DOA Estimation of GNSS Signals Based on Deconvolved Conventional Beamforming
The Direction of Arrival (DOA) parameter is a key parameter in directional channel modeling for GNSS systems and multipath suppression. However, achieving high-precision, low-complexity DOA estimation of multiple signal sources without requiring a known source number is still a challenge. This paper...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 20; p. 3856 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-4292 2072-4292 |
DOI | 10.3390/rs16203856 |
Cover
Loading…
Abstract | The Direction of Arrival (DOA) parameter is a key parameter in directional channel modeling for GNSS systems and multipath suppression. However, achieving high-precision, low-complexity DOA estimation of multiple signal sources without requiring a known source number is still a challenge. This paper introduces a satellite navigation DOA parameter estimation method based on deconvolution beamforming. By exploiting the translational invariance property of the uniform linear array pattern, the deconvolution process is applied to the de-spread array pattern of satellite navigation signals, achieving high-precision estimation of DOA parameters. This method can achieve high-precision blind DOA estimation of multiple signal sources while significantly reducing the estimation complexity. Compared with traditional methods, precise DOA estimation can be achieved even in low-signal-to-noise-ratio conditions and with a small number of elements in the array. The theoretical analysis and simulation results verify the effectiveness of the proposed algorithm. |
---|---|
AbstractList | The Direction of Arrival (DOA) parameter is a key parameter in directional channel modeling for GNSS systems and multipath suppression. However, achieving high-precision, low-complexity DOA estimation of multiple signal sources without requiring a known source number is still a challenge. This paper introduces a satellite navigation DOA parameter estimation method based on deconvolution beamforming. By exploiting the translational invariance property of the uniform linear array pattern, the deconvolution process is applied to the de-spread array pattern of satellite navigation signals, achieving high-precision estimation of DOA parameters. This method can achieve high-precision blind DOA estimation of multiple signal sources while significantly reducing the estimation complexity. Compared with traditional methods, precise DOA estimation can be achieved even in low-signal-to-noise-ratio conditions and with a small number of elements in the array. The theoretical analysis and simulation results verify the effectiveness of the proposed algorithm. |
Audience | Academic |
Author | Wang, Feixue Lin, Honglei Wu, Jian Tang, Xiaomei Li, Chenglong |
Author_xml | – sequence: 1 givenname: Jian orcidid: 0000-0002-7937-3736 surname: Wu fullname: Wu, Jian – sequence: 2 givenname: Chenglong orcidid: 0000-0003-3261-5619 surname: Li fullname: Li, Chenglong – sequence: 3 givenname: Honglei surname: Lin fullname: Lin, Honglei – sequence: 4 givenname: Xiaomei surname: Tang fullname: Tang, Xiaomei – sequence: 5 givenname: Feixue surname: Wang fullname: Wang, Feixue |
BookMark | eNpNUU1LAzEQDaLg58VfsOBNaM3HZjc51rZqoeiheg7T3WRJ2W402Rb8905dURNCJjPvPV5mzslxFzpLyDWjYyE0vYuJFZwKJYsjcsZpyUc51_z4X3xKrlLaUFxCME3zM7KcvUyyeer9Fnofuiy47PF5tcpWvumgTdk9JFtnWJjZKnT70O7xOcXIdgc8tNm9ha0Lceu75pKcOCTZq5_7grw9zF-nT6Ply-NiOlmOKiF1PyoLdKsdgzWn6NfxNfrRwtZCUaYLnbuKSus0r5RUNXPWAlAnaaEdiBLPBVkMunWAjXmPaD5-mgDefCdCbAzE3letNbUohSpLoNrKnLlyDWqtKChgkmlHJWrdDFrvMXzsbOrNJuzi4e9GMGxcLlXBEDUeUA2gqO9c6CNUuGu79dgY6zzmJ4rlOcsl40i4HQhVDClF635tMmoO0zJ_0xJfbJGFrA |
Cites_doi | 10.1186/s43020-024-00143-8 10.1007/BF02106512 10.1016/j.sigpro.2020.107500 10.3390/rs13193973 10.1186/s43020-022-00077-z 10.1109/LCOMM.2022.3167020 10.1186/s43020-020-00025-9 10.1109/CAMSAP.2017.8313162 10.3390/rs15133387 10.1109/JPROC.2016.2532963 10.1109/JOE.2017.2680818 10.1007/s00034-024-02866-0 10.1109/TWC.2003.821215 10.1109/LWC.2023.3307159 10.1155/2022/5325076 10.1109/PROC.1969.7278 10.1109/TVT.2018.2851783 10.1016/j.sigpro.2006.01.007 10.1007/s11263-023-01877-9 10.1109/LCOMM.2019.2953851 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs16203856 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_d373877a09e541f7ba8b80a8a1519f05 A814414512 10_3390_rs16203856 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c359t-763909f1ab20203f2b00393ed38019694fc05ef92c858d1feeaa0f5069fa37fa3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:29:12 EDT 2025 Fri Jul 25 11:41:13 EDT 2025 Tue Jun 10 21:00:17 EDT 2025 Tue Jul 01 01:33:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c359t-763909f1ab20203f2b00393ed38019694fc05ef92c858d1feeaa0f5069fa37fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3261-5619 0000-0002-7937-3736 |
OpenAccessLink | https://doaj.org/article/d373877a09e541f7ba8b80a8a1519f05 |
PQID | 3120745861 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d373877a09e541f7ba8b80a8a1519f05 proquest_journals_3120745861 gale_infotracacademiconefile_A814414512 crossref_primary_10_3390_rs16203856 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-01 |
PublicationDateYYYYMMDD | 2024-10-01 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhang (ref_9) 2020; 24 Qiu (ref_3) 2022; 3 Gao (ref_1) 2024; 5 Yang (ref_22) 2018; 43 Chen (ref_23) 2024; 132 Zhao (ref_8) 2023; 12 Min (ref_17) 2004; 3 Arribas (ref_5) 2016; 104 ref_10 Ge (ref_12) 2021; 2021 ref_20 Chen (ref_15) 2022; 2022 Georgiou (ref_6) 2006; 86 ref_19 ref_18 ref_16 Lu (ref_2) 2020; 1 Capon (ref_7) 1969; 57 Zheng (ref_11) 2020; 171 Huang (ref_13) 2018; 67 Naseri (ref_14) 2022; 26 Enge (ref_21) 1994; 1 ref_4 |
References_xml | – volume: 5 start-page: 20 year: 2024 ident: ref_1 article-title: High-precision services of BeiDou navigation satellite system (BDS): Current state, achievements, and future directions publication-title: Satell. Navig. doi: 10.1186/s43020-024-00143-8 – volume: 1 start-page: 83 year: 1994 ident: ref_21 article-title: The Global Positioning System: Signals, measurements, and performance publication-title: Int. J. Wirel. Inf. Netw. doi: 10.1007/BF02106512 – volume: 171 start-page: 107500 year: 2020 ident: ref_11 article-title: Robust sparse Bayesian learning for DOA estimation in impulsive noise environments publication-title: Signal Processing doi: 10.1016/j.sigpro.2020.107500 – ident: ref_19 doi: 10.3390/rs13193973 – ident: ref_4 – volume: 3 start-page: 14 year: 2022 ident: ref_3 article-title: A multipath mitigation algorithm for GNSS signals based on the steepest descent approach publication-title: Satell. Navig. doi: 10.1186/s43020-022-00077-z – volume: 26 start-page: 1273 year: 2022 ident: ref_14 article-title: Machine Learning-Based Angle of Arrival Estimation for Ultra-Wide Band Radios publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2022.3167020 – volume: 1 start-page: 27 year: 2020 ident: ref_2 article-title: Global capabilities of BeiDou Navigation Satellite System publication-title: Satell. Navig. doi: 10.1186/s43020-020-00025-9 – ident: ref_10 doi: 10.1109/CAMSAP.2017.8313162 – ident: ref_18 doi: 10.3390/rs15133387 – volume: 104 start-page: 1207 year: 2016 ident: ref_5 article-title: Robust GNSS Receivers by Array Signal Processing: Theory and Implementation publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2532963 – volume: 43 start-page: 160 year: 2018 ident: ref_22 article-title: Deconvolved Conventional Beamforming for a Horizontal Line Array publication-title: IEEE J. Ocean. Eng. doi: 10.1109/JOE.2017.2680818 – volume: 2021 start-page: 6392875 year: 2021 ident: ref_12 article-title: Deep Learning Approach in DOA Estimation: A Systematic Literature Review publication-title: Mob. Inf. Syst. – ident: ref_16 doi: 10.1007/s00034-024-02866-0 – volume: 3 start-page: 191 year: 2004 ident: ref_17 article-title: Direction-of-arrival tracking scheme for DS/CDMA systems: Direction lock loop publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2003.821215 – volume: 12 start-page: 2068 year: 2023 ident: ref_8 article-title: Barycenter Calibration of Spatial Spectra for Direction-of-Arrival Estimations Based on Capon/MUSIC Algorithms publication-title: IEEE Wirel. Commun. Lett. doi: 10.1109/LWC.2023.3307159 – volume: 2022 start-page: 5325076 year: 2022 ident: ref_15 article-title: Multisource DOA Estimation in Impulsive Noise Environments Using Convolutional Neural Networks publication-title: Int. J. Antennas Propag. doi: 10.1155/2022/5325076 – volume: 57 start-page: 1408 year: 1969 ident: ref_7 article-title: High-resolution frequency-wavenumber spectrum analysis publication-title: Proc. IEEE doi: 10.1109/PROC.1969.7278 – volume: 67 start-page: 8549 year: 2018 ident: ref_13 article-title: Deep Learning for Super-Resolution Channel Estimation and DOA Estimation Based Massive MIMO System publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2018.2851783 – volume: 86 start-page: 3061 year: 2006 ident: ref_6 article-title: Maximum likelihood parameter estimation under impulsive conditions, a sub-Gaussian signal approach publication-title: Signal Process. doi: 10.1016/j.sigpro.2006.01.007 – ident: ref_20 – volume: 132 start-page: 428 year: 2024 ident: ref_23 article-title: Deep Richardson-Lucy Deconvolution for Low-Light Image Deblurring publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-023-01877-9 – volume: 24 start-page: 339 year: 2020 ident: ref_9 article-title: An Improved ESPRIT-Like Algorithm for Coherent Signals DOA Estimation publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2019.2953851 |
SSID | ssj0000331904 |
Score | 2.3771627 |
Snippet | The Direction of Arrival (DOA) parameter is a key parameter in directional channel modeling for GNSS systems and multipath suppression. However, achieving... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3856 |
SubjectTerms | Algorithms Artificial satellites in navigation Beamforming Complexity Deconvolution deconvolved conventional beamforming Direction of arrival DOA estimation Energy Forecasts and trends Global navigation satellite system GNSS Linear arrays Methods multipath Neural networks Optimization algorithms Parameter estimation Receivers & amplifiers Satellites Signal to noise ratio Theoretical analysis |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFH-C7gCXaWwgug9kaUicojmxndgntI6OCUGFVibtZjn-GBzWbm03af897yXuBgc45OA4h-jn92379wDeh1T7oIUolIiSWpiVRduoVNRtMCEq3sauad-3SX12Ib9cqstccFvmY5Vrm9gZ6jD3VCM_EmWF3k7puvx4c1tQ1yjaXc0tNJ7DBppgrQawMRpPvp8_Vlm4QBHjsuclFZjfHy2WZV3Rdlj9lyfqCPv_ZZY7X3O6BZs5SGTH_aq-gmdxtg0vcr_ynw878BVTOjZG7ewvHrJ5Yp8n0ymb_roiPmQ2Qt8UGE58onwXLdA9Dk_-OGDORtFdU7yKnus1XJyOf5ycFbkvQuGFMqsCTYLhJpWurWgfMVVtd8M2BqE7thuZPFcxmcprpUOZYnSOJ8Vrk5xo8HkDg9l8Ft8CQ3h0NDL64INsApGRuSbigGPUnbwewuEaI3vT019YTBsISfuE5BBGBN_jF0RZ3b2YL65s1gAbiEOpaRw3UckyNa3TreZOO4w5TOJqCB8IfEuKtVo47_L9APxRoqiyx5pyP4kByhD21-tjs8Yt7ZN87P5_eg9eImyyP5C3D4PV4i4eYGCxat9l6fkNCDnMjg priority: 102 providerName: ProQuest |
Title | DOA Estimation of GNSS Signals Based on Deconvolved Conventional Beamforming |
URI | https://www.proquest.com/docview/3120745861 https://doaj.org/article/d373877a09e541f7ba8b80a8a1519f05 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_4cdCL-InzYwQUPBXTJmmT4-Y2h2xDnIK3kDaJenDKnIL_vS9t1XkQLx5KSVvo4_fyvkjyewDH1qeFlYxFgjkeWpjFUZ4JH6W5VdYJmruyad9wlPZv-MWtuJ1r9RX2hFX0wBVwpzZQ72SZocoJHvssNzKX1EiDoUr5ir0UY95cMVX6YIZTi_KKj5RhXX86fYnTJCyDpT8iUEnU_5s7LmNMbx3W6uSQtCqhNmDBTTZhpe5Tfv--BQP8O-miVVYHDsmTJ-ej8ZiMH-4CDzJpY0yyBF90Qp2LnucNh2dzG8tJ25nHkKdixNqGm173-qwf1f0QooIJNYvQFSiqfGzyJKwf-iQvT9Y6y2TJcsN9QYXzKimkkDb2zhlDvaCp8oZleO3A0uRp4naBIDzSKe4KW1ie2UBCZjKHA4rZti9kA44-MdLPFe2FxnIhIKm_kWxAO8D39UWgqi4foAJ1rUD9lwIbcBLA18GgZlNTmPpcAAoaqKl0S4aaj2Ni0oCDT_3o2tJeNIsTzIKETOO9_5BmH1YRXF5t1zuApdn01R1i2jHLm7Aoe-dNWG51hoMx3tvd0eVVs5x3HyOs1ys |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lAuiPIQCy21BIhTVCe2E_uAULfdsqXbFWJbqTfjxHbLgd2yu4D6p_obmcmjhQPcesjBcZREn2c8M7bnG4DXPuaV10IkSgRJJczSpCxUTPLSGx8UL0NdtO94nA9P5cczdbYC110uDB2r7ObEeqL2s4rWyHdEmqG1UzpP319-T6hqFO2udiU0GrE4Cle_MGRbvDvcx_F9k2UHg5O9YdJWFUgqocwyQYUy3MTUlRntwsWsrPNTgxe65oqRseIqRJNVWmmfxhCc41Hx3EQnCrzwvfdgDd0Mg1q01h-MP32-WdXhAkWay4YHVeCHduaLNM9o-y3_y_LVBQL-ZQZq23bwEB60TinbbaRoA1bC9BGst_XRL64ewwhDSDbA2aBJdGSzyD6MJxM2-XpO_Musj7bQM-zYp_gaZ7yf2Nz740A76wf3jfxjtJRP4PROEHsKq9PZNDwDhvDoYGSofOVl4Yn8zBUBGxy9_FjpHrzqMLKXDd2GxTCFkLS3SPagT_DdPEEU2fWN2fzcthpnPXE2FYXjJiiZxqJ0utTcaYc-jolc9eAtgW9JkZdzV7k2HwF_lCix7K6mWFOiQ9SDzW58bKvhC3srj8__370N68OT45EdHY6PXsB9hFA2hwE3YXU5_xG20KlZli9bSWLw5a6F9zfC4wj2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE-x0IIlQJyidWI7sQ8Idbu7tLSsKpZKvRkntgsHdsvuAupf49d1Jo8WDnDrIQfHURKN52nPfAPw0se88lqIRIkgqYVZmpSFikleeuOD4mWom_Z9mOZ7x_L9iTrZgN9dLQylVXY6sVbUflHRHvlApBlaO6XzdBDbtIij0eTt2feEOkjRSWvXTqNhkYNw_gvDt9Wb_RGu9assm4w_7e4lbYeBpBLKrBMULsNNTF2Z0YlczMq6VjV4oWvcGBkrrkI0WaWV9mkMwTkeFc9NdKLAC997AzYLtIq6B5vD8fTo4-UODxfI3lw2mKgCPzRYrtI8o6O4_C8rWDcL-JdJqO3c5C7caR1UttNw1D3YCPP7cKvtlf7l_AEcYjjJxqgZmqJHtojs3XQ2Y7Ovp4TFzIZoFz3DiRHF2qj9fuJw94_kdjYM7hv5ymg1H8LxtVDsEfTmi3l4DAzJo4ORofKVl4UnIDRXBBxw9PhjpfvwoqORPWugNyyGLERJe0XJPgyJfJdPEFx2fWOxPLWt9FlP-E1F4bgJSqaxKJ0uNXfaob9jIld9eE3EtyTU66WrXFubgD9K8Fh2R1PcKdE56sNWtz62lfaVveLNJ_-ffg43kWnt4f704CncRgrKJi9wC3rr5Y-wjf7NunzWMhKDz9fNuxfUJg0i |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DOA+Estimation+of+GNSS+Signals+Based+on+Deconvolved+Conventional+Beamforming&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Jian+Wu&rft.au=Chenglong+Li&rft.au=Honglei+Lin&rft.au=Xiaomei+Tang&rft.date=2024-10-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=16&rft.issue=20&rft.spage=3856&rft_id=info:doi/10.3390%2Frs16203856&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d373877a09e541f7ba8b80a8a1519f05 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |