Deep Learning Methods in Internet of Medical Things for Valvular Heart Disease Screening System

The heart is one of the most important organs of the human body. It circulates blood throughout the human body and delivers oxygen and nutrients to all the organs for metabolism. Cardiac muscle contraction results in blood circulation, which maintains the body temperature at approximately 37 °C. If...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 8; no. 23; pp. 16921 - 16932
Main Authors Su, Yu-Sheng, Ding, Ting-Jou, Chen, Mu-Yen
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2021.3053420

Cover

Loading…
Abstract The heart is one of the most important organs of the human body. It circulates blood throughout the human body and delivers oxygen and nutrients to all the organs for metabolism. Cardiac muscle contraction results in blood circulation, which maintains the body temperature at approximately 37 °C. If the cardiac function is abnormal, then the body temperature will be affected. The cardiac function degenerates as the human body ages, and the degeneration can occasionally result in cardiovascular diseases. When the Internet of Medical Things is integrated into heart disease screening systems to detect heart diseases, people can perform self-examinations to evaluate whether their hearts exhibit irregularities for early heart disease detection. STM32 is used in this study as the main Internet-of-Medical Things controller and is combined with the Internet of Things devices-a sphygmomanometer cuff, temperature sensor, and pulse sensor-for instrument control and data acquisition. This assembly is used to develop a valvular heart disease screening system, whose structure incorporates deep learning for the development of fitting models and analysis. An experiment is performed where blood flow is blocked temporarily and released to observe changes in the surface temperature of the fingertip skin, and the blood supply capability of the heart is assessed indirectly based on the temperature change curve. Eighteen subjects were recruited in the experiment, where one subject exhibited cardiac valve insufficiency and arrhythmia. In the experiment, temperature curve variation data are successfully obtained from the healthy subjects, whereas the temperature curve irregularities of the patient with cardiac valve insufficiency are identified. This subject's temperature range throughout three test steps is smaller by within 0.52 °C compared with those of most of the other subjects. In addition, during blood blocking and release, the overall temperature curve decreases, whereas some curves escalate first before plummeting slowly. The data analysis results show that the temperature curve variation and values of Subject 2 are similar to those of Subject 10, suggesting the incidence of valvular heart disease. This valvular heart disease screening system can successfully analyze and assess the characteristic signal values of patients with valvular heart disease.
AbstractList The heart is one of the most important organs of the human body. It circulates blood throughout the human body and delivers oxygen and nutrients to all the organs for metabolism. Cardiac muscle contraction results in blood circulation, which maintains the body temperature at approximately 37 °C. If the cardiac function is abnormal, then the body temperature will be affected. The cardiac function degenerates as the human body ages, and the degeneration can occasionally result in cardiovascular diseases. When the Internet of Medical Things is integrated into heart disease screening systems to detect heart diseases, people can perform self-examinations to evaluate whether their hearts exhibit irregularities for early heart disease detection. STM32 is used in this study as the main Internet-of-Medical Things controller and is combined with the Internet of Things devices—a sphygmomanometer cuff, temperature sensor, and pulse sensor—for instrument control and data acquisition. This assembly is used to develop a valvular heart disease screening system, whose structure incorporates deep learning for the development of fitting models and analysis. An experiment is performed where blood flow is blocked temporarily and released to observe changes in the surface temperature of the fingertip skin, and the blood supply capability of the heart is assessed indirectly based on the temperature change curve. Eighteen subjects were recruited in the experiment, where one subject exhibited cardiac valve insufficiency and arrhythmia. In the experiment, temperature curve variation data are successfully obtained from the healthy subjects, whereas the temperature curve irregularities of the patient with cardiac valve insufficiency are identified. This subject’s temperature range throughout three test steps is smaller by within 0.52 °C compared with those of most of the other subjects. In addition, during blood blocking and release, the overall temperature curve decreases, whereas some curves escalate first before plummeting slowly. The data analysis results show that the temperature curve variation and values of Subject 2 are similar to those of Subject 10, suggesting the incidence of valvular heart disease. This valvular heart disease screening system can successfully analyze and assess the characteristic signal values of patients with valvular heart disease.
Author Chen, Mu-Yen
Su, Yu-Sheng
Ding, Ting-Jou
Author_xml – sequence: 1
  givenname: Yu-Sheng
  orcidid: 0000-0002-0637-7293
  surname: Su
  fullname: Su, Yu-Sheng
  email: ntouaddisonsu@gmail.com
  organization: Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City, Taiwan
– sequence: 2
  givenname: Ting-Jou
  orcidid: 0000-0002-3201-5026
  surname: Ding
  fullname: Ding, Ting-Jou
  email: tjding@gmail.com
  organization: Department of Materials and Energy Engineering, MingDao University, ChangHua, Taiwan
– sequence: 3
  givenname: Mu-Yen
  orcidid: 0000-0002-3945-4363
  surname: Chen
  fullname: Chen, Mu-Yen
  email: mychen119@gs.ncku.edu.tw
  organization: Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan
BookMark eNp9kE9LAzEQxYMoWP98APES8Lw1mXQ3m6O0aisVD1avIe7O2pRttiap0G9vaouIB08zDO_3ZuadkEPXOSTkgrM-50xdP0yeZn1gwPuC5WIA7ID0QIDMBkUBh7_6Y3IewoIxlrCcq6JH9AhxRadovLPunT5inHd1oNbRiYvoHUbaNWlc28q0dDZPokCbztNX036uW-PpOLGRjmxAE5A-Vx7x2-p5EyIuz8hRY9qA5_t6Sl7ubmfDcTZ9up8Mb6ZZJXIVM9mwkhsFOcp0P4AsK2AMFDQ1rySHvADFywYLjqIUrOF1LWWZ0Potr9PD4pRc7XxXvvtYY4h60a29Sys15EoBZzKHpOI7VeW7EDw2euXt0viN5kxvo9TbKPU2Sr2PMjHyD1PZaKLtXPTGtv-SlzvSIuLPJiUEkwUXX8DUgKo
CODEN IITJAU
CitedBy_id crossref_primary_10_1515_jisys_2022_0267
crossref_primary_10_3390_s22218438
crossref_primary_10_1007_s11227_023_05356_3
crossref_primary_10_1016_j_asoc_2021_107709
crossref_primary_10_3390_ijerph191912180
crossref_primary_10_1111_exsy_13254
crossref_primary_10_3389_fpsyg_2021_750972
crossref_primary_10_1007_s40299_021_00570_0
crossref_primary_10_1016_j_aej_2023_08_010
crossref_primary_10_1007_s11042_024_19169_w
crossref_primary_10_1186_s12913_023_09104_4
crossref_primary_10_3233_WEB_230063
crossref_primary_10_7717_peerj_cs_2364
crossref_primary_10_1109_TCE_2024_3368206
crossref_primary_10_1007_s11276_024_03807_0
crossref_primary_10_1109_TCSS_2023_3259431
crossref_primary_10_1016_j_bspc_2023_105511
crossref_primary_10_1007_s00500_023_08709_5
crossref_primary_10_1080_21681163_2023_2245927
crossref_primary_10_1016_j_inffus_2023_102060
crossref_primary_10_1109_JIOT_2022_3215884
crossref_primary_10_1038_s41598_025_93906_5
crossref_primary_10_1109_TCBB_2023_3252668
crossref_primary_10_1109_TITS_2022_3162395
crossref_primary_10_1007_s00500_023_08613_y
crossref_primary_10_1155_2021_5781354
crossref_primary_10_1109_TIM_2022_3163156
crossref_primary_10_3390_ijerph19010615
crossref_primary_10_1016_j_health_2023_100221
crossref_primary_10_3390_su13105471
crossref_primary_10_1109_JIOT_2022_3209895
crossref_primary_10_3934_mbe_2022110
crossref_primary_10_1177_07356331211053383
crossref_primary_10_3390_ijerph18126349
crossref_primary_10_3390_biomedicines11041167
crossref_primary_10_1080_21681163_2022_2162439
crossref_primary_10_3390_su13084586
crossref_primary_10_1007_s10723_023_09726_2
crossref_primary_10_3390_su13052888
crossref_primary_10_1038_s41598_024_58489_7
crossref_primary_10_1080_10447318_2025_2474469
crossref_primary_10_1016_j_jii_2022_100402
crossref_primary_10_1016_j_future_2023_03_005
crossref_primary_10_3389_fpsyg_2021_755137
crossref_primary_10_1016_j_dcan_2022_07_011
crossref_primary_10_1109_JIOT_2022_3143375
crossref_primary_10_1109_JBHI_2022_3174823
crossref_primary_10_3389_fpsyg_2021_677137
crossref_primary_10_4018_IJSSMET_356234
Cites_doi 10.1093/eurheartj/ehq222
10.1016/S0301-5629(99)00056-3
10.1038/nrdp.2016.6
10.1093/bmb/ldp028
10.1109/ACCESS.2020.3007561
10.1016/S0025-6196(12)62698-6
10.1016/0002-9149(74)90151-9
10.4236/jilsa.2013.53019
10.1109/MNET.011.1900570
10.1016/j.cpcardiol.2007.07.002
10.1152/ajplegacy.1939.127.3.437
10.1136/hrt.2010.205096
10.1039/9781788010283
10.1016/0002-8703(95)90055-1
10.1148/102.1.153
10.1109/CIRA.2005.1554269
10.1093/eurheartj/ehm001
10.1093/eurheartj/ehx391
10.1016/j.procs.2015.03.182
10.1161/CIRCINTERVENTIONS.112.971028
10.1109/ICSEng.2011.80
10.1109/TII.2020.3006616
10.1136/heartjnl-2016-310819
10.1161/01.CIR.40.1.43
10.1016/j.inffus.2020.06.008
10.4065/mcp.2009.0706
10.1109/MNET.001.1900054
10.1016/S0300-8932(10)70304-3
10.1109/10.991163
10.1016/S0140-6736(09)60994-6
10.1016/S0140-6736(06)69208-8
10.1016/S0031-3955(05)70128-0
10.1161/01.RES.0000141146.95728.da
10.1016/S0140-6736(09)60692-9
10.1007/s00330-004-2387-0
10.1109/ACCESS.2017.2762526
10.1016/0033-0620(78)90002-6
10.1161/01.CIR.81.2.730
10.1109/HSI.2018.8431153
10.1109/TKDE.2009.191
10.1109/PROC.1983.12588
10.1109/ACCESS.2019.2936143
10.1001/jama.2013.279194
10.1016/j.jacc.2012.11.083
10.1016/0002-9343(49)90004-2
10.1016/j.jacc.2007.06.024
10.1109/TII.2020.2991796
10.1016/j.athoracsur.2010.07.023
10.1016/S0195-668X(03)00201-X
10.1055/s-0034-1387129
10.1049/cp.2015.1654
10.1038/nrcardio.2010.202
10.1109/ACCESS.2017.2740419
10.1093/rpd/ncx075
10.1016/j.asoc.2020.106298
10.1109/TBME.2003.814531
10.1016/j.jacc.2017.12.009
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2021.3053420
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 16932
ExternalDocumentID 10_1109_JIOT_2021_3053420
9330761
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology, Taiwan
  grantid: MOST 109-2511-H-019-004-MY2; MOST 109-2511-H-019-001; MOST 109-2410-H-006-116-MY2
  funderid: 10.13039/501100004663
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c359t-7f081a925e73422278c200292fd1c712562918fe61e3830f1dd778359db5d4203
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 05:05:56 EDT 2025
Tue Jul 01 04:08:08 EDT 2025
Thu Apr 24 23:04:34 EDT 2025
Wed Aug 27 02:27:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 23
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-7f081a925e73422278c200292fd1c712562918fe61e3830f1dd778359db5d4203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3201-5026
0000-0002-3945-4363
0000-0002-0637-7293
PQID 2599210752
PQPubID 2040421
PageCount 12
ParticipantIDs proquest_journals_2599210752
crossref_citationtrail_10_1109_JIOT_2021_3053420
crossref_primary_10_1109_JIOT_2021_3053420
ieee_primary_9330761
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref52
ref55
ref11
ref10
otto (ref31) 2018
ref17
ref16
ref19
ref18
ref51
ref50
su (ref66) 0
ref46
su (ref67) 0
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
(ref1) 2020
ref9
ref6
soni (ref53) 2011; 3
ref5
ref40
venes (ref4) 2017
ref35
ref34
ref37
ref30
ref33
ref32
ref2
ref38
chen (ref54) 2020; 31
boyd (ref39) 1983; 71
ref24
ref23
ref25
ref64
ref20
ref63
ref22
ref65
ref21
bailey (ref26) 1990; 81
baim (ref36) 2006
ref28
ref27
ref29
ref60
ref62
ref61
xu (ref3) 2020
morris (ref42) 1986
References_xml – ident: ref19
  doi: 10.1093/eurheartj/ehq222
– ident: ref33
  doi: 10.1016/S0301-5629(99)00056-3
– ident: ref14
  doi: 10.1038/nrdp.2016.6
– ident: ref2
  doi: 10.1093/bmb/ldp028
– ident: ref57
  doi: 10.1109/ACCESS.2020.3007561
– volume: 3
  start-page: 2385
  year: 2011
  ident: ref53
  article-title: Intelligent and effective heart disease prediction system using weighted associative classifiers
  publication-title: Int J Comput Sci Eng
– ident: ref27
  doi: 10.1016/S0025-6196(12)62698-6
– volume: 31
  start-page: 2430
  year: 2020
  ident: ref54
  article-title: Label-less learning for emotion cognition
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref32
  doi: 10.1016/0002-9149(74)90151-9
– ident: ref58
  doi: 10.4236/jilsa.2013.53019
– year: 0
  ident: ref66
  article-title: Applying data mining techniques to explore users behaviors and viewing video patterns in converged IT environments
  publication-title: J Ambient Intell Humanized Comput
– ident: ref56
  doi: 10.1109/MNET.011.1900570
– ident: ref10
  doi: 10.1016/j.cpcardiol.2007.07.002
– start-page: 1
  year: 2018
  ident: ref31
  publication-title: Textbook of Clinical Echocardiography
– ident: ref64
  doi: 10.1152/ajplegacy.1939.127.3.437
– ident: ref11
  doi: 10.1136/hrt.2010.205096
– ident: ref65
  doi: 10.1039/9781788010283
– year: 1986
  ident: ref42
  publication-title: Nuclear Magnetic Resonance Imaging in Medicine and Biology
– ident: ref37
  doi: 10.1016/0002-8703(95)90055-1
– ident: ref35
  doi: 10.1148/102.1.153
– ident: ref63
  doi: 10.1109/CIRA.2005.1554269
– ident: ref9
  doi: 10.1093/eurheartj/ehm001
– ident: ref7
  doi: 10.1093/eurheartj/ehx391
– ident: ref47
  doi: 10.1016/j.procs.2015.03.182
– ident: ref21
  doi: 10.1161/CIRCINTERVENTIONS.112.971028
– ident: ref51
  doi: 10.1109/ICSEng.2011.80
– ident: ref62
  doi: 10.1109/TII.2020.3006616
– ident: ref45
  doi: 10.1136/heartjnl-2016-310819
– year: 0
  ident: ref67
  article-title: Predicting behavioral competencies automatically from facial expressions in real-time video recorded interviews
  publication-title: J Real-Time Image Process
– ident: ref25
  doi: 10.1161/01.CIR.40.1.43
– ident: ref52
  doi: 10.1016/j.inffus.2020.06.008
– ident: ref5
  doi: 10.4065/mcp.2009.0706
– ident: ref55
  doi: 10.1109/MNET.001.1900054
– ident: ref17
  doi: 10.1016/S0300-8932(10)70304-3
– ident: ref29
  doi: 10.1109/10.991163
– start-page: 1078
  year: 2017
  ident: ref4
  publication-title: Taber's cyclopedic medical dictionary
– ident: ref20
  doi: 10.1016/S0140-6736(09)60994-6
– ident: ref8
  doi: 10.1016/S0140-6736(06)69208-8
– ident: ref38
  doi: 10.1016/S0031-3955(05)70128-0
– ident: ref13
  doi: 10.1161/01.RES.0000141146.95728.da
– ident: ref18
  doi: 10.1016/S0140-6736(09)60692-9
– ident: ref43
  doi: 10.1007/s00330-004-2387-0
– ident: ref46
  doi: 10.1109/ACCESS.2017.2762526
– ident: ref34
  doi: 10.1016/0033-0620(78)90002-6
– volume: 81
  start-page: 730
  year: 1990
  ident: ref26
  article-title: Recommendations for standardization and specifications in automated electrocardiography: Bandwidth and digital signal processing. A report for health professionals by an ad hoc writing group of the committee on electrocardiography and cardiac electrophysiology of the council on clinical cardiology, American heart association
  publication-title: Circulation
  doi: 10.1161/01.CIR.81.2.730
– ident: ref50
  doi: 10.1109/HSI.2018.8431153
– ident: ref48
  doi: 10.1109/TKDE.2009.191
– volume: 71
  start-page: 298
  year: 1983
  ident: ref39
  article-title: cardiac computed tomography
  publication-title: Proceedings of the IEEE
  doi: 10.1109/PROC.1983.12588
– ident: ref60
  doi: 10.1109/ACCESS.2019.2936143
– year: 2020
  ident: ref3
  publication-title: Mortality in the United States 2018
– ident: ref22
  doi: 10.1001/jama.2013.279194
– ident: ref40
  doi: 10.1016/j.jacc.2012.11.083
– ident: ref24
  doi: 10.1016/0002-9343(49)90004-2
– ident: ref23
  doi: 10.1016/j.jacc.2007.06.024
– year: 2020
  ident: ref1
  publication-title: The Top 10 Causes of Death
– ident: ref49
  doi: 10.1109/TII.2020.2991796
– ident: ref15
  doi: 10.1016/j.athoracsur.2010.07.023
– ident: ref6
  doi: 10.1016/S0195-668X(03)00201-X
– ident: ref16
  doi: 10.1055/s-0034-1387129
– start-page: 3
  year: 2006
  ident: ref36
  publication-title: Grossman's Cardiac Catheterization Angiography and Intervention
– ident: ref30
  doi: 10.1049/cp.2015.1654
– ident: ref12
  doi: 10.1038/nrcardio.2010.202
– ident: ref61
  doi: 10.1109/ACCESS.2017.2740419
– ident: ref41
  doi: 10.1093/rpd/ncx075
– ident: ref59
  doi: 10.1016/j.asoc.2020.106298
– ident: ref28
  doi: 10.1109/TBME.2003.814531
– ident: ref44
  doi: 10.1016/j.jacc.2017.12.009
SSID ssj0001105196
Score 2.5149972
Snippet The heart is one of the most important organs of the human body. It circulates blood throughout the human body and delivers oxygen and nutrients to all the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 16921
SubjectTerms Arrhythmia
Blood
Blood circulation
Blood flow
Body temperature
Cardiac function
Cardiovascular disease
Control equipment
Data analysis
Deep learning
Degeneration
Diseases
Experiments
Heart
Heart beat
heart disease screening system
Heart diseases
Heart valves
Human body
intelligent Internet of Medical Things
Internet
Internet of medical things
Internet of Things
Irregularities
Medical screening
Muscles
Muscular function
Nutrients
Organs
Temperature sensors
Valves
valvular heart disease
Title Deep Learning Methods in Internet of Medical Things for Valvular Heart Disease Screening System
URI https://ieeexplore.ieee.org/document/9330761
https://www.proquest.com/docview/2599210752
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6QkxdR0Yii6cGTcYHuo90ejUqQBL2A4bbZPtYYyUJk8eCvt9MWNGqMtz20TbNfH_PNTOdD6DwnRRLJmAdFRFUQU5oHIo3iIBFJKEKVSm3VG0b3dDCJh9NkWkOXm7cwWmubfKY78Glj-WouV-Aq6wL5ZsB1tgxxc2-1Pv0pBIwR6gOXpMe7w7uHsSGAIemYNR3FoOj95eqxWio_DmB7q_QbaLSej0smeemsKtGR799KNf53wrtox5uX-Mqthz1U0-U-aqylG7DfyU2U3Wi9wL646hMeWR3pJX4usXMR6grPC-yjONiJe2Jj3-LHfPYGmat4YPpW-MbFd8zAkL8DQ7kS6Ado0r8dXw8Cr7UQyCjhVcAKYxvkPEw0i2L7PlZC-gYPC0UkM1YQDTlJC02JNpy2VxClGDiNuBKJMv82OkT1cl7qI4RzQgQRkqZMQDVBlWuWUpLLuJAxY0nYQr01DJn0hchBD2OWWULS4xkglwFymUeuhS42XRauCsdfjZuAxKahB6GF2musM79Pl5khf9yQXjOr4997naBtGNslsLRRvXpd6VNjhlTizK6_DwcT2FA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0heigXPkoRgQA-9IS6Id712utjBUWBEriEipu1_liEGiWo2XDg1-OxnRTRquK2B9tr7bPX82bG8wC-1LQpC8Nk1hTcZozzOtNVwbJSl7nObWVcUG8YXvPBLbu8K-9W4OvyLoxzLiSfuR4-hli-nZo5uspOkHwL5Dof_LnPZLyt9cejQtEc4Sl0Sfvy5PLiZuQpYE57flUXDDW9Xx0-QU3lr19wOFfON2C4mFFMJ_nVm7e6Z57fFGt875Q3YT0ZmORbXBFbsOImn2BjId5A0l7eBnXm3CNJ5VXvyTAoSc_Iw4REJ6FrybQhKY5Dorwn8RYu-VmPnzB3lQx835acxQiPHxgzeHCoWAT9M9yefx-dDrKktpCZopRtJhpvHdQyL50oWLghazCBQ-aNpUZ4O4jnklaN49R5VttvqLUC3UbS6tL6b1vswOpkOnG7QGpKNdWGV0JjPUFbO1FxWhvWGCZEmXegv4BBmVSKHBUxxipQkr5UiJxC5FRCrgPHyy6PsQ7H_xpvIxLLhgmEDnQXWKu0U2fK0z_paa-f1d6_ex3Bx8FoeKWuLq5_7MMaviems3Rhtf09dwfeKGn1YViLL4yK26A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Methods+in+Internet+of+Medical+Things+for+Valvular+Heart+Disease+Screening+System&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Su%2C+Yu-Sheng&rft.au=Ding%2C+Ting-Jou&rft.au=Chen%2C+Mu-Yen&rft.date=2021-12-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=8&rft.issue=23&rft.spage=16921&rft.epage=16932&rft_id=info:doi/10.1109%2FJIOT.2021.3053420&rft.externalDocID=9330761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon