Deep Learning Methods in Internet of Medical Things for Valvular Heart Disease Screening System
The heart is one of the most important organs of the human body. It circulates blood throughout the human body and delivers oxygen and nutrients to all the organs for metabolism. Cardiac muscle contraction results in blood circulation, which maintains the body temperature at approximately 37 °C. If...
Saved in:
Published in | IEEE internet of things journal Vol. 8; no. 23; pp. 16921 - 16932 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2327-4662 2327-4662 |
DOI | 10.1109/JIOT.2021.3053420 |
Cover
Loading…
Abstract | The heart is one of the most important organs of the human body. It circulates blood throughout the human body and delivers oxygen and nutrients to all the organs for metabolism. Cardiac muscle contraction results in blood circulation, which maintains the body temperature at approximately 37 °C. If the cardiac function is abnormal, then the body temperature will be affected. The cardiac function degenerates as the human body ages, and the degeneration can occasionally result in cardiovascular diseases. When the Internet of Medical Things is integrated into heart disease screening systems to detect heart diseases, people can perform self-examinations to evaluate whether their hearts exhibit irregularities for early heart disease detection. STM32 is used in this study as the main Internet-of-Medical Things controller and is combined with the Internet of Things devices-a sphygmomanometer cuff, temperature sensor, and pulse sensor-for instrument control and data acquisition. This assembly is used to develop a valvular heart disease screening system, whose structure incorporates deep learning for the development of fitting models and analysis. An experiment is performed where blood flow is blocked temporarily and released to observe changes in the surface temperature of the fingertip skin, and the blood supply capability of the heart is assessed indirectly based on the temperature change curve. Eighteen subjects were recruited in the experiment, where one subject exhibited cardiac valve insufficiency and arrhythmia. In the experiment, temperature curve variation data are successfully obtained from the healthy subjects, whereas the temperature curve irregularities of the patient with cardiac valve insufficiency are identified. This subject's temperature range throughout three test steps is smaller by within 0.52 °C compared with those of most of the other subjects. In addition, during blood blocking and release, the overall temperature curve decreases, whereas some curves escalate first before plummeting slowly. The data analysis results show that the temperature curve variation and values of Subject 2 are similar to those of Subject 10, suggesting the incidence of valvular heart disease. This valvular heart disease screening system can successfully analyze and assess the characteristic signal values of patients with valvular heart disease. |
---|---|
AbstractList | The heart is one of the most important organs of the human body. It circulates blood throughout the human body and delivers oxygen and nutrients to all the organs for metabolism. Cardiac muscle contraction results in blood circulation, which maintains the body temperature at approximately 37 °C. If the cardiac function is abnormal, then the body temperature will be affected. The cardiac function degenerates as the human body ages, and the degeneration can occasionally result in cardiovascular diseases. When the Internet of Medical Things is integrated into heart disease screening systems to detect heart diseases, people can perform self-examinations to evaluate whether their hearts exhibit irregularities for early heart disease detection. STM32 is used in this study as the main Internet-of-Medical Things controller and is combined with the Internet of Things devices—a sphygmomanometer cuff, temperature sensor, and pulse sensor—for instrument control and data acquisition. This assembly is used to develop a valvular heart disease screening system, whose structure incorporates deep learning for the development of fitting models and analysis. An experiment is performed where blood flow is blocked temporarily and released to observe changes in the surface temperature of the fingertip skin, and the blood supply capability of the heart is assessed indirectly based on the temperature change curve. Eighteen subjects were recruited in the experiment, where one subject exhibited cardiac valve insufficiency and arrhythmia. In the experiment, temperature curve variation data are successfully obtained from the healthy subjects, whereas the temperature curve irregularities of the patient with cardiac valve insufficiency are identified. This subject’s temperature range throughout three test steps is smaller by within 0.52 °C compared with those of most of the other subjects. In addition, during blood blocking and release, the overall temperature curve decreases, whereas some curves escalate first before plummeting slowly. The data analysis results show that the temperature curve variation and values of Subject 2 are similar to those of Subject 10, suggesting the incidence of valvular heart disease. This valvular heart disease screening system can successfully analyze and assess the characteristic signal values of patients with valvular heart disease. |
Author | Chen, Mu-Yen Su, Yu-Sheng Ding, Ting-Jou |
Author_xml | – sequence: 1 givenname: Yu-Sheng orcidid: 0000-0002-0637-7293 surname: Su fullname: Su, Yu-Sheng email: ntouaddisonsu@gmail.com organization: Department of Computer Science and Engineering, National Taiwan Ocean University, Keelung City, Taiwan – sequence: 2 givenname: Ting-Jou orcidid: 0000-0002-3201-5026 surname: Ding fullname: Ding, Ting-Jou email: tjding@gmail.com organization: Department of Materials and Energy Engineering, MingDao University, ChangHua, Taiwan – sequence: 3 givenname: Mu-Yen orcidid: 0000-0002-3945-4363 surname: Chen fullname: Chen, Mu-Yen email: mychen119@gs.ncku.edu.tw organization: Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan |
BookMark | eNp9kE9LAzEQxYMoWP98APES8Lw1mXQ3m6O0aisVD1avIe7O2pRttiap0G9vaouIB08zDO_3ZuadkEPXOSTkgrM-50xdP0yeZn1gwPuC5WIA7ID0QIDMBkUBh7_6Y3IewoIxlrCcq6JH9AhxRadovLPunT5inHd1oNbRiYvoHUbaNWlc28q0dDZPokCbztNX036uW-PpOLGRjmxAE5A-Vx7x2-p5EyIuz8hRY9qA5_t6Sl7ubmfDcTZ9up8Mb6ZZJXIVM9mwkhsFOcp0P4AsK2AMFDQ1rySHvADFywYLjqIUrOF1LWWZ0Potr9PD4pRc7XxXvvtYY4h60a29Sys15EoBZzKHpOI7VeW7EDw2euXt0viN5kxvo9TbKPU2Sr2PMjHyD1PZaKLtXPTGtv-SlzvSIuLPJiUEkwUXX8DUgKo |
CODEN | IITJAU |
CitedBy_id | crossref_primary_10_1515_jisys_2022_0267 crossref_primary_10_3390_s22218438 crossref_primary_10_1007_s11227_023_05356_3 crossref_primary_10_1016_j_asoc_2021_107709 crossref_primary_10_3390_ijerph191912180 crossref_primary_10_1111_exsy_13254 crossref_primary_10_3389_fpsyg_2021_750972 crossref_primary_10_1007_s40299_021_00570_0 crossref_primary_10_1016_j_aej_2023_08_010 crossref_primary_10_1007_s11042_024_19169_w crossref_primary_10_1186_s12913_023_09104_4 crossref_primary_10_3233_WEB_230063 crossref_primary_10_7717_peerj_cs_2364 crossref_primary_10_1109_TCE_2024_3368206 crossref_primary_10_1007_s11276_024_03807_0 crossref_primary_10_1109_TCSS_2023_3259431 crossref_primary_10_1016_j_bspc_2023_105511 crossref_primary_10_1007_s00500_023_08709_5 crossref_primary_10_1080_21681163_2023_2245927 crossref_primary_10_1016_j_inffus_2023_102060 crossref_primary_10_1109_JIOT_2022_3215884 crossref_primary_10_1038_s41598_025_93906_5 crossref_primary_10_1109_TCBB_2023_3252668 crossref_primary_10_1109_TITS_2022_3162395 crossref_primary_10_1007_s00500_023_08613_y crossref_primary_10_1155_2021_5781354 crossref_primary_10_1109_TIM_2022_3163156 crossref_primary_10_3390_ijerph19010615 crossref_primary_10_1016_j_health_2023_100221 crossref_primary_10_3390_su13105471 crossref_primary_10_1109_JIOT_2022_3209895 crossref_primary_10_3934_mbe_2022110 crossref_primary_10_1177_07356331211053383 crossref_primary_10_3390_ijerph18126349 crossref_primary_10_3390_biomedicines11041167 crossref_primary_10_1080_21681163_2022_2162439 crossref_primary_10_3390_su13084586 crossref_primary_10_1007_s10723_023_09726_2 crossref_primary_10_3390_su13052888 crossref_primary_10_1038_s41598_024_58489_7 crossref_primary_10_1080_10447318_2025_2474469 crossref_primary_10_1016_j_jii_2022_100402 crossref_primary_10_1016_j_future_2023_03_005 crossref_primary_10_3389_fpsyg_2021_755137 crossref_primary_10_1016_j_dcan_2022_07_011 crossref_primary_10_1109_JIOT_2022_3143375 crossref_primary_10_1109_JBHI_2022_3174823 crossref_primary_10_3389_fpsyg_2021_677137 crossref_primary_10_4018_IJSSMET_356234 |
Cites_doi | 10.1093/eurheartj/ehq222 10.1016/S0301-5629(99)00056-3 10.1038/nrdp.2016.6 10.1093/bmb/ldp028 10.1109/ACCESS.2020.3007561 10.1016/S0025-6196(12)62698-6 10.1016/0002-9149(74)90151-9 10.4236/jilsa.2013.53019 10.1109/MNET.011.1900570 10.1016/j.cpcardiol.2007.07.002 10.1152/ajplegacy.1939.127.3.437 10.1136/hrt.2010.205096 10.1039/9781788010283 10.1016/0002-8703(95)90055-1 10.1148/102.1.153 10.1109/CIRA.2005.1554269 10.1093/eurheartj/ehm001 10.1093/eurheartj/ehx391 10.1016/j.procs.2015.03.182 10.1161/CIRCINTERVENTIONS.112.971028 10.1109/ICSEng.2011.80 10.1109/TII.2020.3006616 10.1136/heartjnl-2016-310819 10.1161/01.CIR.40.1.43 10.1016/j.inffus.2020.06.008 10.4065/mcp.2009.0706 10.1109/MNET.001.1900054 10.1016/S0300-8932(10)70304-3 10.1109/10.991163 10.1016/S0140-6736(09)60994-6 10.1016/S0140-6736(06)69208-8 10.1016/S0031-3955(05)70128-0 10.1161/01.RES.0000141146.95728.da 10.1016/S0140-6736(09)60692-9 10.1007/s00330-004-2387-0 10.1109/ACCESS.2017.2762526 10.1016/0033-0620(78)90002-6 10.1161/01.CIR.81.2.730 10.1109/HSI.2018.8431153 10.1109/TKDE.2009.191 10.1109/PROC.1983.12588 10.1109/ACCESS.2019.2936143 10.1001/jama.2013.279194 10.1016/j.jacc.2012.11.083 10.1016/0002-9343(49)90004-2 10.1016/j.jacc.2007.06.024 10.1109/TII.2020.2991796 10.1016/j.athoracsur.2010.07.023 10.1016/S0195-668X(03)00201-X 10.1055/s-0034-1387129 10.1049/cp.2015.1654 10.1038/nrcardio.2010.202 10.1109/ACCESS.2017.2740419 10.1093/rpd/ncx075 10.1016/j.asoc.2020.106298 10.1109/TBME.2003.814531 10.1016/j.jacc.2017.12.009 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/JIOT.2021.3053420 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2327-4662 |
EndPage | 16932 |
ExternalDocumentID | 10_1109_JIOT_2021_3053420 9330761 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology, Taiwan grantid: MOST 109-2511-H-019-004-MY2; MOST 109-2511-H-019-001; MOST 109-2410-H-006-116-MY2 funderid: 10.13039/501100004663 |
GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c359t-7f081a925e73422278c200292fd1c712562918fe61e3830f1dd778359db5d4203 |
IEDL.DBID | RIE |
ISSN | 2327-4662 |
IngestDate | Mon Jun 30 05:05:56 EDT 2025 Tue Jul 01 04:08:08 EDT 2025 Thu Apr 24 23:04:34 EDT 2025 Wed Aug 27 02:27:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-7f081a925e73422278c200292fd1c712562918fe61e3830f1dd778359db5d4203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3201-5026 0000-0002-3945-4363 0000-0002-0637-7293 |
PQID | 2599210752 |
PQPubID | 2040421 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2599210752 crossref_citationtrail_10_1109_JIOT_2021_3053420 crossref_primary_10_1109_JIOT_2021_3053420 ieee_primary_9330761 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE internet of things journal |
PublicationTitleAbbrev | JIoT |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 ref14 ref52 ref55 ref11 ref10 otto (ref31) 2018 ref17 ref16 ref19 ref18 ref51 ref50 su (ref66) 0 ref46 su (ref67) 0 ref45 ref48 ref47 ref41 ref44 ref43 ref49 ref8 ref7 (ref1) 2020 ref9 ref6 soni (ref53) 2011; 3 ref5 ref40 venes (ref4) 2017 ref35 ref34 ref37 ref30 ref33 ref32 ref2 ref38 chen (ref54) 2020; 31 boyd (ref39) 1983; 71 ref24 ref23 ref25 ref64 ref20 ref63 ref22 ref65 ref21 bailey (ref26) 1990; 81 baim (ref36) 2006 ref28 ref27 ref29 ref60 ref62 ref61 xu (ref3) 2020 morris (ref42) 1986 |
References_xml | – ident: ref19 doi: 10.1093/eurheartj/ehq222 – ident: ref33 doi: 10.1016/S0301-5629(99)00056-3 – ident: ref14 doi: 10.1038/nrdp.2016.6 – ident: ref2 doi: 10.1093/bmb/ldp028 – ident: ref57 doi: 10.1109/ACCESS.2020.3007561 – volume: 3 start-page: 2385 year: 2011 ident: ref53 article-title: Intelligent and effective heart disease prediction system using weighted associative classifiers publication-title: Int J Comput Sci Eng – ident: ref27 doi: 10.1016/S0025-6196(12)62698-6 – volume: 31 start-page: 2430 year: 2020 ident: ref54 article-title: Label-less learning for emotion cognition publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref32 doi: 10.1016/0002-9149(74)90151-9 – ident: ref58 doi: 10.4236/jilsa.2013.53019 – year: 0 ident: ref66 article-title: Applying data mining techniques to explore users behaviors and viewing video patterns in converged IT environments publication-title: J Ambient Intell Humanized Comput – ident: ref56 doi: 10.1109/MNET.011.1900570 – ident: ref10 doi: 10.1016/j.cpcardiol.2007.07.002 – start-page: 1 year: 2018 ident: ref31 publication-title: Textbook of Clinical Echocardiography – ident: ref64 doi: 10.1152/ajplegacy.1939.127.3.437 – ident: ref11 doi: 10.1136/hrt.2010.205096 – ident: ref65 doi: 10.1039/9781788010283 – year: 1986 ident: ref42 publication-title: Nuclear Magnetic Resonance Imaging in Medicine and Biology – ident: ref37 doi: 10.1016/0002-8703(95)90055-1 – ident: ref35 doi: 10.1148/102.1.153 – ident: ref63 doi: 10.1109/CIRA.2005.1554269 – ident: ref9 doi: 10.1093/eurheartj/ehm001 – ident: ref7 doi: 10.1093/eurheartj/ehx391 – ident: ref47 doi: 10.1016/j.procs.2015.03.182 – ident: ref21 doi: 10.1161/CIRCINTERVENTIONS.112.971028 – ident: ref51 doi: 10.1109/ICSEng.2011.80 – ident: ref62 doi: 10.1109/TII.2020.3006616 – ident: ref45 doi: 10.1136/heartjnl-2016-310819 – year: 0 ident: ref67 article-title: Predicting behavioral competencies automatically from facial expressions in real-time video recorded interviews publication-title: J Real-Time Image Process – ident: ref25 doi: 10.1161/01.CIR.40.1.43 – ident: ref52 doi: 10.1016/j.inffus.2020.06.008 – ident: ref5 doi: 10.4065/mcp.2009.0706 – ident: ref55 doi: 10.1109/MNET.001.1900054 – ident: ref17 doi: 10.1016/S0300-8932(10)70304-3 – ident: ref29 doi: 10.1109/10.991163 – start-page: 1078 year: 2017 ident: ref4 publication-title: Taber's cyclopedic medical dictionary – ident: ref20 doi: 10.1016/S0140-6736(09)60994-6 – ident: ref8 doi: 10.1016/S0140-6736(06)69208-8 – ident: ref38 doi: 10.1016/S0031-3955(05)70128-0 – ident: ref13 doi: 10.1161/01.RES.0000141146.95728.da – ident: ref18 doi: 10.1016/S0140-6736(09)60692-9 – ident: ref43 doi: 10.1007/s00330-004-2387-0 – ident: ref46 doi: 10.1109/ACCESS.2017.2762526 – ident: ref34 doi: 10.1016/0033-0620(78)90002-6 – volume: 81 start-page: 730 year: 1990 ident: ref26 article-title: Recommendations for standardization and specifications in automated electrocardiography: Bandwidth and digital signal processing. A report for health professionals by an ad hoc writing group of the committee on electrocardiography and cardiac electrophysiology of the council on clinical cardiology, American heart association publication-title: Circulation doi: 10.1161/01.CIR.81.2.730 – ident: ref50 doi: 10.1109/HSI.2018.8431153 – ident: ref48 doi: 10.1109/TKDE.2009.191 – volume: 71 start-page: 298 year: 1983 ident: ref39 article-title: cardiac computed tomography publication-title: Proceedings of the IEEE doi: 10.1109/PROC.1983.12588 – ident: ref60 doi: 10.1109/ACCESS.2019.2936143 – year: 2020 ident: ref3 publication-title: Mortality in the United States 2018 – ident: ref22 doi: 10.1001/jama.2013.279194 – ident: ref40 doi: 10.1016/j.jacc.2012.11.083 – ident: ref24 doi: 10.1016/0002-9343(49)90004-2 – ident: ref23 doi: 10.1016/j.jacc.2007.06.024 – year: 2020 ident: ref1 publication-title: The Top 10 Causes of Death – ident: ref49 doi: 10.1109/TII.2020.2991796 – ident: ref15 doi: 10.1016/j.athoracsur.2010.07.023 – ident: ref6 doi: 10.1016/S0195-668X(03)00201-X – ident: ref16 doi: 10.1055/s-0034-1387129 – start-page: 3 year: 2006 ident: ref36 publication-title: Grossman's Cardiac Catheterization Angiography and Intervention – ident: ref30 doi: 10.1049/cp.2015.1654 – ident: ref12 doi: 10.1038/nrcardio.2010.202 – ident: ref61 doi: 10.1109/ACCESS.2017.2740419 – ident: ref41 doi: 10.1093/rpd/ncx075 – ident: ref59 doi: 10.1016/j.asoc.2020.106298 – ident: ref28 doi: 10.1109/TBME.2003.814531 – ident: ref44 doi: 10.1016/j.jacc.2017.12.009 |
SSID | ssj0001105196 |
Score | 2.5149972 |
Snippet | The heart is one of the most important organs of the human body. It circulates blood throughout the human body and delivers oxygen and nutrients to all the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 16921 |
SubjectTerms | Arrhythmia Blood Blood circulation Blood flow Body temperature Cardiac function Cardiovascular disease Control equipment Data analysis Deep learning Degeneration Diseases Experiments Heart Heart beat heart disease screening system Heart diseases Heart valves Human body intelligent Internet of Medical Things Internet Internet of medical things Internet of Things Irregularities Medical screening Muscles Muscular function Nutrients Organs Temperature sensors Valves valvular heart disease |
Title | Deep Learning Methods in Internet of Medical Things for Valvular Heart Disease Screening System |
URI | https://ieeexplore.ieee.org/document/9330761 https://www.proquest.com/docview/2599210752 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6QkxdR0Yii6cGTcYHuo90ejUqQBL2A4bbZPtYYyUJk8eCvt9MWNGqMtz20TbNfH_PNTOdD6DwnRRLJmAdFRFUQU5oHIo3iIBFJKEKVSm3VG0b3dDCJh9NkWkOXm7cwWmubfKY78Glj-WouV-Aq6wL5ZsB1tgxxc2-1Pv0pBIwR6gOXpMe7w7uHsSGAIemYNR3FoOj95eqxWio_DmB7q_QbaLSej0smeemsKtGR799KNf53wrtox5uX-Mqthz1U0-U-aqylG7DfyU2U3Wi9wL646hMeWR3pJX4usXMR6grPC-yjONiJe2Jj3-LHfPYGmat4YPpW-MbFd8zAkL8DQ7kS6Ado0r8dXw8Cr7UQyCjhVcAKYxvkPEw0i2L7PlZC-gYPC0UkM1YQDTlJC02JNpy2VxClGDiNuBKJMv82OkT1cl7qI4RzQgQRkqZMQDVBlWuWUpLLuJAxY0nYQr01DJn0hchBD2OWWULS4xkglwFymUeuhS42XRauCsdfjZuAxKahB6GF2musM79Pl5khf9yQXjOr4997naBtGNslsLRRvXpd6VNjhlTizK6_DwcT2FA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTxsxEB0heigXPkoRgQA-9IS6Id712utjBUWBEriEipu1_liEGiWo2XDg1-OxnRTRquK2B9tr7bPX82bG8wC-1LQpC8Nk1hTcZozzOtNVwbJSl7nObWVcUG8YXvPBLbu8K-9W4OvyLoxzLiSfuR4-hli-nZo5uspOkHwL5Dof_LnPZLyt9cejQtEc4Sl0Sfvy5PLiZuQpYE57flUXDDW9Xx0-QU3lr19wOFfON2C4mFFMJ_nVm7e6Z57fFGt875Q3YT0ZmORbXBFbsOImn2BjId5A0l7eBnXm3CNJ5VXvyTAoSc_Iw4REJ6FrybQhKY5Dorwn8RYu-VmPnzB3lQx835acxQiPHxgzeHCoWAT9M9yefx-dDrKktpCZopRtJhpvHdQyL50oWLghazCBQ-aNpUZ4O4jnklaN49R5VttvqLUC3UbS6tL6b1vswOpkOnG7QGpKNdWGV0JjPUFbO1FxWhvWGCZEmXegv4BBmVSKHBUxxipQkr5UiJxC5FRCrgPHyy6PsQ7H_xpvIxLLhgmEDnQXWKu0U2fK0z_paa-f1d6_ex3Bx8FoeKWuLq5_7MMaviems3Rhtf09dwfeKGn1YViLL4yK26A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Methods+in+Internet+of+Medical+Things+for+Valvular+Heart+Disease+Screening+System&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Su%2C+Yu-Sheng&rft.au=Ding%2C+Ting-Jou&rft.au=Chen%2C+Mu-Yen&rft.date=2021-12-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=8&rft.issue=23&rft.spage=16921&rft.epage=16932&rft_id=info:doi/10.1109%2FJIOT.2021.3053420&rft.externalDocID=9330761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |