RPD-YOLO: A Pavement Defect Dataset and Real-Time Detection Model
With a long-term usage, highways usually suffer from diverse pavement defects, which causes burdensome pavement defect detections on vast areas. To address this issue, the real-time and vehicle-mounted technique has been proposed and proved to be an efficient solution. However, as the detection syst...
Saved in:
Published in | IEEE access Vol. 12; pp. 159738 - 159747 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With a long-term usage, highways usually suffer from diverse pavement defects, which causes burdensome pavement defect detections on vast areas. To address this issue, the real-time and vehicle-mounted technique has been proposed and proved to be an efficient solution. However, as the detection systems are deployed on edge devices in complex environments, there exist several practical challenges in terms of real-time speed, detection performance and computational overhead. This study first provides a dataset captured by real-time and vehicle-mounted camera system. The height and angle where the high frame rate camera locates has been carefully designed to achieve the acquisitions of real-time images on highways. Then, this study proposes a novel lightweight network model named Real-time Pavement Detection of You Only Look Once (RPD-YOLO) with a lightweight Light C3 Ghost (LCG) block and an LCG Path Aggregation Network (LCG-PAN) neck structure, which can fully reduce the computational overheads and maintain a high precision and high speed during detection. Through a series of comparison experiments with current models, RPD-YOLO excels in overall balanced performance and can be deployed in resource-constrained devices to achieve real-time pavement defect detection. |
---|---|
AbstractList | With a long-term usage, highways usually suffer from diverse pavement defects, which causes burdensome pavement defect detections on vast areas. To address this issue, the real-time and vehicle-mounted technique has been proposed and proved to be an efficient solution. However, as the detection systems are deployed on edge devices in complex environments, there exist several practical challenges in terms of real-time speed, detection performance and computational overhead. This study first provides a dataset captured by real-time and vehicle-mounted camera system. The height and angle where the high frame rate camera locates has been carefully designed to achieve the acquisitions of real-time images on highways. Then, this study proposes a novel lightweight network model named Real-time Pavement Detection of You Only Look Once (RPD-YOLO) with a lightweight Light C3 Ghost (LCG) block and an LCG Path Aggregation Network (LCG-PAN) neck structure, which can fully reduce the computational overheads and maintain a high precision and high speed during detection. Through a series of comparison experiments with current models, RPD-YOLO excels in overall balanced performance and can be deployed in resource-constrained devices to achieve real-time pavement defect detection. |
Author | Zhou, Dandan Han, Yalu Tang, Hanqi Zhai, Haozhou |
Author_xml | – sequence: 1 givenname: Hanqi orcidid: 0000-0001-7248-5500 surname: Tang fullname: Tang, Hanqi organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 2 givenname: Dandan orcidid: 0009-0002-0518-1640 surname: Zhou fullname: Zhou, Dandan organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China – sequence: 3 givenname: Haozhou surname: Zhai fullname: Zhai, Haozhou organization: School of Artificial Intelligence, Sun Yat-sen University, Zhuhai, China – sequence: 4 givenname: Yalu orcidid: 0009-0004-7211-1815 surname: Han fullname: Han, Yalu email: shandahanyl@sdu.edu.cn organization: Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China |
BookMark | eNpNUE1PwkAQ3RhMROQX6KGJ5-J-9GPXW1NQSTAQwIOnzbSdNSWli20x8d-7WGOYy0zevPdm8q7JoLY1EnLL6IQxqh6SNJ1tNhNOeTARgZQh5xdkyFmkfBGKaHA2X5Fx2-6oK-mgMB6SZL2a-u_LxfLRS7wVfOEe686bosHcNeigxc6DuvDWCJW_Lffolp1blrb2Xm2B1Q25NFC1OP7rI_L2NNumL_5i-TxPk4Wfi1B1vqQZN8JkihpEoTjyKDJRbsIikJl0IAs5LZjkkUSkEkIIWJ47EqcQSyPEiMx738LCTh-acg_Nt7ZQ6l_ANh8amq7MK9RZAIIVpgBp4kCpCIBy5vxYRsHQXDqv-97r0NjPI7ad3tljU7v3tWA8kDxUceRYomfljW3bBs3_VUb1KXrdR69P0eu_6J3qrleViHimiIWMmRI_Mx9-YQ |
CODEN | IAECCG |
Cites_doi | 10.1155/2022/1969511 10.3390/s24113321 10.1109/TITS.2019.2910595 10.1109/ACCESS.2019.2938768 10.1109/TIV.2023.3326136 10.1061/(ASCE)CF.1943-5509.0001606 10.1109/ACCESS.2024.3451708 10.1061/JPEODX.PVENG-1180 10.1109/SITIS.2007.116 10.1016/j.jag.2023.103335 10.1109/ACCESS.2024.3452129 10.1109/TITS.2016.2552248 10.1109/IJCNN.2017.7966101 10.1109/TITS.2021.3113802 10.1109/CVPR.2018.00913 10.1109/ACCESS.2020.2966881 10.1080/10298436.2020.1836561 10.1109/IICSPI48186.2019.9095956 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2024.3488522 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 159747 |
ExternalDocumentID | oai_doaj_org_article_b4a31dfda8f74996aa021a411b0af0c8 10_1109_ACCESS_2024_3488522 10738719 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U22A2005; 62101028 funderid: 10.13039/501100001809 – fundername: Shandong Provincial Natural Science Foundation grantid: ZR2024QD212 funderid: 10.13039/501100020196 – fundername: Fundamental Research Funds for the Central Universities grantid: FRF-TP-22-041A1 funderid: 10.13039/501100012226 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-80b2f3fb90fee392e266f6cf5d48b80fe1520d18268ee08a5a41cc26620a78f33 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:26:38 EDT 2025 Mon Jun 30 12:35:30 EDT 2025 Tue Jul 01 03:02:56 EDT 2025 Wed Aug 27 03:06:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-80b2f3fb90fee392e266f6cf5d48b80fe1520d18268ee08a5a41cc26620a78f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7248-5500 0009-0002-0518-1640 0009-0004-7211-1815 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10738719 |
PQID | 3124825976 |
PQPubID | 4845423 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b4a31dfda8f74996aa021a411b0af0c8 crossref_primary_10_1109_ACCESS_2024_3488522 proquest_journals_3124825976 ieee_primary_10738719 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref4 ref3 Oliveira (ref9) ref6 ref5 Huang (ref7) |
References_xml | – ident: ref3 doi: 10.1155/2022/1969511 – ident: ref18 doi: 10.3390/s24113321 – ident: ref4 doi: 10.1109/TITS.2019.2910595 – ident: ref19 doi: 10.1109/ACCESS.2019.2938768 – ident: ref1 doi: 10.1109/TIV.2023.3326136 – ident: ref11 doi: 10.1061/(ASCE)CF.1943-5509.0001606 – ident: ref16 doi: 10.1109/ACCESS.2024.3451708 – ident: ref15 doi: 10.1061/JPEODX.PVENG-1180 – start-page: 622 volume-title: Proc. 17th Eur. Signal Process. Conf. ident: ref9 article-title: Automatic road crack segmentation using entropy and image dynamic thresholding – ident: ref10 doi: 10.1109/SITIS.2007.116 – ident: ref13 doi: 10.1016/j.jag.2023.103335 – ident: ref17 doi: 10.1109/ACCESS.2024.3452129 – ident: ref5 doi: 10.1109/TITS.2016.2552248 – ident: ref6 doi: 10.1109/IJCNN.2017.7966101 – ident: ref8 doi: 10.1109/TITS.2021.3113802 – start-page: 1 volume-title: Proc. 3rd Int. Conf. Comput. Inf. Big Data Appl. ident: ref7 article-title: Pavement crack detection method based on deep learning – ident: ref20 doi: 10.1109/CVPR.2018.00913 – ident: ref2 doi: 10.1109/ACCESS.2020.2966881 – ident: ref12 doi: 10.1080/10298436.2020.1836561 – ident: ref14 doi: 10.1109/IICSPI48186.2019.9095956 |
SSID | ssj0000816957 |
Score | 2.3065906 |
Snippet | With a long-term usage, highways usually suffer from diverse pavement defects, which causes burdensome pavement defect detections on vast areas. To address... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 159738 |
SubjectTerms | Cameras Computational modeling Datasets Defect detection Defects Feature extraction Highways Image acquisition Image edge detection lightweight model Neck Object recognition Pavement defect detection Pavements Real time real-time object detection Real-time systems Roads Safety YOLO |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCbGkx6MP2asTsPBo3W0QKHe6uayGOOWxSXzRKCFk6lG6__vg3amxoMXr5SU8j3K9x55fA-hS0IcSypH4zLlJmaGMX_QZGNDjRNev43akG3xmM1W7H7N171SXz4nrJUHboEbGaYpvKzS0gnwzjOtgZU0SxJDtCNluOYLnNcLpsIeLJMs56KTGUpIPirGY5gRBIQpu6awanma_qCioNjflVj5tS8Hspnuo73OS8RF-3UHaMvWh2i3px14hIrlYhI_zx_mN7jACx1kvxs8sT49A090A-zUYF1XeAmuYOxvesDDJiRe1dhXQHsZoNX07mk8i7t6CHFJed4AmZjUUWdy4qwFv8YCubqsdLxi0khoBC4mlQ8YpLVEag4wlSV0SokW0lF6jLbr19qeIExLXjJtBGVCMme58VJdvLJSi8xwmUboagONemtlL1QIF0iuWiSVR1J1SEbo1sP33dVrVocGsKTqLKn-smSEBh783niCQjiXR2i4sYbqfrAPRcEvgeAWnKnT_xj7DO34-bRnK0O03bx_2nPwNhpzERbWF5HvzLc priority: 102 providerName: Directory of Open Access Journals |
Title | RPD-YOLO: A Pavement Defect Dataset and Real-Time Detection Model |
URI | https://ieeexplore.ieee.org/document/10738719 https://www.proquest.com/docview/3124825976 https://doaj.org/article/b4a31dfda8f74996aa021a411b0af0c8 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-NPo2HwbaiFVjlhz0uxY3txuGttKsQQoAQlcqTZTvnF6YwQfqyv35nJ0UwhMRblDjK5e6c-8jd7wB-cB7kuAoi87lymXRSxkQTZk64UET8NoGp2uJicrqUZyu16prVUy8MIqbiMxzFw_Qvv7r365gqox1eCHLwyy3YositbdZ6SqjECRKlKjpkoTEvj6azGb0ExYC5HAlSVJXnL6xPAunvpqq8-hQn-7LYgYsNZW1Zyd1o3biR__sfaOO7Sd-FT52nyaatanyGD1h_ge1n-INfYXp9Nc9uL88vj9mUXdkEHd6wOcYSDza3DVm4htm6YtfkTmaxW4QuNql4q2ZxitrvPiwXv25mp1k3UyHzQpUNGSSXBxFcyQMi-UZIBjpMfFCV1E7TSbLnvIpBh0bk2iorx97TopzbQgch9qBX39f4DZjwykvrCiELLQMqF-G-VIXaFhOndD6Anxtemz8tdIZJIQcvTSsaE0VjOtEM4CTK42lpxL1OJ4iPpttGxkkrSLUqq0NBsdrEWvJRiMSx4zZwrwfQj7x_9ryW7QM43IjXdJv00QjybShAJods_43bDuBjJLFNuRxCr3lY43dyQho3TMH7MKngP7gd1yA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeGB74LOIsgF-4JF0bmw3zt5Ky1SgdFW1SeXJsp3zCyidtvRlf_3OTjoNEBJvUeIol7tz7iN3vwP4wHmQwyqIzOfKZdJJGRNNmDnhQhHx2wSmaovFaHYhv67VumtWT70wiJiKz3AQD9O__GrjtzFVRju8EOTglw_hERl-lbftWncplThDolRFhy005OXxeDKh16AoMJcDQaqq8vw3-5Ng-ru5Kn99jJOFOX0Kix1tbWHJz8G2cQN_8wds438T_wyedL4mG7fK8RweYP0CDu4hEL6E8Wo5zX6czc9O2JgtbQIPb9gUY5EHm9qGbFzDbF2xFTmUWewXoYtNKt-qWZyj9qsHF6efzyezrJuqkHmhyoZMksuDCK7kAZG8IyQTHUY-qEpqp-kkWXRexbBDI3JtlZVD72lRzm2hgxCvYK_e1PgamPDKS-sKIQstAyoXAb9UhdoWI6d03oePO16byxY8w6Sgg5emFY2JojGdaPrwKcrjbmlEvk4niI-m20jGSStIuSqrQ0HR2sha8lKIxKHjNnCv-9CLvL_3vJbtfTjaidd02_TaCPJuKEQml-zNP257D49n59_nZv5l8e0Q9iO5bQLmCPaaqy2-JZekce-SIt4CC8TZdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RPD-YOLO%3A+A+Pavement+Defect+Dataset+and+Real-Time+Detection+Model&rft.jtitle=IEEE+access&rft.au=Tang%2C+Hanqi&rft.au=Zhou%2C+Dandan&rft.au=Zhai%2C+Haozhou&rft.au=Han%2C+Yalu&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=159738&rft.epage=159747&rft_id=info:doi/10.1109%2FACCESS.2024.3488522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3488522 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |