Regional heart motion abnormality detection: An information theoretic approach

[Display omitted] ► Coronary heart disease can be detected by measuring left ventricular motion. ► Clinically, the wall regional motion is scored following the standard by the AHA. ► Given noisy data and model, an unscented Kalman smoother estimates myocardial points. ► The Shannon’s differential en...

Full description

Saved in:
Bibliographic Details
Published inMedical image analysis Vol. 17; no. 3; pp. 311 - 324
Main Authors Punithakumar, Kumaradevan, Ben Ayed, Ismail, Islam, Ali, Goela, Aashish, Ross, Ian G., Chong, Jaron, Li, Shuo
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2013
Subjects
Online AccessGet full text
ISSN1361-8415
1361-8423
1361-8423
DOI10.1016/j.media.2012.11.007

Cover

Loading…
Abstract [Display omitted] ► Coronary heart disease can be detected by measuring left ventricular motion. ► Clinically, the wall regional motion is scored following the standard by the AHA. ► Given noisy data and model, an unscented Kalman smoother estimates myocardial points. ► The Shannon’s differential entropy provides the whole distribution information. Tracking regional heart motion and detecting the corresponding abnormalities play an essential role in the diagnosis of cardiovascular diseases. Based on functional images, which are subject to noise and segmentation/registration inaccuracies, regional heart motion analysis is acknowledged as a difficult problem and, therefore, incorporation of prior knowledge is desirable to enhance accuracy. Given noisy data and a nonlinear dynamic model to describe myocardial motion, an unscented Kalman smoother is proposed in this study to estimate the myocardial points. Due to the similarity between the statistical information of normal and abnormal heart motions, detecting and classifying abnormality is a challenging problem. We use the Shannon’s differential entropy of the distributions of potential classifier features to detect and locate regional heart motion abnormality. A naive Bayes classifier algorithm is constructed from the Shannon’s differential entropy of different features to automatically detect abnormal functional regions of the myocardium. Using 174 segmented short-axis magnetic resonance cines obtained from 58 subjects (21 normal and 37 abnormal), the proposed method is quantitatively evaluated by comparison with ground truth classifications by radiologists over 928 myocardial segments. The proposed method performed significantly better than other recent methods, and yielded an accuracy of 86.5% (base), 89.4% (mid-cavity) and 84.5% (apex). The overall classification accuracy was 87.1%. Furthermore, standard kappa statistic comparisons between the proposed method and visual wall motion scoring by radiologists showed that the proposed algorithm can yield a kappa measure of 0.73.
AbstractList Tracking regional heart motion and detecting the corresponding abnormalities play an essential role in the diagnosis of cardiovascular diseases. Based on functional images, which are subject to noise and segmentation/registration inaccuracies, regional heart motion analysis is acknowledged as a difficult problem and, therefore, incorporation of prior knowledge is desirable to enhance accuracy. Given noisy data and a nonlinear dynamic model to describe myocardial motion, an unscented Kalman smoother is proposed in this study to estimate the myocardial points. Due to the similarity between the statistical information of normal and abnormal heart motions, detecting and classifying abnormality is a challenging problem. We use the Shannon's differential entropy of the distributions of potential classifier features to detect and locate regional heart motion abnormality. A naive Bayes classifier algorithm is constructed from the Shannon's differential entropy of different features to automatically detect abnormal functional regions of the myocardium. Using 174 segmented short-axis magnetic resonance cines obtained from 58 subjects (21 normal and 37 abnormal), the proposed method is quantitatively evaluated by comparison with ground truth classifications by radiologists over 928 myocardial segments. The proposed method performed significantly better than other recent methods, and yielded an accuracy of 86.5% (base), 89.4% (mid-cavity) and 84.5% (apex). The overall classification accuracy was 87.1%. Furthermore, standard kappa statistic comparisons between the proposed method and visual wall motion scoring by radiologists showed that the proposed algorithm can yield a kappa measure of 0.73.Tracking regional heart motion and detecting the corresponding abnormalities play an essential role in the diagnosis of cardiovascular diseases. Based on functional images, which are subject to noise and segmentation/registration inaccuracies, regional heart motion analysis is acknowledged as a difficult problem and, therefore, incorporation of prior knowledge is desirable to enhance accuracy. Given noisy data and a nonlinear dynamic model to describe myocardial motion, an unscented Kalman smoother is proposed in this study to estimate the myocardial points. Due to the similarity between the statistical information of normal and abnormal heart motions, detecting and classifying abnormality is a challenging problem. We use the Shannon's differential entropy of the distributions of potential classifier features to detect and locate regional heart motion abnormality. A naive Bayes classifier algorithm is constructed from the Shannon's differential entropy of different features to automatically detect abnormal functional regions of the myocardium. Using 174 segmented short-axis magnetic resonance cines obtained from 58 subjects (21 normal and 37 abnormal), the proposed method is quantitatively evaluated by comparison with ground truth classifications by radiologists over 928 myocardial segments. The proposed method performed significantly better than other recent methods, and yielded an accuracy of 86.5% (base), 89.4% (mid-cavity) and 84.5% (apex). The overall classification accuracy was 87.1%. Furthermore, standard kappa statistic comparisons between the proposed method and visual wall motion scoring by radiologists showed that the proposed algorithm can yield a kappa measure of 0.73.
[Display omitted] ► Coronary heart disease can be detected by measuring left ventricular motion. ► Clinically, the wall regional motion is scored following the standard by the AHA. ► Given noisy data and model, an unscented Kalman smoother estimates myocardial points. ► The Shannon’s differential entropy provides the whole distribution information. Tracking regional heart motion and detecting the corresponding abnormalities play an essential role in the diagnosis of cardiovascular diseases. Based on functional images, which are subject to noise and segmentation/registration inaccuracies, regional heart motion analysis is acknowledged as a difficult problem and, therefore, incorporation of prior knowledge is desirable to enhance accuracy. Given noisy data and a nonlinear dynamic model to describe myocardial motion, an unscented Kalman smoother is proposed in this study to estimate the myocardial points. Due to the similarity between the statistical information of normal and abnormal heart motions, detecting and classifying abnormality is a challenging problem. We use the Shannon’s differential entropy of the distributions of potential classifier features to detect and locate regional heart motion abnormality. A naive Bayes classifier algorithm is constructed from the Shannon’s differential entropy of different features to automatically detect abnormal functional regions of the myocardium. Using 174 segmented short-axis magnetic resonance cines obtained from 58 subjects (21 normal and 37 abnormal), the proposed method is quantitatively evaluated by comparison with ground truth classifications by radiologists over 928 myocardial segments. The proposed method performed significantly better than other recent methods, and yielded an accuracy of 86.5% (base), 89.4% (mid-cavity) and 84.5% (apex). The overall classification accuracy was 87.1%. Furthermore, standard kappa statistic comparisons between the proposed method and visual wall motion scoring by radiologists showed that the proposed algorithm can yield a kappa measure of 0.73.
Tracking regional heart motion and detecting the corresponding abnormalities play an essential role in the diagnosis of cardiovascular diseases. Based on functional images, which are subject to noise and segmentation/registration inaccuracies, regional heart motion analysis is acknowledged as a difficult problem and, therefore, incorporation of prior knowledge is desirable to enhance accuracy. Given noisy data and a nonlinear dynamic model to describe myocardial motion, an unscented Kalman smoother is proposed in this study to estimate the myocardial points. Due to the similarity between the statistical information of normal and abnormal heart motions, detecting and classifying abnormality is a challenging problem. We use the Shannon's differential entropy of the distributions of potential classifier features to detect and locate regional heart motion abnormality. A naive Bayes classifier algorithm is constructed from the Shannon's differential entropy of different features to automatically detect abnormal functional regions of the myocardium. Using 174 segmented short-axis magnetic resonance cines obtained from 58 subjects (21 normal and 37 abnormal), the proposed method is quantitatively evaluated by comparison with ground truth classifications by radiologists over 928 myocardial segments. The proposed method performed significantly better than other recent methods, and yielded an accuracy of 86.5% (base), 89.4% (mid-cavity) and 84.5% (apex). The overall classification accuracy was 87.1%. Furthermore, standard kappa statistic comparisons between the proposed method and visual wall motion scoring by radiologists showed that the proposed algorithm can yield a kappa measure of 0.73.
Author Ross, Ian G.
Goela, Aashish
Ben Ayed, Ismail
Li, Shuo
Islam, Ali
Punithakumar, Kumaradevan
Chong, Jaron
Author_xml – sequence: 1
  givenname: Kumaradevan
  surname: Punithakumar
  fullname: Punithakumar, Kumaradevan
  email: punithak@ualberta.ca
  organization: Servier Virtual Cardiac Centre, Department of Radiology & Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
– sequence: 2
  givenname: Ismail
  surname: Ben Ayed
  fullname: Ben Ayed, Ismail
  organization: GE Healthcare, London, ON, Canada
– sequence: 3
  givenname: Ali
  surname: Islam
  fullname: Islam, Ali
  organization: St. Joseph’s Health Care, London, ON, Canada
– sequence: 4
  givenname: Aashish
  surname: Goela
  fullname: Goela, Aashish
  organization: London Health Sciences Centre, London, ON, Canada
– sequence: 5
  givenname: Ian G.
  surname: Ross
  fullname: Ross, Ian G.
  organization: London Health Sciences Centre, London, ON, Canada
– sequence: 6
  givenname: Jaron
  surname: Chong
  fullname: Chong, Jaron
  organization: Department of Diagnostic Radiology, McGill University, Montreal, QC, Canada
– sequence: 7
  givenname: Shuo
  surname: Li
  fullname: Li, Shuo
  organization: GE Healthcare, London, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23375719$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LxDAQhoMofv8CQXr00pppkn4IHmTxC0RB9BzSdOpmaZs1yQr-e7O7rgcPe0oyed4Z5jkiu6MdkZAzoBlQKC5n2YCtUVlOIc8AMkrLHXIIrIC04jnb_buDOCBH3s9oJDin--QgZ6wUJdSH5PkVP4wdVZ9MUbmQDDbEZ6Ka0bpB9SZ8Jy0G1MvqVXIzJmbslj8rKkzROgxGJ2o-d1bp6QnZ61Tv8fT3PCbvd7dvk4f06eX-cXLzlGom6pCWWhdtpwB5UUOhNShaQ8ly0QpBWddWomONaJErYJyjbmiV664toAaOdZOzY3Kx7hvHfi7QBzkYr7Hv1Yh24SWwiFYCoIro-S-6aKIwOXdmUO5bbhxEoF4D2lnvHXZSm7BaMDhleglULn3LmVz5lkvfEkBGmzHL_mU37benrtcpjIq-DDrptcFRR9BF1bK1Zmv-BxgWmpw
CitedBy_id crossref_primary_10_1109_JTEHM_2020_2989390
crossref_primary_10_3390_e23030321
crossref_primary_10_1016_j_cmpb_2015_10_015
crossref_primary_10_1118_1_4947126
crossref_primary_10_1371_journal_pone_0174581
crossref_primary_10_1109_JBHI_2022_3161666
crossref_primary_10_1109_TBME_2018_2865669
crossref_primary_10_1016_j_media_2017_06_002
crossref_primary_10_1007_s11517_023_02798_y
crossref_primary_10_1109_ACCESS_2023_3238058
crossref_primary_10_1016_j_eswa_2019_04_010
crossref_primary_10_1016_j_media_2015_07_003
crossref_primary_10_1080_21681163_2022_2073913
crossref_primary_10_7705_biomedica_7115
crossref_primary_10_1016_j_media_2016_11_008
crossref_primary_10_1007_s11548_016_1404_5
crossref_primary_10_1016_j_media_2018_09_001
crossref_primary_10_1109_ACCESS_2017_2755863
crossref_primary_10_1109_TMI_2013_2287793
crossref_primary_10_1080_21681163_2022_2055492
crossref_primary_10_1016_j_cag_2019_07_004
crossref_primary_10_1109_TMI_2014_2305751
Cites_doi 10.1016/j.jacc.2005.10.012
10.2528/PIER06081202
10.1109/TMI.2009.2037955
10.1088/0266-5611/25/3/035010
10.1109/TITB.2008.2009221
10.1109/TMI.2010.2060490
10.1109/TMI.2008.917244
10.1016/j.media.2010.12.004
10.1109/TPAMI.2003.1195991
10.1161/CIRCULATIONAHA.105.594929
10.1109/MEMB.2007.335591
10.1148/radiology.143.1.7063747
10.1016/S0301-5629(01)00350-7
10.1109/TITB.2010.2050778
10.1109/TMI.2008.2008966
10.1109/JPROC.2003.823141
10.1109/TMI.2010.2045509
10.1109/TBME.2005.851490
10.1109/TAC.2008.919531
10.1109/TMI.2006.884215
10.1109/TIP.2007.891773
10.1109/TMI.2009.2034653
10.1109/TBME.2010.2048752
10.1109/TMI.2009.2022087
10.1109/ISBI.2008.4541241
10.1016/S1361-8415(99)80029-2
10.1016/j.acra.2004.11.025
10.1161/hc0402.102975
10.1080/10976640701693626
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright © 2012 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: Copyright © 2012 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.media.2012.11.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
EndPage 324
ExternalDocumentID 23375719
10_1016_j_media_2012_11_007
S1361841512001697
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ID FETCH-LOGICAL-c359t-7cc6dfa1e46916cc1a0917325d5503fd85f3b5de4a1344ecb082cfd61914e9b23
IEDL.DBID .~1
ISSN 1361-8415
1361-8423
IngestDate Fri Jul 11 03:42:01 EDT 2025
Mon Jul 21 06:00:55 EDT 2025
Tue Jul 01 02:49:23 EDT 2025
Thu Apr 24 23:12:51 EDT 2025
Fri Feb 23 02:28:19 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Information theoretic measures
Regional wall motion abnormality detection
Cardiac motion estimation
Nonlinear state estimation
Magnetic resonance imaging
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c359t-7cc6dfa1e46916cc1a0917325d5503fd85f3b5de4a1344ecb082cfd61914e9b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23375719
PQID 1319185118
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_1319185118
pubmed_primary_23375719
crossref_citationtrail_10_1016_j_media_2012_11_007
crossref_primary_10_1016_j_media_2012_11_007
elsevier_sciencedirect_doi_10_1016_j_media_2012_11_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2013
2013-4-00
2013-Apr
20130401
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: April 2013
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cerqueira, Weissman, Dilsizian, Jacobs, Kaul, Laskey, Pennell, Rumberger, Ryan, Verani (b0035) 2002; 105
Qazi, Fung, Krishnan, Bi, Bharat Rao, Katz (b0150) 2007; 26
Bergvall, Hedstrom, Bloch, Arheden, Sparr (b0025) 2008; 27
Petitjean, Dacher (b0130) 2011; 15
Young (b0190) 1999; 3
Redheuil, Kachenoura, Laporte, Azarine, Lyon, Jolivet, Frouin, Mousseaux (b0160) 2007; 9
Hanley, McNeil (b0065) 1982; 143
Garcia-Barnes, Gil, Badiella, Hernandez-Sabate, Carreras, Pujades, Marti (b0055) 2010; 29
Liu, Shi (b0095) 2007; 16
Julier, Uhlmann (b0080) 2004; 92
Seber (b0170) 1984
Hoffmann, von Bardeleben, Kasprzak, Borges, ten Cate, Firschke, Lafitte, Al-Saadi, Kuntz-Hehner, Horstick, Greis, Engelhardt, Vanoverschelde, Becher (b0070) 2006; 47
Jacob, Noble, Kelion, Banning (b0075) 2001; 27
Bosch, Nijland, Mitchell, Lelieveldt, Kamp, Reiber, Sonka (b0030) 2005; 12
Punithakumar, Ben Ayed, Islam, Ross, Li (b0140) 2010; 57
Ben Ayed, Li, Ross (b0015) 2009; 28
Lu, Radau, Connelly, Dick, Wright (b0110) 2009
Leung, Bosch (b0090) 2007
Qian, Liu, Metaxas, Axel (b0155) 2008
Zou, O’Malley, Mauri (b0200) 2007; 115
Sarkka (b0165) 2008; 53
Spottiswoode, Zhong, Hess, Kramer, Meintjes, Mayosi, Epstein (b0175) 2007; 26
Comaniciu, Ramesh, Meer (b0045) 2003; 25
Bar-Shalom, Kirubarajan, Li (b0010) 2002
Chen, Goela, Garvin, Li (b0040) 2010
Pan, Prince, Lima, Osman (b0125) 2005; 52
Punithakumar, Ben Ayed, Ross, Islam, Chong, Li (b0145) 2010; 14
Suinesiaputra, Frangi, Kaandorp, Lamb, Bax, Reiber, Lelieveldt (b0180) 2009; 28
Fung, G., Qazi, M., Krishnan, S., Bi, J., Rao, B., Katz, A., 2005. Sparse classifiers for automated heartwall motion abnormality detection. In: Proc. IEEE 4th Int. Conf. Machine Learning and Applications, pp. 194–200.
Lekadir, Keenan, Pennell, Yang (b0085) 2011; 30
Moireau, Chapelle, Tallec (b0120) 2009; 25
Viera, Garret (b0185) 2005; 37
Punithakumar, Ben Ayed, Islam, Ross, Li (b0135) 2010
Zhou (b0195) 2006; 65
Liu, Prince (b0105) 2010; 29
Arts, Prinzen, Delhaas, Milles, Rossi, Clarysse (b0005) 2010; 29
Ben Ayed, Lu, Li, Ross (b0020) 2008
Liu, J., 2006. New Development of the Deformation Method. Ph.D. thesis, Department of Mathematics, The University of Texas at Arlington.
Mansor, S., Noble, J., 2008. Local wall motion classification of stress echocardiography using a hidden Markov model approach. In: The 5th IEEE Int. Symp. Biomedical Imaging: From Nano to Macro, pp. 1295–1298.
Gilliam, Epstein, Acton (b0060) 2009; 13
Qazi (10.1016/j.media.2012.11.007_b0150) 2007; 26
Lekadir (10.1016/j.media.2012.11.007_b0085) 2011; 30
Suinesiaputra (10.1016/j.media.2012.11.007_b0180) 2009; 28
Gilliam (10.1016/j.media.2012.11.007_b0060) 2009; 13
Bosch (10.1016/j.media.2012.11.007_b0030) 2005; 12
Sarkka (10.1016/j.media.2012.11.007_b0165) 2008; 53
Young (10.1016/j.media.2012.11.007_b0190) 1999; 3
Chen (10.1016/j.media.2012.11.007_b0040) 2010
Ben Ayed (10.1016/j.media.2012.11.007_b0020) 2008
10.1016/j.media.2012.11.007_b0115
Bergvall (10.1016/j.media.2012.11.007_b0025) 2008; 27
Punithakumar (10.1016/j.media.2012.11.007_b0145) 2010; 14
Hoffmann (10.1016/j.media.2012.11.007_b0070) 2006; 47
Moireau (10.1016/j.media.2012.11.007_b0120) 2009; 25
Qian (10.1016/j.media.2012.11.007_b0155) 2008
Pan (10.1016/j.media.2012.11.007_b0125) 2005; 52
10.1016/j.media.2012.11.007_b0050
Garcia-Barnes (10.1016/j.media.2012.11.007_b0055) 2010; 29
Cerqueira (10.1016/j.media.2012.11.007_b0035) 2002; 105
Hanley (10.1016/j.media.2012.11.007_b0065) 1982; 143
Lu (10.1016/j.media.2012.11.007_b0110) 2009
Comaniciu (10.1016/j.media.2012.11.007_b0045) 2003; 25
Leung (10.1016/j.media.2012.11.007_b0090) 2007
Punithakumar (10.1016/j.media.2012.11.007_b0140) 2010; 57
Spottiswoode (10.1016/j.media.2012.11.007_b0175) 2007; 26
Bar-Shalom (10.1016/j.media.2012.11.007_b0010) 2002
Liu (10.1016/j.media.2012.11.007_b0105) 2010; 29
Zhou (10.1016/j.media.2012.11.007_b0195) 2006; 65
Jacob (10.1016/j.media.2012.11.007_b0075) 2001; 27
Liu (10.1016/j.media.2012.11.007_b0095) 2007; 16
10.1016/j.media.2012.11.007_b0100
Punithakumar (10.1016/j.media.2012.11.007_b0135) 2010
Petitjean (10.1016/j.media.2012.11.007_b0130) 2011; 15
Seber (10.1016/j.media.2012.11.007_b0170) 1984
Viera (10.1016/j.media.2012.11.007_b0185) 2005; 37
Zou (10.1016/j.media.2012.11.007_b0200) 2007; 115
Redheuil (10.1016/j.media.2012.11.007_b0160) 2007; 9
Ben Ayed (10.1016/j.media.2012.11.007_b0015) 2009; 28
Julier (10.1016/j.media.2012.11.007_b0080) 2004; 92
Arts (10.1016/j.media.2012.11.007_b0005) 2010; 29
References_xml – volume: 30
  start-page: 52
  year: 2011
  end-page: 68
  ident: b0085
  article-title: An inter-landmark approach to 4-d shape extraction and interpretation: application to myocardial motion assessment in MRI
  publication-title: IEEE Transactions on Medical Imaging
– volume: 25
  start-page: 564
  year: 2003
  end-page: 577
  ident: b0045
  article-title: Kernel-based object tracking
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 53
  start-page: 845
  year: 2008
  end-page: 849
  ident: b0165
  article-title: Unscented Rauch–Tung–Striebel smoother
  publication-title: IEEE Transactions on Automatic Control
– year: 2002
  ident: b0010
  article-title: Estimation with Applications to Tracking and Navigation
– volume: 12
  start-page: 358
  year: 2005
  end-page: 367
  ident: b0030
  article-title: Computer-aided diagnosis via model-based shape analysis: automated classification of wall motion abnormalities in echocardiograms
  publication-title: Academic Radiology
– start-page: 750
  year: 2009
  end-page: 758
  ident: b0110
  article-title: Pattern recognition of abnormal left ventricle wall motion in cardiac MR
  publication-title: MICCAI 2009
– volume: 92
  start-page: 401
  year: 2004
  end-page: 422
  ident: b0080
  article-title: Unscented filtering and nonlinear estimation
  publication-title: Proceedings of the IEEE
– start-page: 340
  year: 2010
  end-page: 348
  ident: b0040
  article-title: A parameterization of deformation fields for diffeomorphic image registration and its application to myocardial delineation
  publication-title: MICCAI 2010
– volume: 26
  start-page: 15
  year: 2007
  end-page: 30
  ident: b0175
  article-title: Tracking myocardial motion from cine dense images using spatiotemporal phase unwrapping and temporal fitting
  publication-title: IEEE Transactions on Medical Imaging
– reference: Mansor, S., Noble, J., 2008. Local wall motion classification of stress echocardiography using a hidden Markov model approach. In: The 5th IEEE Int. Symp. Biomedical Imaging: From Nano to Macro, pp. 1295–1298.
– volume: 16
  start-page: 901
  year: 2007
  end-page: 917
  ident: b0095
  article-title: State-space analysis of cardiac motion with biomechanical constraints
  publication-title: IEEE Transactions on Image Processing
– volume: 29
  start-page: 733
  year: 2010
  end-page: 745
  ident: b0055
  article-title: A normalized framework for the design of feature spaces assessing the left ventricular function
  publication-title: IEEE Transactions on Medical Imaging
– volume: 28
  start-page: 595
  year: 2009
  end-page: 607
  ident: b0180
  article-title: Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images
  publication-title: IEEE Transactions on Medical Imaging
– volume: 25
  start-page: 035010
  year: 2009
  ident: b0120
  article-title: Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging
  publication-title: Inverse Problems
– volume: 13
  start-page: 226
  year: 2009
  end-page: 235
  ident: b0060
  article-title: Cardiac motion recovery via active trajectory field models
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– start-page: 52
  year: 2007
  end-page: 59
  ident: b0090
  article-title: Localized shape variations for classifying wall motion in echocardiograms
  publication-title: MICCAI 2007
– volume: 105
  start-page: 539
  year: 2002
  end-page: 542
  ident: b0035
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiologyof the American Heart Association
  publication-title: Circulation
– volume: 28
  start-page: 1902
  year: 2009
  end-page: 1913
  ident: b0015
  article-title: Embedding overlap priors in variational left ventricle tracking
  publication-title: IEEE Transactions on Medical Imaging
– volume: 52
  start-page: 1425
  year: 2005
  end-page: 1435
  ident: b0125
  article-title: Fast tracking of cardiac motion using 3D-HARP
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 26
  start-page: 56
  year: 2007
  end-page: 63
  ident: b0150
  article-title: Automated heart abnormality detection using sparse linear classifiers
  publication-title: IEEE Engineering in Medicine and Biology Magazine
– volume: 29
  start-page: 1114
  year: 2010
  end-page: 1123
  ident: b0005
  article-title: Mapping displacement and deformation of the heart with local sine-wave modeling
  publication-title: IEEE Transactions on Medical Imaging
– year: 1984
  ident: b0170
  article-title: Multivariate Observations
– start-page: 1025
  year: 2008
  end-page: 1033
  ident: b0020
  article-title: Left ventricle tracking using overlap priors
  publication-title: MICCAI 2008
– reference: Fung, G., Qazi, M., Krishnan, S., Bi, J., Rao, B., Katz, A., 2005. Sparse classifiers for automated heartwall motion abnormality detection. In: Proc. IEEE 4th Int. Conf. Machine Learning and Applications, pp. 194–200.
– volume: 47
  start-page: 121
  year: 2006
  end-page: 128
  ident: b0070
  article-title: Analysis of regional left ventricular function by cineventriculography, cardiac magnetic resonance imaging, and unenhanced and contrast-enhanced echocardiography: a multicenter comparison of methods
  publication-title: Journal of the American College of Cardiology
– volume: 27
  start-page: 773
  year: 2001
  end-page: 784
  ident: b0075
  article-title: Quantitative regional analysis of myocardial wall motion
  publication-title: Ultrasound in Medicine & Biology
– volume: 27
  start-page: 1045
  year: 2008
  end-page: 1053
  ident: b0025
  article-title: Spline-based cardiac motion tracking using velocity-encoded magnetic resonance imaging
  publication-title: IEEE Transactions on Medical Imaging
– volume: 57
  start-page: 2001
  year: 2010
  end-page: 2010
  ident: b0140
  article-title: Tracking endocardial motion via multiple model filtering
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 15
  start-page: 169
  year: 2011
  end-page: 184
  ident: b0130
  article-title: A review of segmentation methods in short axis cardiac MR images
  publication-title: Medical Image Analysis
– volume: 37
  start-page: 360
  year: 2005
  end-page: 363
  ident: b0185
  article-title: Understanding interobserver agreement: the kappa statistic
  publication-title: Family Medicine
– start-page: 409
  year: 2010
  end-page: 417
  ident: b0135
  article-title: Regional heart motion abnormality detection via information measures and unscented Kalman filtering
  publication-title: MICCAI 2010
– volume: 115
  start-page: 654
  year: 2007
  end-page: 657
  ident: b0200
  article-title: Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models
  publication-title: Circulation
– volume: 143
  start-page: 29
  year: 1982
  end-page: 36
  ident: b0065
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
– reference: Liu, J., 2006. New Development of the Deformation Method. Ph.D. thesis, Department of Mathematics, The University of Texas at Arlington.
– volume: 29
  start-page: 1560
  year: 2010
  end-page: 1572
  ident: b0105
  article-title: Shortest path refinement for motion estimation from tagged MR images
  publication-title: IEEE Transactions on Medical Imaging
– volume: 9
  start-page: 863
  year: 2007
  end-page: 872
  ident: b0160
  article-title: Interobserver variability in assessing segmental function can be reduced by combining visual analysis of cmr cine sequences with corresponding parametric images of myocardial contraction
  publication-title: Journal of Cardiovascular Magnetic Resonance
– volume: 65
  start-page: 93
  year: 2006
  end-page: 102
  ident: b0195
  article-title: On uniqueness theorem of a vector function
  publication-title: Progress in Electromagnetics Research
– start-page: 789
  year: 2008
  end-page: 797
  ident: b0155
  article-title: Identifying regional cardiac abnormalities from myocardial strains using spatio-temporal tensor analysis
  publication-title: MICCAI 2008
– volume: 3
  start-page: 361
  year: 1999
  end-page: 372
  ident: b0190
  article-title: Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images
  publication-title: Medical Image Analysis
– volume: 14
  start-page: 1106
  year: 2010
  end-page: 1113
  ident: b0145
  article-title: Detection of left ventricular motion abnormality via information measures and bayesian filtering
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– start-page: 52
  year: 2007
  ident: 10.1016/j.media.2012.11.007_b0090
  article-title: Localized shape variations for classifying wall motion in echocardiograms
– volume: 47
  start-page: 121
  year: 2006
  ident: 10.1016/j.media.2012.11.007_b0070
  article-title: Analysis of regional left ventricular function by cineventriculography, cardiac magnetic resonance imaging, and unenhanced and contrast-enhanced echocardiography: a multicenter comparison of methods
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/j.jacc.2005.10.012
– start-page: 789
  year: 2008
  ident: 10.1016/j.media.2012.11.007_b0155
  article-title: Identifying regional cardiac abnormalities from myocardial strains using spatio-temporal tensor analysis
– volume: 65
  start-page: 93
  year: 2006
  ident: 10.1016/j.media.2012.11.007_b0195
  article-title: On uniqueness theorem of a vector function
  publication-title: Progress in Electromagnetics Research
  doi: 10.2528/PIER06081202
– volume: 29
  start-page: 1114
  year: 2010
  ident: 10.1016/j.media.2012.11.007_b0005
  article-title: Mapping displacement and deformation of the heart with local sine-wave modeling
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2037955
– volume: 25
  start-page: 035010
  year: 2009
  ident: 10.1016/j.media.2012.11.007_b0120
  article-title: Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/25/3/035010
– volume: 13
  start-page: 226
  year: 2009
  ident: 10.1016/j.media.2012.11.007_b0060
  article-title: Cardiac motion recovery via active trajectory field models
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2008.2009221
– volume: 30
  start-page: 52
  year: 2011
  ident: 10.1016/j.media.2012.11.007_b0085
  article-title: An inter-landmark approach to 4-d shape extraction and interpretation: application to myocardial motion assessment in MRI
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2060490
– year: 1984
  ident: 10.1016/j.media.2012.11.007_b0170
– volume: 27
  start-page: 1045
  year: 2008
  ident: 10.1016/j.media.2012.11.007_b0025
  article-title: Spline-based cardiac motion tracking using velocity-encoded magnetic resonance imaging
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2008.917244
– start-page: 409
  year: 2010
  ident: 10.1016/j.media.2012.11.007_b0135
  article-title: Regional heart motion abnormality detection via information measures and unscented Kalman filtering
– volume: 15
  start-page: 169
  year: 2011
  ident: 10.1016/j.media.2012.11.007_b0130
  article-title: A review of segmentation methods in short axis cardiac MR images
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2010.12.004
– volume: 25
  start-page: 564
  year: 2003
  ident: 10.1016/j.media.2012.11.007_b0045
  article-title: Kernel-based object tracking
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1195991
– volume: 115
  start-page: 654
  year: 2007
  ident: 10.1016/j.media.2012.11.007_b0200
  article-title: Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.594929
– volume: 26
  start-page: 56
  year: 2007
  ident: 10.1016/j.media.2012.11.007_b0150
  article-title: Automated heart abnormality detection using sparse linear classifiers
  publication-title: IEEE Engineering in Medicine and Biology Magazine
  doi: 10.1109/MEMB.2007.335591
– volume: 143
  start-page: 29
  year: 1982
  ident: 10.1016/j.media.2012.11.007_b0065
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
  doi: 10.1148/radiology.143.1.7063747
– volume: 27
  start-page: 773
  year: 2001
  ident: 10.1016/j.media.2012.11.007_b0075
  article-title: Quantitative regional analysis of myocardial wall motion
  publication-title: Ultrasound in Medicine & Biology
  doi: 10.1016/S0301-5629(01)00350-7
– start-page: 750
  year: 2009
  ident: 10.1016/j.media.2012.11.007_b0110
  article-title: Pattern recognition of abnormal left ventricle wall motion in cardiac MR
– volume: 14
  start-page: 1106
  year: 2010
  ident: 10.1016/j.media.2012.11.007_b0145
  article-title: Detection of left ventricular motion abnormality via information measures and bayesian filtering
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2010.2050778
– volume: 28
  start-page: 595
  year: 2009
  ident: 10.1016/j.media.2012.11.007_b0180
  article-title: Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2008.2008966
– volume: 92
  start-page: 401
  year: 2004
  ident: 10.1016/j.media.2012.11.007_b0080
  article-title: Unscented filtering and nonlinear estimation
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2003.823141
– volume: 29
  start-page: 1560
  year: 2010
  ident: 10.1016/j.media.2012.11.007_b0105
  article-title: Shortest path refinement for motion estimation from tagged MR images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2010.2045509
– ident: 10.1016/j.media.2012.11.007_b0050
– volume: 52
  start-page: 1425
  year: 2005
  ident: 10.1016/j.media.2012.11.007_b0125
  article-title: Fast tracking of cardiac motion using 3D-HARP
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2005.851490
– year: 2002
  ident: 10.1016/j.media.2012.11.007_b0010
– volume: 53
  start-page: 845
  year: 2008
  ident: 10.1016/j.media.2012.11.007_b0165
  article-title: Unscented Rauch–Tung–Striebel smoother
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2008.919531
– volume: 26
  start-page: 15
  year: 2007
  ident: 10.1016/j.media.2012.11.007_b0175
  article-title: Tracking myocardial motion from cine dense images using spatiotemporal phase unwrapping and temporal fitting
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2006.884215
– volume: 37
  start-page: 360
  year: 2005
  ident: 10.1016/j.media.2012.11.007_b0185
  article-title: Understanding interobserver agreement: the kappa statistic
  publication-title: Family Medicine
– volume: 16
  start-page: 901
  year: 2007
  ident: 10.1016/j.media.2012.11.007_b0095
  article-title: State-space analysis of cardiac motion with biomechanical constraints
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2007.891773
– volume: 29
  start-page: 733
  year: 2010
  ident: 10.1016/j.media.2012.11.007_b0055
  article-title: A normalized framework for the design of feature spaces assessing the left ventricular function
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2034653
– volume: 57
  start-page: 2001
  year: 2010
  ident: 10.1016/j.media.2012.11.007_b0140
  article-title: Tracking endocardial motion via multiple model filtering
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2010.2048752
– volume: 28
  start-page: 1902
  year: 2009
  ident: 10.1016/j.media.2012.11.007_b0015
  article-title: Embedding overlap priors in variational left ventricle tracking
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2009.2022087
– ident: 10.1016/j.media.2012.11.007_b0115
  doi: 10.1109/ISBI.2008.4541241
– volume: 3
  start-page: 361
  year: 1999
  ident: 10.1016/j.media.2012.11.007_b0190
  article-title: Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images
  publication-title: Medical Image Analysis
  doi: 10.1016/S1361-8415(99)80029-2
– start-page: 340
  year: 2010
  ident: 10.1016/j.media.2012.11.007_b0040
  article-title: A parameterization of deformation fields for diffeomorphic image registration and its application to myocardial delineation
– volume: 12
  start-page: 358
  year: 2005
  ident: 10.1016/j.media.2012.11.007_b0030
  article-title: Computer-aided diagnosis via model-based shape analysis: automated classification of wall motion abnormalities in echocardiograms
  publication-title: Academic Radiology
  doi: 10.1016/j.acra.2004.11.025
– ident: 10.1016/j.media.2012.11.007_b0100
– volume: 105
  start-page: 539
  year: 2002
  ident: 10.1016/j.media.2012.11.007_b0035
  article-title: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiologyof the American Heart Association
  publication-title: Circulation
  doi: 10.1161/hc0402.102975
– volume: 9
  start-page: 863
  year: 2007
  ident: 10.1016/j.media.2012.11.007_b0160
  article-title: Interobserver variability in assessing segmental function can be reduced by combining visual analysis of cmr cine sequences with corresponding parametric images of myocardial contraction
  publication-title: Journal of Cardiovascular Magnetic Resonance
  doi: 10.1080/10976640701693626
– start-page: 1025
  year: 2008
  ident: 10.1016/j.media.2012.11.007_b0020
  article-title: Left ventricle tracking using overlap priors
SSID ssj0007440
Score 2.195046
Snippet [Display omitted] ► Coronary heart disease can be detected by measuring left ventricular motion. ► Clinically, the wall regional motion is scored following the...
Tracking regional heart motion and detecting the corresponding abnormalities play an essential role in the diagnosis of cardiovascular diseases. Based on...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 311
SubjectTerms Algorithms
Cardiac motion estimation
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Information Storage and Retrieval - methods
Information theoretic measures
Magnetic resonance imaging
Magnetic Resonance Imaging, Cine - methods
Male
Middle Aged
Movement
Myocardial Contraction
Nonlinear state estimation
Pattern Recognition, Automated - methods
Regional wall motion abnormality detection
Reproducibility of Results
Sensitivity and Specificity
Ventricular Dysfunction, Left - diagnosis
Ventricular Dysfunction, Left - physiopathology
Title Regional heart motion abnormality detection: An information theoretic approach
URI https://dx.doi.org/10.1016/j.media.2012.11.007
https://www.ncbi.nlm.nih.gov/pubmed/23375719
https://www.proquest.com/docview/1319185118
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH4MBdGD6Pw1f4wIHu22NGm6ehvDMRV3UAe7hbRNZCLd0O7q325e2k4F3cFrSWh4Sd_7XvPe9wFcdDnrdIzxPUWN8nhgE9a4w42XUsQPOjJCObbPkRiO-e0kmNSgX_XCYFll6fsLn-68dfmkXVqzPZ9O24-UoVgJRizELRF2lHMe4ilvfXyVeSABXtF7RT0cXTEPuRov152B9V1-C6k8UVP29-j0F_p0UWiwA9slfCS9YoW7UNNZHba-kQrWYeO-vC7fg9GDfna_-gjqVuekkOwhKs4QqSIAJ6nOXTFWdkV6GSlpVN2oZYsjqXjH92E8uH7qD71SQMFLWBDlXpgkIjWKapsDU5EkVFl0EDI_SG1ewkzaDQyLg1RzRRnnOoktHkhMKpDzTUexzw5gLZtl-giICak2WqQisgDKQiplA58xTDAVIGM-a4BfGU4mJbs4ily8yqqM7EU6a0u0ts07pLV2Ay6Xk-YFucbq4aLaEfnjjEjr_ldPPK_2T9qvB69EVKZni3dJrQeiCDq7DTgsNna5Ep-xMAhpdPzf157Apu_EM7DO5xTW8reFPrMQJo-b7ow2Yb13czccfQJWse6L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2VVmI5IHbKaiSOhNZx7DTcKkTVsvTAInGznMRGIBQqSP8fj-NUIAEHrpGtWGNn5k088x7AcS9i3a4xYaCoUUHEbcKadiMT5BTxg06MUI7tcyyGD9HlI39swHndC4Nlld73Vz7deWv_pOOt2Zk8P3fuKEOxEoxYiFuSeA5ayE7Fm9Dqj66G45lDRg68qv2KBjihJh9yZV6uQQNLvMJTZPNEWdmfA9RvANQFosEKLHsESfrVIlehoYs1WPrCK7gG8zf-xnwdxrf6yf3tIyhdXZJKtYeotECwihic5Lp09VjFGekXxDOpulGzLkdSU49vwMPg4v58GHgNhSBjPCmDOMtEbhTVNg2mIsuosgAhZiHPbWrCTN7jhqU815GiLIp0llpIkJlcIO2bTtKQbUKzeCv0NhATU220yEViMZRFVcrGPmOYYIojaT5rQ1gbTmaeYBx1Ll5lXUn2Ip21JVrbph7SWrsNJ7NJk4pf4-_hot4R-e2YSBsB_p54VO-ftB8Q3oqoQr9NPyS1Togi7uy1Yava2NlKQsZiHtNk57-vPYSF4f3Ntbweja92YTF0WhpY9rMHzfJ9qvctoinTA39iPwGKFvE8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regional+heart+motion+abnormality+detection%3A+An+information+theoretic+approach&rft.jtitle=Medical+image+analysis&rft.au=Punithakumar%2C+Kumaradevan&rft.au=Ben+Ayed%2C+Ismail&rft.au=Islam%2C+Ali&rft.au=Goela%2C+Aashish&rft.date=2013-04-01&rft.issn=1361-8415&rft.volume=17&rft.issue=3&rft.spage=311&rft.epage=324&rft_id=info:doi/10.1016%2Fj.media.2012.11.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_media_2012_11_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon