi: 10.1007/978-3-319-11203-9_10 |
SSID | ssj0044168 |
Score | 2.6127217 |
Snippet | Most existing Android malware detection and categorization techniques are static approaches, which suffer from evasion attacks, such as obfuscation. By... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1455 |
SubjectTerms | Android categorization Classification Communications systems Cybersecurity detection dynamic analysis Feature extraction Libraries Malware obfuscation profiling Robustness Security stability Stability analysis State of the art Static analysis |
Title | DroidCat: Effective Android Malware Detection and Categorization via App-Level Profiling |
URI | https://ieeexplore.ieee.org/document/8519742 https://www.proquest.com/docview/2180008009 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED_UJ33wW5xOyYNPYmfWpm3im0zHFCeCCnsr-SqIo5PZKfjXe2nTISriWylJOLjk7n7J7-4AjiiTnOuEB4ZKBChG2UAwxgJLJUYfjg0l3YX-8DYZPLLrUTxagJN5Loy1tiKf2Y77rN7yzUTP3FXZKXdZlgwN7iICtzpXq7G66NXrtLc4TgIEGZF_wexScfpw1b93JC7eQXggIn-D0vigqqnKD0tcuZf-GgwbwWpWyXNnVqqO_vhWs_G_kq_Dqo8zyXm9MTZgwRabsNb0cCD-SG_CypeChFswuphOnkxPlmekLmuMtpA4ziP-JUM5fpdTSy5sWfG3CiILQ3qu1MRk6tM5yduTJBjZBjeOjETuqo7guPQ2PPYvH3qDwPdeCHQUixKNZDe2iiOYkmEeoZOXqU4lZ1rpNLIypNyqnAkTIyQxVDOFQsUyCbkSkUAMF-3AUjEp7C4QkcpQI7LLEy1YnHOlcpVqnVORdw0NTQtoo41M-8Lkrj_GOKsAChWZU2DmFJh5BbbgeD7lpa7K8dfgLaeQ-UCvixa0G5Vn_ty-Zhjw1EG02Pt91j4s49qiJou1YamczuwBhiWlOqz24ye3q93G |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8h9gA8jPElytjmB54QKW5iJ_beprKqQIuQKFLfIn9FqkDpVFKQ9tfvnDjVxBDaWxTZiaWz7-53_t0dwAllSgiTishShQDFahdJxljkqELvw7OhlA_oj2_S4T27mvLpGpytcmGcczX5zHX9Y32Xb-dm6UNl58JnWTJUuB_Q7vO4ydZq9S7a9SbxjfM0QpiRhDvMHpXnk8vBnadxiS4CBJmEGEprheq2Kv_o4trADLZh3C6t4ZU8dJeV7prfr6o2_u_aP8HH4GmSH83W2IE1V-7CdtvFgYRDvQtbf5Uk3IPpxWI-s31VfSdNYWPUhsSzHvEtGavHF7Vw5MJVNYOrJKq0pO-LTcwXIaGTPM8UQd82Gnk6Ermte4Ljp_fhfvBz0h9GoftCZBIuK1STPe60QDil4iJBM68ykynBjDZZ4lRMhdMFk5YjKLHUMI2L4iqNhZaJRBSXHMB6OS_dIRCZqdggtitSIxkvhNaFzowpqCx6lsa2A7SVRm5CaXLfIeMxryEKlbkXYO4FmAcBduB0NeVXU5fjvcF7XiCrgUEWHThuRZ6Hk_uUo8vTuNHy6O1Z32BjOBmP8tHlzfVn2MT_yIY6dgzr1WLpvqCTUumv9d78A3Py4RA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DroidCat%3A+Effective+Android+Malware+Detection+and+Categorization+via+App-Level+Profiling&rft.jtitle=IEEE+transactions+on+information+forensics+and+security&rft.au=Cai%2C+Haipeng&rft.au=Meng%2C+Na&rft.au=Ryder%2C+Barbara&rft.au=Yao%2C+Daphne&rft.date=2019-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1556-6013&rft.eissn=1556-6021&rft.volume=14&rft.issue=6&rft.spage=1455&rft_id=info:doi/10.1109%2FTIFS.2018.2879302&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1556-6013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1556-6013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1556-6013&client=summon |