RPD-YOLO: A Pavement Defect Dataset and Real-Time Detection Model

With a long-term usage, highways usually suffer from diverse pavement defects, which causes burdensome pavement defect detections on vast areas. To address this issue, the real-time and vehicle-mounted technique has been proposed and proved to be an efficient solution. However, as the detection syst...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 12; pp. 159738 - 159747
Main Authors Tang, Hanqi, Zhou, Dandan, Zhai, Haozhou, Han, Yalu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With a long-term usage, highways usually suffer from diverse pavement defects, which causes burdensome pavement defect detections on vast areas. To address this issue, the real-time and vehicle-mounted technique has been proposed and proved to be an efficient solution. However, as the detection systems are deployed on edge devices in complex environments, there exist several practical challenges in terms of real-time speed, detection performance and computational overhead. This study first provides a dataset captured by real-time and vehicle-mounted camera system. The height and angle where the high frame rate camera locates has been carefully designed to achieve the acquisitions of real-time images on highways. Then, this study proposes a novel lightweight network model named Real-time Pavement Detection of You Only Look Once (RPD-YOLO) with a lightweight Light C3 Ghost (LCG) block and an LCG Path Aggregation Network (LCG-PAN) neck structure, which can fully reduce the computational overheads and maintain a high precision and high speed during detection. Through a series of comparison experiments with current models, RPD-YOLO excels in overall balanced performance and can be deployed in resource-constrained devices to achieve real-time pavement defect detection.
AbstractList With a long-term usage, highways usually suffer from diverse pavement defects, which causes burdensome pavement defect detections on vast areas. To address this issue, the real-time and vehicle-mounted technique has been proposed and proved to be an efficient solution. However, as the detection systems are deployed on edge devices in complex environments, there exist several practical challenges in terms of real-time speed, detection performance and computational overhead. This study first provides a dataset captured by real-time and vehicle-mounted camera system. The height and angle where the high frame rate camera locates has been carefully designed to achieve the acquisitions of real-time images on highways. Then, this study proposes a novel lightweight network model named Real-time Pavement Detection of You Only Look Once (RPD-YOLO) with a lightweight Light C3 Ghost (LCG) block and an LCG Path Aggregation Network (LCG-PAN) neck structure, which can fully reduce the computational overheads and maintain a high precision and high speed during detection. Through a series of comparison experiments with current models, RPD-YOLO excels in overall balanced performance and can be deployed in resource-constrained devices to achieve real-time pavement defect detection.
Author Zhou, Dandan
Han, Yalu
Tang, Hanqi
Zhai, Haozhou
Author_xml – sequence: 1
  givenname: Hanqi
  orcidid: 0000-0001-7248-5500
  surname: Tang
  fullname: Tang, Hanqi
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 2
  givenname: Dandan
  orcidid: 0009-0002-0518-1640
  surname: Zhou
  fullname: Zhou, Dandan
  organization: School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing, China
– sequence: 3
  givenname: Haozhou
  surname: Zhai
  fullname: Zhai, Haozhou
