Existence and uniqueness for p-Laplace equations involving singular nonlinearities
We consider quasilinear elliptic equations involving the p -Laplacian and singular nonlinearities. We prove comparison principles and we deduce some uniqueness results.
Saved in:
Published in | Nonlinear differential equations and applications Vol. 23; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.04.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1021-9722 1420-9004 |
DOI | 10.1007/s00030-016-0361-6 |
Cover
Loading…
Abstract | We consider quasilinear elliptic equations involving the
p
-Laplacian and singular nonlinearities. We prove comparison principles and we deduce some uniqueness results. |
---|---|
AbstractList | We consider quasilinear elliptic equations involving the
p
-Laplacian and singular nonlinearities. We prove comparison principles and we deduce some uniqueness results. We consider quasilinear elliptic equations involving the p-Laplacian and singular nonlinearities. We prove comparison principles and we deduce some uniqueness results. |
ArticleNumber | 8 |
Author | Canino, Annamaria Sciunzi, Berardino Trombetta, Alessandro |
Author_xml | – sequence: 1 givenname: Annamaria surname: Canino fullname: Canino, Annamaria organization: Dipartimento di Matematica e Informatica, Università della Calabria – sequence: 2 givenname: Berardino surname: Sciunzi fullname: Sciunzi, Berardino email: sciunzi@mat.unical.it organization: Dipartimento di Matematica e Informatica, Università della Calabria – sequence: 3 givenname: Alessandro surname: Trombetta fullname: Trombetta, Alessandro organization: Dipartimento di Matematica e Informatica, Università della Calabria |
BookMark | eNp9kF1LwzAUhoNMcJv-AO8KXkdPPpq0lzLmBwwE0euQtOnIqGmXtEP_vZkVBEFvchLOec775l2gme-8ReiSwDUBkDcRABhgIAIDEwSLEzQnnAIuAfgs3YESXEpKz9Aixh0AkYKVc_S8fndxsL6ymfZ1Nnq3H623MWZNF7Ieb3Tf6tS0-1EPrvMxc_7QtQfnt1lMx9jqkCUvrfNWBzc4G8_RaaPbaC--6xK93q1fVg9483T_uLrd4Irl5YBlRQsw1hjDJCOmbripiAFqaM6LvJYmPYXhlheWgwVRisrISuRFLSyhULMlupr29qFLpuOgdt0YfJJUlHFGJTDJ0xSZpqrQxRhso_rg3nT4UATUMTo1RadSdOoYnRKJkb-Yyg1f3x-Cdu2_JJ3ImFT81oYfT39Dn3nQhbU |
CitedBy_id | crossref_primary_10_1007_s00009_020_01548_w crossref_primary_10_1007_s00030_018_0509_7 crossref_primary_10_1007_s11784_024_01157_0 crossref_primary_10_1016_j_nonrwa_2022_103804 crossref_primary_10_12677_pm_2024_145198 crossref_primary_10_1112_jlms_12172 crossref_primary_10_1007_s41808_021_00112_1 crossref_primary_10_1016_j_bulsci_2017_01_002 crossref_primary_10_1007_s10958_024_07141_w crossref_primary_10_3934_cpaa_2022088 crossref_primary_10_1007_s10958_024_07408_2 crossref_primary_10_1515_ans_2021_2151 crossref_primary_10_31801_cfsuasmas_1468665 crossref_primary_10_1007_s11118_021_09906_3 crossref_primary_10_1007_s00028_021_00695_1 crossref_primary_10_1515_forum_2023_0151 crossref_primary_10_1007_s42985_024_00308_9 crossref_primary_10_1515_anona_2017_0221 crossref_primary_10_1186_s13661_024_01953_0 crossref_primary_10_1016_j_na_2017_02_009 crossref_primary_10_1007_s40840_023_01464_8 crossref_primary_10_1016_j_jde_2018_10_039 crossref_primary_10_1016_j_jfa_2019_108346 crossref_primary_10_1007_s00033_018_1040_8 crossref_primary_10_1007_s11587_022_00706_4 crossref_primary_10_1007_s12220_023_01262_5 crossref_primary_10_1007_s41808_024_00272_w crossref_primary_10_1007_s00009_020_01535_1 crossref_primary_10_1007_s00032_018_0279_z crossref_primary_10_1007_s00526_021_01994_8 crossref_primary_10_1002_mma_8496 crossref_primary_10_1007_s00030_021_00693_9 crossref_primary_10_3934_math_2025024 crossref_primary_10_1007_s10231_020_00996_1 crossref_primary_10_1007_s13398_023_01444_4 crossref_primary_10_23939_mmc2021_04_705 crossref_primary_10_1016_j_jde_2017_09_008 crossref_primary_10_1016_j_jde_2021_12_031 crossref_primary_10_3233_ASY_231832 crossref_primary_10_1007_s11868_024_00662_7 crossref_primary_10_1016_j_na_2022_113022 crossref_primary_10_1016_j_nonrwa_2022_103752 crossref_primary_10_1007_s43036_022_00240_y crossref_primary_10_1142_S0219199723500608 crossref_primary_10_1515_anona_2024_0033 crossref_primary_10_1007_s00009_020_01523_5 crossref_primary_10_1007_s12220_024_01790_8 crossref_primary_10_1007_s11868_023_00557_z crossref_primary_10_1007_s00229_021_01298_3 crossref_primary_10_1002_mana_201900431 crossref_primary_10_1007_s00229_023_01504_4 crossref_primary_10_1007_s00526_021_02034_1 crossref_primary_10_1017_prm_2023_80 crossref_primary_10_1515_anona_2021_0208 crossref_primary_10_3934_dcds_2021111 crossref_primary_10_1016_j_jmaa_2018_11_069 crossref_primary_10_1515_dema_2022_0031 crossref_primary_10_24193_subbmath_2023_1_03 crossref_primary_10_1007_s00009_020_01515_5 crossref_primary_10_1016_j_jmaa_2024_128138 crossref_primary_10_1007_s41808_024_00297_1 crossref_primary_10_1007_s11868_022_00441_2 crossref_primary_10_1007_s13324_022_00676_8 crossref_primary_10_1007_s41808_018_0012_7 crossref_primary_10_1016_j_jde_2020_08_038 crossref_primary_10_1002_mana_201700302 crossref_primary_10_1007_s00526_022_02339_9 crossref_primary_10_1007_s41808_023_00210_2 crossref_primary_10_1216_rmj_2021_51_1629 crossref_primary_10_1080_17476933_2021_2014458 crossref_primary_10_5269_bspm_53111 crossref_primary_10_1007_s11868_023_00509_7 crossref_primary_10_1142_S1664360722500138 crossref_primary_10_1007_s00009_022_02244_7 crossref_primary_10_1007_s00526_019_1582_4 crossref_primary_10_1090_proc_15417 crossref_primary_10_1515_ans_2015_5041 crossref_primary_10_1080_17476933_2020_1801655 crossref_primary_10_1080_17476933_2024_2429098 crossref_primary_10_1088_1361_6544_acda0a |
Cites_doi | 10.1007/s00526-005-0337-6 10.1007/BF01214274 10.1006/jmaa.1997.5470 10.1007/s10231-012-0280-z 10.1080/03605307708820029 10.1016/j.jde.2004.05.012 10.1016/0022-0396(84)90105-0 10.1016/j.jde.2013.08.014 10.1090/S0002-9939-1991-1037213-9 10.1016/j.jde.2010.05.009 10.1016/0362-546X(83)90061-5 10.1016/j.jfa.2012.02.018 10.1007/s00030-007-5047-7 10.1016/0362-546X(88)90053-3 10.1007/s00208-013-0959-5 10.1007/s00526-009-0266-x 10.1016/0022-0396(89)90113-7 10.1007/BF01449041 10.1007/978-3-7643-8145-5 10.1142/S0219199714500138 |
ContentType | Journal Article |
Copyright | Springer International Publishing 2016 2016© Springer International Publishing 2016 |
Copyright_xml | – notice: Springer International Publishing 2016 – notice: 2016© Springer International Publishing 2016 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00030-016-0361-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1420-9004 |
ExternalDocumentID | 10_1007_s00030_016_0361_6 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c359t-7c280bebbb3731bdf4bc1b02b25485d7bbc16b4e48e40e0696cb7c658d6e120d3 |
IEDL.DBID | U2A |
ISSN | 1021-9722 |
IngestDate | Fri Jul 25 11:10:17 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Tue Jul 01 01:13:19 EDT 2025 Fri Feb 21 02:39:07 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Laplace equations 35B51 Uniqueness of solutions 35J70 35J92 Existence of solutions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-7c280bebbb3731bdf4bc1b02b25485d7bbc16b4e48e40e0696cb7c658d6e120d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00030-016-0361-6.pdf |
PQID | 2343270374 |
PQPubID | 2044004 |
ParticipantIDs | proquest_journals_2343270374 crossref_primary_10_1007_s00030_016_0361_6 crossref_citationtrail_10_1007_s00030_016_0361_6 springer_journals_10_1007_s00030_016_0361_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-01 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Nonlinear differential equations and applications |
PublicationTitleAbbrev | Nonlinear Differ. Equ. Appl |
PublicationYear | 2016 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Boccardo, Murat (CR2) 1992; 19 Canino, Degiovanni (CR5) 2004; 11 Damascelli, Sciunzi (CR11) 2006; 25 Boccardo, Orsina (CR4) 2010; 37 CR16 CR14 Sciunzi (CR23) 2007; 14 Canino, Grandinetti, Sciunzi (CR6) 2013; 255 Arcoya, Boccardo, Leonori, Porretta (CR1) 2010; 249 Lazer, McKenna (CR19) 1991; 111 Tolksdorf (CR26) 1984; 51 Gatica, Oliker, Waltman (CR13) 1989; 79 Kuusi, Mingione (CR17) 2012; 262 Pucci, Serrin (CR21) 2007 Di Benedetto (CR12) 1983; 7 CR7 CR9 Lieberman (CR20) 1988; 12 Lair, Shaker (CR18) 1977; 211 CR24 Stuart (CR22) 1976; 147 Damascelli, Sciunzi (CR10) 2004; 206 Teixeira (CR25) 2014; 358 Crandall, Rabinowitz, Tartar (CR8) 1977; 2 Vázquez (CR27) 1984; 12 Hirano, Saccon, Shioji (CR15) 2004; 9 Brandolini, Chiacchio, Trombetti (CR3) 2014; 4 E. Di Benedetto (361_CR12) 1983; 7 A. Canino (361_CR5) 2004; 11 B. Sciunzi (361_CR23) 2007; 14 G.M. Lieberman (361_CR20) 1988; 12 361_CR24 C.A. Stuart (361_CR22) 1976; 147 L. Damascelli (361_CR10) 2004; 206 M.G. Crandall (361_CR8) 1977; 2 A.V. Lair (361_CR18) 1977; 211 P. Pucci (361_CR21) 2007 D. Arcoya (361_CR1) 2010; 249 361_CR16 E. Teixeira (361_CR25) 2014; 358 L. Boccardo (361_CR4) 2010; 37 A. Canino (361_CR6) 2013; 255 361_CR14 B. Brandolini (361_CR3) 2014; 4 N. Hirano (361_CR15) 2004; 9 J.A. Gatica (361_CR13) 1989; 79 P. Tolksdorf (361_CR26) 1984; 51 L. Damascelli (361_CR11) 2006; 25 J.L. Vázquez (361_CR27) 1984; 12 361_CR7 A.C. Lazer (361_CR19) 1991; 111 T. Kuusi (361_CR17) 2012; 262 361_CR9 L. Boccardo (361_CR2) 1992; 19 |
References_xml | – volume: 25 start-page: 139 issue: 2 year: 2006 end-page: 159 ident: CR11 article-title: Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of -Laplace equations publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-005-0337-6 – volume: 147 start-page: 53 year: 1976 end-page: 63 ident: CR22 article-title: Existence and approximation of solutions of non-linear elliptic equations publication-title: Math. Z. doi: 10.1007/BF01214274 – volume: 9 start-page: 197 issue: 1–2 year: 2004 end-page: 220 ident: CR15 article-title: Multiple existence of positive solutions for singular elliptic problems with concave ad convex nonlinearities publication-title: Adv. Differ. Equ. – ident: CR14 – ident: CR16 – volume: 211 start-page: 371 issue: 2 year: 1977 end-page: 385 ident: CR18 article-title: Classical and weak solutionsof a singular semilinear elliptic problem publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1997.5470 – volume: 4 start-page: 389 issue: 2 year: 2014 end-page: 404 ident: CR3 article-title: Symmetrization for singular semilinear elliptic equations publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s10231-012-0280-z – volume: 2 start-page: 193 issue: 2 year: 1977 end-page: 222 ident: CR8 article-title: On a Dirichlet problem with a singular nonlinearity publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605307708820029 – volume: 206 start-page: 483 issue: 2 year: 2004 end-page: 515 ident: CR10 article-title: Regularity, monotonicity and symmetry of positive solutions of -Laplace equations publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2004.05.012 – volume: 51 start-page: 126 issue: 1 year: 1984 end-page: 150 ident: CR26 article-title: Regularity for a more general class of quasilinear elliptic equations publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(84)90105-0 – volume: 255 start-page: 4437 issue: 12 year: 2013 end-page: 4447 ident: CR6 article-title: Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2013.08.014 – volume: 111 start-page: 721 year: 1991 end-page: 730 ident: CR19 article-title: On a singular nonlinear elliptic boundary-value problem publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1991-1037213-9 – volume: 249 start-page: 2771 issue: 11 year: 2010 end-page: 2795 ident: CR1 article-title: Some elliptic problems with singular natural growth lower order terms publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.05.009 – volume: 7 start-page: 827 issue: 8 year: 1983 end-page: 850 ident: CR12 article-title: local regularity of weak solutions of degenerate elliptic equations publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(83)90061-5 – volume: 262 start-page: 4205 year: 2012 end-page: 4269 ident: CR17 article-title: Universal potential estimates publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2012.02.018 – volume: 19 start-page: 405 year: 1992 end-page: 412 ident: CR2 article-title: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations publication-title: Nonlinear Anal. – year: 2007 ident: CR21 publication-title: The Maximum Principle – volume: 11 start-page: 147 issue: 1 year: 2004 end-page: 162 ident: CR5 article-title: A variational approach to a class of singular semilinear elliptic equations publication-title: J. Convex Anal. – volume: 14 start-page: 315 issue: 3–4 year: 2007 end-page: 334 ident: CR23 article-title: Some results on the qualitative properties of positive solutions of quasilinear elliptic equations publication-title: NoDEA. Nonlinear Differ. Equ. Appl. doi: 10.1007/s00030-007-5047-7 – ident: CR9 – volume: 12 start-page: 1203 issue: 11 year: 1988 end-page: 1219 ident: CR20 article-title: Boundary regularity for solutions of degenerate elliptic equations publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(88)90053-3 – volume: 358 start-page: 241 issue: 1–2 year: 2014 end-page: 256 ident: CR25 article-title: Regularity for quasilinear equations on degenerate singular sets publication-title: Math. Ann. doi: 10.1007/s00208-013-0959-5 – volume: 37 start-page: 363 issue: 3–4 year: 2010 end-page: 380 ident: CR4 article-title: Semilinear elliptic equations with singular nonlinearities publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-009-0266-x – volume: 79 start-page: 62 issue: 1 year: 1989 end-page: 78 ident: CR13 article-title: Singular nonlinear boundary value problems for second-order ordinary differential equations publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(89)90113-7 – volume: 12 start-page: 191 issue: 3 year: 1984 end-page: 202 ident: CR27 article-title: A strong maximum principle for some quasilinear elliptic equations publication-title: Appl. Math. Optim. doi: 10.1007/BF01449041 – ident: CR7 – ident: CR24 – volume: 25 start-page: 139 issue: 2 year: 2006 ident: 361_CR11 publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-005-0337-6 – volume: 12 start-page: 191 issue: 3 year: 1984 ident: 361_CR27 publication-title: Appl. Math. Optim. doi: 10.1007/BF01449041 – volume-title: The Maximum Principle year: 2007 ident: 361_CR21 doi: 10.1007/978-3-7643-8145-5 – volume: 358 start-page: 241 issue: 1–2 year: 2014 ident: 361_CR25 publication-title: Math. Ann. doi: 10.1007/s00208-013-0959-5 – volume: 7 start-page: 827 issue: 8 year: 1983 ident: 361_CR12 publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(83)90061-5 – volume: 51 start-page: 126 issue: 1 year: 1984 ident: 361_CR26 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(84)90105-0 – ident: 361_CR9 – ident: 361_CR7 – volume: 2 start-page: 193 issue: 2 year: 1977 ident: 361_CR8 publication-title: Commun. Partial Differ. Equ. doi: 10.1080/03605307708820029 – volume: 37 start-page: 363 issue: 3–4 year: 2010 ident: 361_CR4 publication-title: Calc. Var. Partial Differ. Equ. doi: 10.1007/s00526-009-0266-x – volume: 19 start-page: 405 year: 1992 ident: 361_CR2 publication-title: Nonlinear Anal. – volume: 14 start-page: 315 issue: 3–4 year: 2007 ident: 361_CR23 publication-title: NoDEA. Nonlinear Differ. Equ. Appl. doi: 10.1007/s00030-007-5047-7 – volume: 9 start-page: 197 issue: 1–2 year: 2004 ident: 361_CR15 publication-title: Adv. Differ. Equ. – volume: 11 start-page: 147 issue: 1 year: 2004 ident: 361_CR5 publication-title: J. Convex Anal. – volume: 79 start-page: 62 issue: 1 year: 1989 ident: 361_CR13 publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(89)90113-7 – volume: 206 start-page: 483 issue: 2 year: 2004 ident: 361_CR10 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2004.05.012 – volume: 255 start-page: 4437 issue: 12 year: 2013 ident: 361_CR6 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2013.08.014 – volume: 12 start-page: 1203 issue: 11 year: 1988 ident: 361_CR20 publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(88)90053-3 – volume: 111 start-page: 721 year: 1991 ident: 361_CR19 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1991-1037213-9 – volume: 147 start-page: 53 year: 1976 ident: 361_CR22 publication-title: Math. Z. doi: 10.1007/BF01214274 – volume: 211 start-page: 371 issue: 2 year: 1977 ident: 361_CR18 publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1997.5470 – ident: 361_CR14 – volume: 4 start-page: 389 issue: 2 year: 2014 ident: 361_CR3 publication-title: Ann. Mat. Pura Appl. doi: 10.1007/s10231-012-0280-z – ident: 361_CR16 – volume: 249 start-page: 2771 issue: 11 year: 2010 ident: 361_CR1 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2010.05.009 – volume: 262 start-page: 4205 year: 2012 ident: 361_CR17 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2012.02.018 – ident: 361_CR24 doi: 10.1142/S0219199714500138 |
SSID | ssj0017639 |
Score | 2.379805 |
Snippet | We consider quasilinear elliptic equations involving the
p
-Laplacian and singular nonlinearities. We prove comparison principles and we deduce some uniqueness... We consider quasilinear elliptic equations involving the p-Laplacian and singular nonlinearities. We prove comparison principles and we deduce some uniqueness... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Analysis Elliptic functions Laplace equation Mathematical analysis Mathematics Mathematics and Statistics Uniqueness |
Title | Existence and uniqueness for p-Laplace equations involving singular nonlinearities |
URI | https://link.springer.com/article/10.1007/s00030-016-0361-6 https://www.proquest.com/docview/2343270374 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90e9EH8ROnc-TBJ6XQJmnSPg7ZHH49iIP5VHptBoIUXTfwz_eSfgxFBR9L0xTuLpff5e5-ATjPeRSkGVqGS8E9OdeBhzzmtmNZKzIpTDNXbfGgJlN5MwtndR932VS7NylJ56nbZjcH3yn0pQhYqMBTm9ANbehORjzlwzZ1QAsmdilOW3ugOW9SmT9N8XUzWiPMb0lRt9eMd2GnBolsWGl1DzZMsQ_b9y3DankAj6MPqyBSGUuLnK0cD6t1W4xQKHvz7lJXbcXMe8XlXbKXgjyRPT5g9njAVp-youLJSBeOVvUQpuPR09XEq-9H8DIRxktPZzzy0SCi0CLAfC4xC9DnSEFfFOYa6VGhNDIy0je-ilWGOiPIkSsTcD8XR9ChH5ljYFpE0sxNRPAnlWGcI8WFqZBCS4pHuMQe-I2gkqwmD7d3WLwmLe2xk21iC8asbBPVg4v2k7eKOeOvwf1G-km9iMqE26ZXbQlyenDZaGT9-tfJTv41-hS2uLMIW43Th85ysTJnBDSWOIDu8Pr5djRwBvYJrdLKAQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_oPKgH8ROnU3PwpBTaJE3a45CNqdsOssFupS_NQJAy1w38803Sj6Go4LE0TeG9fPxe3u_9AnCb0ShIFVqFS0Y9PpeBhzSmtmJZCjOkMFWObTEWgyl_moWzqo67qNnudUrSrdRNsZuD7yb0NREwE4EntmHHYIHI8rimtNukDsyEiV2K03IPJKV1KvOnLr5uRhuE-S0p6vaa_iEcVCCRdEuvHsGWzo9hf9QorBYn8NL7sA4yLiNpnpG102G1yxYxKJQsvGHq2FZEv5da3gV5zc1KZI8PiD0esOxTkpc6GenSyaqewrTfmzwMvOp-BE-xMF55UtHIR42ITLIAszlHFaBP0QR9UZhJNI8CueaR5r72RSwUSmUgRyZ0QP2MnUHL_EifA5Es4nquIwN_Uh7GGZq4MGWcSW7iEcqxDX5tqERV4uH2Dou3pJE9drZNLGHM2jYRbbhrPlmUyhl_Ne7U1k-qSVQk1Ba9SiuQ04b72iOb1792dvGv1jewO5iMhsnwcfx8CXvUjQ7LzOlAa7Vc6ysDOlZ47QbZJ__cy2A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfRB_MTp1Dz4pJS1SZq0j0M3ps4h4mBvpZdkIEiZawf--Sbpx1BU8LE0TeHucvld7u4XhC4ViYJUgmW4pMRjMxF4QGJiO5YFNyYFqXTVFmM-nLD7aTit7jnN62r3OiVZ9jRYlqas6M7VrNs0vjkob8JgEw1THnh8HW0YbxxYs56QXpNGMIsndulOW4cgCKnTmj9N8XVjWqHNbwlSt-8MdtFOBRhxr9TwHlrT2T7afmzYVvMD9Nz_sMoy6sNppvDScbJaF4YNIsVzb5S6yius30te7xy_ZsYr2aMEbI8KbCUqzkrOjHThKFYP0WTQf7kZetVdCZ6kYVx4QpLIBw0AVNAA1IyBDMAnYALAKFQCzCMHplmkma99HnMJQhr4obgOiK_oEWqZH-ljhAWNmJ7pyEChlIWxAhMjppRRwUxsQhi0kV8LKpEVkbi9z-ItaSiQnWwTWzxmZZvwNrpqPpmXLBp_De7U0k-qBZUnxDbACkuW00bXtUZWr3-d7ORfoy_Q5tPtIBndjR9O0RZxxmGLdDqoVSyW-szgjwLOnY19AgTxz5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Existence+and+uniqueness+for+p-Laplace+equations+involving+singular+nonlinearities&rft.jtitle=Nonlinear+differential+equations+and+applications&rft.au=Canino+Annamaria&rft.au=Sciunzi+Berardino&rft.au=Trombetta+Alessandro&rft.date=2016-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1021-9722&rft.eissn=1420-9004&rft.volume=23&rft.issue=2&rft_id=info:doi/10.1007%2Fs00030-016-0361-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1021-9722&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1021-9722&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1021-9722&client=summon |