  organization: School of Artificial Intelligence, Sun Yat-sen University, Zhuhai, China
– sequence: 4
  givenname: Yalu
  orcidid: 0009-0004-7211-1815
  surname: Han
  fullname: Han, Yalu
  email: shandahanyl@sdu.edu.cn
  organization: Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
BookMark eNpNUE1PwkAQ3RhMROQX6KGJ5-J-9GPXW1NQSTAQwIOnzbSdNSWli20x8d-7WGOYy0zevPdm8q7JoLY1EnLL6IQxqh6SNJ1tNhNOeTARgZQh5xdkyFmkfBGKaHA2X5Fx2-6oK-mgMB6SZL2a-u_LxfLRS7wVfOEe686bosHcNeigxc6DuvDWCJW_Lffolp1blrb2Xm2B1Q25NFC1OP7rI_L2NNumL_5i-TxPk4Wfi1B1vqQZN8JkihpEoTjyKDJRbsIikJl0IAs5LZjkkUSkEkIIWJ47EqcQSyPEiMx738LCTh-acg_Nt7ZQ6l_ANh8amq7MK9RZAIIVpgBp4kCpCIBy5vxYRsHQXDqv-97r0NjPI7ad3tljU7v3tWA8kDxUceRYomfljW3bBs3_VUb1KXrdR69P0eu_6J3qrleViHimiIWMmRI_Mx9-YQ
CODEN IAECCG
Cites_doi 10.1155/2022/1969511
10.3390/s24113321
10.1109/TITS.2019.2910595
10.1109/ACCESS.2019.2938768
10.1109/TIV.2023.3326136
10.1061/(ASCE)CF.1943-5509.0001606
10.1109/ACCESS.2024.3451708
10.1061/JPEODX.PVENG-1180
10.1109/SITIS.2007.116
10.1016/j.jag.2023.103335
10.1109/ACCESS.2024.3452129
10.1109/TITS.2016.2552248
10.1109/IJCNN.2017.7966101
10.1109/TITS.2021.3113802
10.1109/CVPR.2018.00913
10.1109/ACCESS.2020.2966881
10.1080/10298436.2020.1836561
10.1109/IICSPI48186.2019.9095956
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2024.3488522
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 159747
ExternalDocumentID oai_doaj_org_article_b4a31dfda8f74996aa021a411b0af0c8
10_1109_ACCESS_2024_3488522
10738719
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U22A2005; 62101028
  funderid: 10.13039/501100001809
– fundername: Shandong Provincial Natural Science Foundation
  grantid: ZR2024QD212
  funderid: 10.13039/501100020196
– fundername: Fundamental Research Funds for the Central Universities
  grantid: FRF-TP-22-041A1
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-80b2f3fb90fee392e266f6cf5d48b80fe1520d18268ee08a5a41cc26620a78f33
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:26:38 EDT 2025
Mon Jun 30 12:35:30 EDT 2025
Tue Jul 01 03:02:56 EDT 2025
Wed Aug 27 03:06:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-80b2f3fb90fee392e266f6cf5d48b80fe1520d18268ee08a5a41cc26620a78f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7248-5500
0009-0002-0518-1640
0009-0004-7211-1815
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10738719
PQID 3124825976
PQPubID 4845423
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_b4a31dfda8f74996aa021a411b0af0c8
crossref_primary_10_1109_ACCESS_2024_3488522
proquest_journals_3124825976
ieee_primary_10738719
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref4
ref3
Oliveira (ref9)
ref6
ref5
Huang (ref7)
References_xml – ident: ref3
  doi: 10.1155/2022/1969511
– ident: ref18
  doi: 10.3390/s24113321
– ident: ref4
  doi: 10.1109/TITS.2019.2910595
– ident: ref19
  doi: 10.1109/ACCESS.2019.2938768
– ident: ref1
  doi: 10.1109/TIV.2023.3326136
– ident: ref11
  doi: 10.1061/(ASCE)CF.1943-5509.0001606
– ident: ref16
  doi: 10.1109/ACCESS.2024.3451708
– ident: ref15
  doi: 10.1061/JPEODX.PVENG-1180
– start-page: 622
  volume-title: Proc. 17th Eur. Signal Process. Conf.
  ident: ref9
  article-title: Automatic road crack segmentation using entropy and image dynamic thresholding
– ident: ref10
  doi: 10.1109/SITIS.2007.116
– ident: ref13
  doi: 10.1016/j.jag.2023.103335
– ident: ref17
  doi: 10.1109/ACCESS.2024.3452129
– ident: ref5
  doi: 10.1109/TITS.2016.2552248
– ident: ref6
  doi: 10.1109/IJCNN.2017.7966101
– ident: ref8
  doi: 10.1109/TITS.2021.3113802
– start-page: 1
  volume-title: Proc. 3rd Int. Conf. Comput. Inf. Big Data Appl.
  ident: ref7
  article-title: Pavement crack detection method based on deep learning
– ident: ref20
  doi: 10.1109/CVPR.2018.00913
– ident: ref2
  doi: 10.1109/ACCESS.2020.2966881
– ident: ref12
  doi: 10.1080/10298436.2020.1836561
– ident: ref14
  doi: 10.1109/IICSPI48186.2019.9095956
SSID ssj0000816957
Score 2.3065906
Snippet With a long-term usage, highways usually suffer from diverse pavement defects, which causes burdensome pavement defect detections on vast areas. To address...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 159738
SubjectTerms Cameras
Computational modeling
Datasets
Defect detection
Defects
Feature extraction
Highways
Image acquisition
Image edge detection
lightweight model
Neck
Object recognition
Pavement defect detection
Pavements
Real time
real-time object detection
Real-time systems
Roads
Safety
YOLO
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT8MgFCbGkx6MP2asTsPBo3W0QKHe6uayGOOWxSXzRKCFk6lG6__vg3amxoMXr5SU8j3K9x55fA-hS0IcSypH4zLlJmaGMX_QZGNDjRNev43akG3xmM1W7H7N171SXz4nrJUHboEbGaYpvKzS0gnwzjOtgZU0SxJDtCNluOYLnNcLpsIeLJMs56KTGUpIPirGY5gRBIQpu6awanma_qCioNjflVj5tS8Hspnuo73OS8RF-3UHaMvWh2i3px14hIrlYhI_zx_mN7jACx1kvxs8sT49A090A-zUYF1XeAmuYOxvesDDJiRe1dhXQHsZoNX07mk8i7t6CHFJed4AmZjUUWdy4qwFv8YCubqsdLxi0khoBC4mlQ8YpLVEag4wlSV0SokW0lF6jLbr19qeIExLXjJtBGVCMme58VJdvLJSi8xwmUboagONemtlL1QIF0iuWiSVR1J1SEbo1sP33dVrVocGsKTqLKn-smSEBh783niCQjiXR2i4sYbqfrAPRcEvgeAWnKnT_xj7DO34-bRnK0O03bx_2nPwNhpzERbWF5HvzLc
  priority: 102
  providerName: Directory of Open Access Journals
Title RPD-YOLO: A Pavement Defect Dataset and Real-Time Detection Model
URI https://ieeexplore.ieee.org/document/10738719
https://www.proquest.com/docview/3124825976
https://doaj.org/article/b4a31dfda8f74996aa021a411b0af0c8
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-NPo2HwbaiFVjlhz0uxY3txuGttKsQQoAQlcqTZTvnF6YwQfqyv35nJ0UwhMRblDjK5e6c-8jd7wB-cB7kuAoi87lymXRSxkQTZk64UET8NoGp2uJicrqUZyu16prVUy8MIqbiMxzFw_Qvv7r365gqox1eCHLwyy3YositbdZ6SqjECRKlKjpkoTEvj6azGb0ExYC5HAlSVJXnL6xPAunvpqq8-hQn-7LYgYsNZW1Zyd1o3biR__sfaOO7Sd-FT52nyaatanyGD1h_ge1n-INfYXp9Nc9uL88vj9mUXdkEHd6wOcYSDza3DVm4htm6YtfkTmaxW4QuNql4q2ZxitrvPiwXv25mp1k3UyHzQpUNGSSXBxFcyQMi-UZIBjpMfFCV1E7TSbLnvIpBh0bk2iorx97TopzbQgch9qBX39f4DZjwykvrCiELLQMqF-G-VIXaFhOndD6Anxtemz8tdIZJIQcvTSsaE0VjOtEM4CTK42lpxL1OJ4iPpttGxkkrSLUqq0NBsdrEWvJRiMSx4zZwrwfQj7x_9ryW7QM43IjXdJv00QjybShAJods_43bDuBjJLFNuRxCr3lY43dyQho3TMH7MKngP7gd1yA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BeGB74LOIsgF-4JF0bmw3zt5Ky1SgdFW1SeXJsp3zCyidtvRlf_3OTjoNEBJvUeIol7tz7iN3vwP4wHmQwyqIzOfKZdJJGRNNmDnhQhHx2wSmaovFaHYhv67VumtWT70wiJiKz3AQD9O__GrjtzFVRju8EOTglw_hERl-lbftWncplThDolRFhy005OXxeDKh16AoMJcDQaqq8vw3-5Ng-ru5Kn99jJOFOX0Kix1tbWHJz8G2cQN_8wds438T_wyedL4mG7fK8RweYP0CDu4hEL6E8Wo5zX6czc9O2JgtbQIPb9gUY5EHm9qGbFzDbF2xFTmUWewXoYtNKt-qWZyj9qsHF6efzyezrJuqkHmhyoZMksuDCK7kAZG8IyQTHUY-qEpqp-kkWXRexbBDI3JtlZVD72lRzm2hgxCvYK_e1PgamPDKS-sKIQstAyoXAb9UhdoWI6d03oePO16byxY8w6Sgg5emFY2JojGdaPrwKcrjbmlEvk4niI-m20jGSStIuSqrQ0HR2sha8lKIxKHjNnCv-9CLvL_3vJbtfTjaidd02_TaCPJuKEQml-zNP257D49n59_nZv5l8e0Q9iO5bQLmCPaaqy2-JZekce-SIt4CC8TZdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RPD-YOLO%3A+A+Pavement+Defect+Dataset+and+Real-Time+Detection+Model&rft.jtitle=IEEE+access&rft.au=Tang%2C+Hanqi&rft.au=Zhou%2C+Dandan&rft.au=Zhai%2C+Haozhou&rft.au=Han%2C+Yalu&rft.date=2024&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=159738&rft.epage=159747&rft_id=info:doi/10.1109%2FACCESS.2024.3488522&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3488522
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon